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Almost everywhere convergence
of Walsh Fourier series of s#'-functions

by ¢
N. R. LADHAWALA and D. C. PANKRATZ (Lafayette, Ind.)

Abstract. Lot 8,f denote the nth partial sum of the Walsh Fourier series of
o

a function felr (0, 1). We say that fisin #7 if ]/ Y (Senf—8pn~1f)? ig in L', This
n=1

corresponds to the definition of #* given by Garsia [6]for martingales. We prove that
for fe #* and {ng}iso a lacunary sequence of positive integers, 8, f converges a.e.;
whoreas, there exists a function in 5% whose full sequence of partial sums diverges.
The space #?, our results, and their proofs are all analogous to the classical trigono-
metric case.

Tntroduction. For feI*(0, 1), let- 8, f denote the nth partial sam of
its ‘Walsh Fourier series. We say that f is in #* if the corresponding
square function Sf =/ 3 (Spnf —8em-1f)? is in L. Note that {8;nf},.5e

n=1
is a martingale, and so our definition is a special case of the definition of
' given by Garsia [6] for martingales.

In this paper we prove the following theorems.

THEOREM 1. Let fe S and {1 lzo b6 @ lacunary sequence of positive
integers. Then Sy, f(@)—f(#) (k—>o0) for a.e. we(0,1).

TriorEM 2. There emsts an fe " such that its full sequence of partial
sums, 8, f, diverges everywhere.

The space #", our results, and their proofs are all analogous to the
clagsical trigonometric case.

‘We recall that in the trigonometrie case, a function f belongs to
H1it and only if f and its conjugate f are both in I'. According to Feffer-
man and Stein [4], this is equivalent to the Littlewood-Paley function
g(f) being in L. The square function §f is analogous to g(f). (See Little-
wood and Paley [7].) Moreover, let ¢ be the characteristic function of
the unit interval, sufficiently smoothed out. Define

g (@) = iq)(?’—) and  f* = suplpxf|.
t t >0
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Tefferman and Stein [4] bave shown that f is in H* if and only if f* is
in I*. g,f is nearly an average of f. Tn the Walsh system, Syf is exactly
an average of f. According to Davis [2], fe #* if and only if

f* = sup |8 is in I,
>0

The trigonometric analogue of Theorem 1 is known. (See Zygmund
[10], Vol. II, pp. 234-239.) The Littlewood—Paley function ¢(f) plays
an important role in the proof. The underlying idea of our proof is similar.
We use the square function Sf in place of g(f). To handle 8f, we follow
arguments of Fefferman and Stein [3]. Our proof is not as complicated
as in the trigonometric case because of the special nature of the Walsh
funections.

An example of a function in H' with a.e. divergent Fourier series
can be obtained by modifying Kolmogorov’s I' example. His example
was constructed as a sum of non-overlapping polynomials ¢,. By multi-
plying each g, by a suitable exponential ¢, we obtain a function geH?*
with a.e. divergent Fourier series (see Zygmund [10], Vol. 1). We follow
the same line of argument. For the Walsh system, Moon [8] modified
a construction of Stein [9] and gave an example of a integrable funection
h whose Walsh Fourier series diverges everywhere. This function is a sum
of non-overlapping Walsh-polynomials, v;, as in Kolmogorov’s example.
Our example is also obtained by multiplying each u; by a Walsh function.

We thank Richard A. Hunt for his help in the preparation of this
paper.

Definitions and properties. We recall some definitions and properties
of Walsh functions.

o will denote a dyadic subinterval of (0, 1), and we will write [Z|

for Lebesgue measure of a set E.
Let r,, be the nth Rademacher function. For any nonnecra.tlve integer

n, with n = Z‘ &2, 6 =0 or 1, the nth Walsh function is dcfmed by

w, = ]‘I (ry)¥

For n < 2V, 'w,, is constant on m‘uerval& w, With || 2™V,
It w~2§¢2 =1 and t~2n2“ E,m =0 or 1, let @4t =
Faml)
2 & _'mlz—“”l Then wn(w"l"t) = wn("‘”) ww,“)-
For fel'(0,1), we have

N1 1
(Suf)(@) = D) ex(fw(@) = [ (1)

0

k=0

(@4 1) d

icm
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where ¢, (f f F(t)w,(t)dt and D,
We will need to use the fact that,

n—1
= 3w, is the mth Dirichlet kernel.
=0

fu) ()iat

limsup L >0

o Togn (see Fine [5]).

