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The range of vector measures into Orlicz spaces

by
WERNER FISCHER and ULRICH SCHOLER (Bonn)

Abstract. It is shown that the range of a c-additive vector measure having
values in an Orlicz space L, (X, 4, p), where ¢ is unbounded and satisties condition
4y, is bounded. This implies that every scalar-valued, bounded measurable funetion
can be integrated with respect to any vector measure taking values in such a space
Lg(X, A, p). In the special case of the sequence spaces I?, 0 < p <.1, the range i§
relatively compact, and the closure is even convex and compact if the measure is
nonatomic. .

1. It is known that the range of every o¢-additive vector measure
with values in a locally pseudoconvex vector space iy bounded (cf. [1]).
On the other hand P. Turpin has shown in [11] that there exists a non-
locally pseudoconvex F-space and a vector measure having unbounded,

“range in that space. With regard to integration theory it would be im-

portant to know whether a vector measure has always bounded range
in an Orlicz space L, (X, 4, u) (¢f. [8]). P. Turpin states this question
in [9] and [11].

In this note we answer the question positively for the class of Orlicz
spaces L,(X, A, u), where ¢ is unbounded and satisfies condition 4,.
It is done by showing that every normbounded, convex set in L, (X, 4, u)
is bounded and then uging the fact that the convex hull of the range of
such a vector measure is normbounded. The latter follows from an in-
equality for Orlicz spaces, which is essential for the proof that in these
spaces unconditional convergence is equivalent to bounded multiplier
convergence ([4], [10]).

Ag a consequence every scalar-valued, bounded measurable function
can be integrated with respect to any vector measure taking values in
such a space Ly(X, A, p).

In the special case of the sequence spaces ¥, 0 < p < 1, the range
is even relatively compact. When such a vector measure is also nonatomie,
the closure of its range is compact and convex.

2. Throughout the paper, 2 will denote a set and T a o-algebra of
subsets. Let ¥ be an F-tpace (i.e. a complete metric topological linear
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space) with F-norm | [. By a vector measure m on 2 iy understood a map

m: I—Y, which is countably additive. We set m(Z):= {m(4): AeZ},
A set AeX is called an atom of m if m(4) # 0 and if HeZ, Hc A

imply m(H) = 0 or m(H) = m(A)
By o(m, H): sup{Z‘Ilm

i #j} we denote the total variation of m over the set .
We use the notion co(4) for the convex hull of a set 4.
(X, A, u) denotes a measure space (c¢f. [2]). Let ¢: [0, c0)->[0, o)
be continnous, nondecreasing with. ¢(0) = 0, %imqa(t) = co and ¢ satisfying
00

: ApeZ, A c B and 4;04; =@ for

condltlon 4, (i.e. there is a &> 1 with ¢(2t) < kp(t) for all ¢ > 0). Then
L, (X, A, u)is the hnea.r spa,ce of all real or complex-valued u-measurable
funcmons on X with J,( { o (lo))du < oo. We identify functions which

differ only on a set of memure Zero.

L,(X,A,u) is called Orlicz space. It is an F-space with F-norm
|| := inf{& > 0: J,(w/e) < &} (cf. [B], [6]). We list some well-known
properties, which we need in the sequel:

(i) The sets Np(s) := {weL,(X, A, p): I, () <
hood base of zero.

(i) lell < 1 implies J,(2) < 1. .

(iti) J, i3 a modular with the property J,(#-+£¥) <

&} form a neighbour-

Te( 5 (@) + T (1)

3. In a locally bounded Orlicz space L,(X, 4, u) every normbounded
set is also bounded [9]. This is obviously false in non-loca.lly bounded
spaces. However we have

TeEOREM 1. Let M < L (X, A, p) be convex. Then M is bounded,
whenever it is normbounded.

Proof. For simplicity of notation we assume M to be in the wunit
ball of L,(X, 4, u). After obvious changes the proof also works in general
case.

We suppose that M is not bounded and lead this 1,0 a contradiction,
namely we cmow that then there is a convex combination ‘}J A;f; of elements
of M with HZ Lfi|l > 1.

We d1st1ngu1%h between the following two cases.

(A) Let (X, 4, u) be a finite positive measure space. For simplicity
of notation again we assume u(X) = 1.