Let
5;“) = 9 {Z(o,z"f~1)(t)

The modified Dirichlet kernel iz defined as

—75(2‘7—1,2—7)“)}; j=10,1,2,..

(=] (=]
Dh(t) = Za,é}"(t), where n = 28,.21, g =0 or 1.
j=o =0

It can be shown that D (f) = w,()D,(1). Let

1

(82 (@) = [ f) Dj(w +1)dt.

0
Note that,
(83f) (@) = w, (@) (8ywnf) ()
By Bessel’s inequality, we have

185 f1l2 < [Flle-
For feI*(0, 1), set

f* = 51;13 [8pnf] and Sf = 5’ [Spnt1f — Bgnf .
n; n=0

Davis [2] has shown that there exist positive constants ¢ and C
such that

c”SjH]. I *l. < CUISSlly-
'We nay that fe #* it 8feI?, or equivalently if f*< L%, and we write
Ifller = 18-

Proof of theorems.
Proof of Theorem 1. We show that for any lacunary sequence
{tdamo

(1) {£e(0,1): 5up18,,,1(@)] > 9} < — flen
k=0 Yy

for all y > 0, fe #* Since 8,,f converges to f in #* norm, Theorem 1 will
follow from (1) by the usual density argument.
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Tt is well known that every lacunary sequence, {f,};-, can be split
into a finite number of lacunary subsequences {nlhm. with ni,, = 2nf,

and hence, we may assume 2° < ny, < 2°71. Let dj, = Sypr1f— 8, f. Then

8y = Syf -+ 8, d. Since

1
1 ¢
[we(0, 1): supl Sef (o) > 9} < [ (@) do < < e,
=0 Yy Y
it is sufficient to prove

2) {we(0,1): suplS,, & (@) > g} < — If-
k=0 Y

. o0
Applying the Calderén—Zygmund lemma [1] to (Y [d[*)"%, we obtain
Io==0

a collection of disjoint intervals, {w;};s,, such that

- 2\1/2 ) _

(a) (ké\; Idk(m)l) <y for ae 24Q = Uoy,
(b) y< —I_l}T (2 Id,c(x)lz)m o<y for §>0,

i k=0
and J

L 1 o
(@ S [( Do 12)

j=0 ?/ o F=0

For each % >0, we write d;, = ¢, + b;, where

1 .
vl f wy (Nt veay,
@5

d (2) i g0,

gk(w) =

and by, = dy— gy.
We will prove

(3) H(Z 158, 0o < o] ZWM”) .-

To deduce (2) from (3) we note that fw (0 by (1) @t = 0, and if adwmy,

. o
D} (x41) is constant as ? varies over wy. Hence, for u¢ 2,

S i) = 10, (0) 82, (10, 05) () = 10, (), (10, 0, (2).
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By inequalities (¢) and (3) we have

{we(0,1): supISn,dk )| >y}

< Q|+ |{wg 2: gﬁ)lﬂnk(wn,ﬂgk)(w)l >y}

s —37 | (2 |dla(m)|2)1/2 da+ Hwe(o’ 1) (Zﬁ [S:k(wnkgk)(m)lz)m > ?/}'
T ke =0
(S 2] 5

o0
4 1/2 4
<2\ X i), = Z1sn.
; g ), =5 W

To prove (3), we proceed as follows.
For zewy,

(ylgk o) = le fdk )00, (1)

k=0

2

2

2)1/2
lw [ p (Z | (2) ) <2y,

by the vector-valued form of Minkowski’s inequality and (b). For a.e.

2482,
(3 o = S <y,
k=0

k=0

by inequality (a). Therefore,

(S0 = Z SIS mtorTass S (3o Tao

0,1)—-8 F=0

< 9t Y ol [ 3 (o)t < o9 (3107
Jms0 0 k=0 k=0

By Bessel’s inequality

”ksn,‘.( nkglc)H ”gk“zv
and so

IS 5 < S0t < 50 317

This completes the proof of (3), and hence of Theorem 1.
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Proof of Theorem 2. Let 2¥ 7 <n<2¥, Nz1, and oy, = Let {N;}5 be any increasing sequence of positive integers such
o0

o— . - i N, hat, D, (24 1) is constant as # and - .
27V, (j+1)277), 0<j< 2" Note that, D, ; hat 3 Ni* < oo, and set
£ rané:e over wy; and wy;, Tespectively. For 0 < T <27V, define tha g(: i %%