If M is not bounded, there is an g, > 0 such that for every i> 0
there exists some fe M with

1 AFEN ,(5).
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As M is normbounded, for every &, 5> 0 there is a 1> 0 with

(2) ult: (M) = & <9
for all fe M.
Let & >1 be the real number defined by the Ag-condition of p. We
choose NeN so that Ney/2k > 1.
Set & 1= & /8NKY™ and i, arbitrarily with 0 < 1, < 1. From (1)
we get that there is fie M with [¢(|4.f;])dw > &,. Set
x

(3) Ay = {t: o(|uf1(8)]) = &}

We can find a 6, > 0 such that for all BeA with u(B) < 8, we have
) f P(Aafal) B < oz -

Now we continue thiy construction inductively for all je{2,..., N}

We set- 7, := min{dy, ...,
we have for given &, 7,
(2*) uft:

for all fe M. (1)
Now we define

d;-,;} and choose i; so that according to (2)

(14 (D) = &} <7
implies that there exists fje M with xf o(4f]) du = &.

(3% Ay = {t: o(I4f;(0)]) = &) -
We remark that this implies
(5) f oA du = Lo,

Then we choose real numbels d; > 0, so that for all BeA with u(B) < ¢
we have

(4%) f‘ﬂ 2 f31) d 8NkN+2

Obviously we can suppose that 2‘ y<1
j=1
b
NowwedefmeB, i= AN (U Ag)forje{t, ...,
=g 1

9y —Zlifi, iii) implies

Sasj

dmal

~
N}.Setting @ : =Y 4:f;,
q=]

foo(lw)dy—f«p([ZNzifil)du
‘5 5o

From the choice of 7; we have n; < §; and u(4;) < niforallde{j+1, ..., N},


GUEST


56 W. Fischer and U. Sehilor

so by (4*) we get

o

N
Z f (14fsl) s < (N — ])SNRN’2<870'
=gl A;

Hence by (5)

) o
m = [etngan= = [otnsbdu-T [ olisnas
B; 4y N

P
f (1A dgs — Z f P25
G-l Ay
780 8 3¢,
> USSR AU e
Z 8k 8k 4k

From (iil) we get

N
‘P(!le‘fi
b

o< o] Saafjonss fo(] S5l

Fmagf -1
Applying (i) j—2 times for j=>2, we get
J'—% 1_—%
9) b o] D h|Jaus X # [ otndiin
5 i=1 fim1 B
. &y 8o
< A
SO 5w <&

since by the choice of 7; we have u(B,) < J; and therefore

for all ie{l,...,j—1}.

8o
B[?’(M{fﬂ)dﬂ < e

Bimilarly, by the definition. of By, & and by (8*)

o] Siallwe S fusson
i=g4l T=f41

K+ A — )R+ <=2

‘2: f PUAT B < (N =i+ St < 28

icm®
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So altogether we get by (6)~

ol S

10) the following estimation:

ol )

7

au

J*< EMZ

> (3 JRCULS f( lft)du)
Jz
=
) [ 36 w J
> 0 Eo _ Eo .
2(470 4k) o6 L

.

=1
In view of (ii) this is a contradiction to our assumption.

(B) Let (X, 4, x) be an arbitrary positive measure space.
By part (A) for all Bed with u(B) < oo,

(11) {fxz: fe M} is bounded.
As we assume that M is unbounded, there is an g, > 0 with

(12) {Af: fe M} & N,(so)
for all A> 0.

57

Choose NeN so large that Ney/2k > 1. Set A;: =} and take fie M

with [@(|A.fi])dp > &,. Then there is 4,ed, p(d,) < oo, with
x

&o
f (1A fil) du < SN
x4

From (11) we get that there is 1, < 1/2% with

f‘ﬁ (1251) ¢,

On the other hand, (12) nn])lle,s the exigtence of f,e M with f ¢ (|AfoNd
There is Aged with u(4,) < oo and

8N7N+1 for all fe M.

[ ot du <

EN\4,

£q
QNN

For A,:= A;\A, we have then

[ wtuti < L
X\ dy

=&
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Fori =3, ..., N we proceed now inductively. We can choose 4, < 1/2°
such that
o(|2:f1)é, SNkN“ for all fe M,
'LGIA

choose f;e M with fcp [A.f3])du > &o and Ai = XN ( U Ayg) with p(4;) < co and

e (14:f3) d,u <
XN\A;
So we have for all ¢,je{1,...,

e

N} with 4 %

[ otingd au
4y

1)

3
[otnfian> =2 < T
Aj

‘With this and inequality (iii) we get the following estimation:

(IZ% Jau> Zf (WW &
Z( fqu(lz,fj dp— f(‘gltfil)"?/‘)

N
—1 2
> D jqa(wﬂ au— S fqu )
j =] i;}
N
e, & .N!:!o
> G I P )
2(4k 4Nlc> 5 L

=1

&.

which as in part (A) is a contradiction to the assumption.
In order to show the boundedness of the range of a vector measure,
we need the following

ProrostrroN (Labuda). Let B be a ving of sels, m: R—+L (X, A, u)

an odditive set function. If m(R)
bounded.