By = {te(0,1): wyn+(t) = sgnDy (s +1), Vaewy p}- Flo) = ZN;122NihNi($)-
5 1=0
Then |Byz =} and By, is equidistributed over the intervals wy,;, Then
0<j< oV, 1 3
Let JIf@ldo< Y NP < o0, 50 fe'.
V-1 B d =0
iy = B and o = HyNaoyy. ‘ N ‘ N :
IJ'N ]QO N,k f] N Ny . (/') _ .N'Z-lz“ {cm(h’N,[) if 2N.;+2 i <m< ZN‘L'"‘ZN +1’
A\ - .
Clearly, |Ey| =27*", and o; is an interval of lengli\al_h 2;2:\;‘““’". ' 0 otherwise. .
We denote iz, (1) w48 (t) bY hy(t) and 2N 428 by 1N, k), Hence, for every we(0,1) and every 4, there is a k; = k;(2) such that
0< k<2, Then- ety a0d .

_ N2V ‘ N4al g1
(I) Cplhy) =0 unless 2 <m<2 and. Sy @) — Sy pf) (@)

1 N
(TI) [(Siav, 4 hiav) (@) — (S, 1y hay) ()] = | Byl f |D, (@ 1) | Aty Vaewy,, = N7 2% 7|y, g 4 o) () — (Siav g v, ) (@) = K > 0.
0

Thus (8,f)(#) cannot converge. Finally, to show fe #%, we note that
(X) is clear.

. ) . N'i
To prove (II), first observe that, for 0 <k < 2%, S ) (0 — (B )8 = [<S2N¢+2N"“1f) (t)—-(szNﬁzNif)(t) it p = 2Mit?
o D+1 —Pyn = )
Dy, g0 (8) = Digav, iy () = Wyay, iy (8) Dy (8). - 0 otherwise,
Hence, for zewy;, ; and .
; W1 (8 HO—(8  wHE) = Nh2% “hy(l)  ae
1(Shew 9 ) (@)= (i) (@) = | 3 [ wavsx(t) Do +1)d | Nk i ‘
1=0 wj Therefore,
N 1 1 =
= jZ { Dn(@+ )] db Ifler = [(SF)(t)ae = [ ]/ S L8,af) ()= (S ) (00
=l W, 0 0 -
! . 1 Py 1 o N
= |Byl* [ |Dale+1)]dt. m“/}j [N 2 W hy (a3 N2y (9
0 0 1eal 0 gm0
The last equality holds because ®
= Nit < oo,
log| = 27N = | Byl oyl %’ e
Choosing #» such that
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On parabolic Marcinkiewicz integrals
by
CALIXTO P. CALDERON* (Chicago, IIL)

Abstraet. Throughout this papor it is studied the existence of parabolic Mar-
cinkiowiez integrals of thoe typo:

&
e = | TT(/T))TW JWpla—9)dy

n
where 4 > 0,0 (lw}) stands for the parabolic distance from = to the origin, la] = Y a,
; , f=1
where a; > 1, f belongs to L? (R"), 1 p< o, and ¢ is a function satisfying:
(@) el [ p(w)|de < M;
o(lz))<e

p (2 -+ B} — @ ()|
NSRS AR/ p < a
dahSaamy e @

0. Introduction. Let ¢(|o|) be the parabolic metric in R™, namely:

0.1, Z( ) =1, 4>1,i=1,2,...,n,

Gem ]
where ¢ (|®|) is the only positive root of the above equation (see [4]). In [6],
E. M. Ostrow and E. M. Stein introduced the folowing type of integrals:

(y)
" () m___,.,________“_q
0.2. T4( n_!: o —y] n+}. 6‘n+l(m)

wheve 4 > 0, fel'(R™) and ™ f lg ()| dy < O. Here, §(z) stands for the

plo—y)dy

Buelidean. distance from » to & closed subset &' of R". In the above paper,
the authors prove the existence a.e. of the integral 0.2. It has been pointed
out by A. Zygmund in [8], that 7', maps continously I*(R™) into Z'(R™)
lewving as an open question whether if 7, maps continuously I*(R")
into LP(R™ for p - 1. The purpose of this paper is to give an answer
to that problem wh(m assuming an extra condition on ¢, namely:

3.

e
Hme (J dous not depend on h.

* Umvumx{,y of Illinois at Chicago Circle.
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