Proof. For each (#;)i., = L (X, 4, ) and each ()%, with 4] <

we have
| 55 < 8 max] S
i=1 =

This inequality is proved by I. Labida in [4] and by P. Turpin in [10].

18 normbomzded, then co (m(R)) is norm-

feeft, —1}).

icm

“as a simple function 2 Am( Ai), Where M]

Orlicz spaces 59

Every convex combma.tlon 26 m (B, 2, 8; = 1, may be represented

1 and the sets A;e<R are

pairwise disjoint. Henee if m(R) is bounded by a constant C, the in-
equality above implies that there are some (s,)2,, s = 1, with

“éa”m(ﬂf) H = ”i?l'im(-li{) “ <8 H ﬁs,-m(jl )

= 8|m(F)

—m (G <
where ' is the union of all 4; with & = 1 and & the union of all 4, with
& = —1L.
! As the range of a vector measure m is normbounded in (X, 4, z)
[1], the following theorem follows immediately from Theorem 1 and the
Proposition.

TeeorEM 2. The range of & wector measure m: Z—L (X, A, u) s
bounded.

Using the terminology of the integration theory, which P. Turpin
developed in ([8], Chap. VII), we get the following

CororrARY. Let m: Z—+L,(X, A, u) be a vector measure. Then every
scalar-valued, bounded measurable function is integrable.

The proof follows immediately from Theorem 2 and the fact that
unconditional convergence and bounded multiplier convergence of series
are equivalent in IL,(X, A4, u) ([4], [10]).

160,

4. If one considers a vector measure m with bounded total variation
and values in a Banach space X, which is either reflexive or a separable
dual gpace, then the range of m is precompact in the norm topology of
X and moreover, if m iy nonatomic, the closure of the range of m is
compact and convex (cf. [12]). We will show now that vector measures
into the sequence spaces I (0 < p < 1) have still the same property,
although we have the following

LmvmA. The total variation of o nom-trivial vector measure m: X—1°
(0 < p < 1) is unbounded, whenever m is not purely atomic.

Proof. By assumption there is a set AdeZ with m(4) %0, and 4
contains no atom of m. We can suppose that we have m(4) = (x;) with
2, = 1. Now we consider the scalar-valued measure A,0m: Z—R, where 4,:
¥ R is defined by A, ((@;)) : = ;. As 2,0 is nonatomic, there exists a par-
tition of A with Aom(4;)=1 /n foralll<i<< n From the definition of the

p-norm. in ¥ we get v (m, 4) Z m (4 2 [A0 m(
which proves the lemmz» i1

AP = nn? =i,
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We need the following notations. By AP (4% 4"} we denote the
closure of a set 4 in the p-norm topology of ¥ (in the norm topology
of %, in the weak topology of I, resp.).

THEOREM 3. The range of a vector measure m: Z—IF (0 < p < 1) ds
relatively compact. Moreover, if m is nonatomic, the closure of the range iy
compact ond conves.

Proof. We first consider the case where m is monatomic. As the
inclusion of I into I* is continuous, we can regard m ax a vector measure
from X into . From [3] it follows that m(Z)" = co (m()]))’ and. the range
m(Z) is relatively weakly compact. Since weak a,nd_ﬂ',:r;ong convergence
of sequences coincide in I* (¢f. [2], Oor. IV. 8.14.), m(Z)" is compact in
the norm topology, and therefore we have m(Z) = m(Z)“.

The range .of a vector measure is bounded in ¥ [1] and therefore
m(Z) is still contained and bounded in . Since m (X' is a closed, bounded,
convex set in 1%, it follows from [7] that m(Z) is compact in . As the
inclusion of I” into 1! is continuous, we have m(Z)? = 'n—;(z:)l, which
proves the theorem if m is nonatomic. v

As the range of a ‘vector measure is the sum of the ranges of a non-
atomic and a purely atomic vector measure, and the latter is compact,
the assertion of the theorem is proved.

Acknowledgements. We are grateful to Iwo Labuda for several
useful comments, especially for proposing to use the Proposition, which
improves the former representation of the results of part 3 considerably.
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