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On parabolic Marcinkiewicz integrals
by
CALIXTO P. CALDERON* (Chicago, IIL)

Abstraet. Throughout this papor it is studied the existence of parabolic Mar-
cinkiowiez integrals of thoe typo:

&
e = | TT(/T))TW JWpla—9)dy

n
where 4 > 0,0 (lw}) stands for the parabolic distance from = to the origin, la] = Y a,
; , f=1
where a; > 1, f belongs to L? (R"), 1 p< o, and ¢ is a function satisfying:
(@) el [ p(w)|de < M;
o(lz))<e

p (2 -+ B} — @ ()|
NSRS AR/ p < a
dahSaamy e @

0. Introduction. Let ¢(|o|) be the parabolic metric in R™, namely:

0.1, Z( ) =1, 4>1,i=1,2,...,n,

Gem ]
where ¢ (|®|) is the only positive root of the above equation (see [4]). In [6],
E. M. Ostrow and E. M. Stein introduced the folowing type of integrals:

(y)
" () m___,.,________“_q
0.2. T4( n_!: o —y] n+}. 6‘n+l(m)

wheve 4 > 0, fel'(R™) and ™ f lg ()| dy < O. Here, §(z) stands for the

plo—y)dy

Buelidean. distance from » to & closed subset &' of R". In the above paper,
the authors prove the existence a.e. of the integral 0.2. It has been pointed
out by A. Zygmund in [8], that 7', maps continously I*(R™) into Z'(R™)
lewving as an open question whether if 7, maps continuously I*(R")
into LP(R™ for p - 1. The purpose of this paper is to give an answer
to that problem wh(m assuming an extra condition on ¢, namely:

3.

e
Hme (J dous not depend on h.

* Umvumx{,y of Illinois at Chicago Circle.
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The nature of condition 0.3 is such that it allows us to solve the
same problem in the parabolic case where techniques like the “method
of rotation” are not available.

The main tool in the proofs of the results in this paper is a result
on theory of differentiation, which in the elliptic case iy due to Robert
Fefferman [5]. When ¢ is 2 homogeneous function of degree 0. (Non-iso-
tropic differentiation.)

Incidentally, the method used here differs from those by R. Fefferman
and it is closely related to the classic theory of Singular Integrals.

1. Statement of the results.

1.1. Let F be a closed set in R"; 6(x, '), or simply &(«), will denote
the parabolic distance from 2 to ¥, that ig,

(1.1.1) d(®) = info(lz—y|).
ye I

1.2. Assumptions on ¢. Throughout this paper, ¢ is going to be a real
valued and measurable function defined on R" and satisfying:

(1.21) [ lp@)de < Mye™e,  af - 2’%
alial)<e 1
1
(1-2-42) lp(@+h) —g(2)] G de < M.

o(lw()>4e(lh1)
Here, M, does not depend on & and M, does not depend on h.

-1.3. Let f be & function in Z*(R™) or L?(R"—F) where F is a fixed
closed subset of R™ and consider the operators:

_ A
(1.31) TMM_R{ STy T e P,
8 y)

(1.8.2) Tilf) (@) = . f oy We@—y)ay,

where 1> 0, 6(s) is the parabolic distance from # to .
The operators above defined satisty the following inequalities:
1.4. THEOREM A.

@ 1T Dl < Cpliflyy,  1<p < oo.
(i) If 1fI< 1 and 4t is supported on o sphere 8, we have

Jexp iy To(f)Ide < 418
s

Jor small enough y. Here, Opy v, and A are independent from f.

icm®
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(iii) If feLP(R™) and 1< p < co, we have

f[JZ(f)lf”dmg C, fmpdm.
»Y

n
(iv) If Ifi<<1 and it is supporied on S (sphere),

[ exp{yia(f)ido < 418].
Fns

Here, y small enough, and O, y, and 4 independent from f.

2. Auxiliary results om differentiation theory. From now on, C is

.a.lwayﬂ going to denote a constant, not necessarily the same at each

oceurrence.
9.1. LeMMA, Let K () be a real valued, non-negative measurable function
defined on R™. Suppose that K(x) satisfies the following properties.
(i) Sup [ E(w)do< M,. :
B>0 B<e(x)<2B

(i) K (@ h) — K ()] do < C.

oflwl)>e(1)]
Call
K@) =sw| [ E@fo—yay|

8>0 " gq(iul) <26
Then K(f) satisfies:
0,
(@ |BE @)% 4] < 5211

o 3
(0) 1B (Pl < Cpllflly if 2> 15
0, < 0—~%. Here, ¢, 0y, 0, do not depend on f.
p —

Proof. The method to be employed here, follows the pattern of
the corresponding ones in [1], [2], [4] and [7]. ) ' . ‘

The novelty consists in the fact that we are dealing with a differentia-
tion operator. n - o

Take f > 0 in L*(R") and choose 4> 0; then it is possible to select
an at mowt denumerable family of rectangles depending on a parameter
t such that: : .

(1) The edges of the rectangles are parallel to the coordinate axes.

(2) The size and the shape of the rectangles R, are d.etermmed py
the value that the parameter ¢ takes for Ry, say #. The S}ze qf the J{J)h
edge is given by 1®, thus, for the Ry rectangle that_ value is going to be
[ I-Ieré, the a; are the parameters of the parabolic metric o.
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(3) The rectangles R, are non-overlapping, that is:
RnR, =0, 1+#Fk.

o
(4) f(2)< 2 a.e. in R“~—URk and.
IR ffdt Bl k=1,2,...
Ic -

Consequently, @; = U R, has measure lesy than
1

-—ffdt

Here, B is a constant that depends on the a,-% and the dimension only.
n

(5) Let > 0 be the only positive solution of }' A% = 1. If we call
1

S (%) = {y; o(ly —mxl) < pty}, where @, is the center of R, then we
have

Sp (@) o By,  k=1,2,..;
on the other hand,

Bspp (@)l < OBy, k=1,2,..

Here, ¢ depends on u, 8 and the a;-8 only.
Consequently:

lu Bsan, ()| < ——Hful

For a proof of (1) to (5) see [4].
Consider the following partition for 3 fr=fi+f2, where

fi=f ae in R"—@,

(2.1.1) fi=0 it e Lj Ry,
1
= D F@)pia),
1

where ¢(2) is the characteristic function of Ry,

00
Let us take meR"— [ J 8spy,(w,) and consider the integral
1

@12) [ E@—yhiy)dy = K—y)( > > T w)rio) dy
. e<q(le—y])<2s a<e(l=n—yl)<25

where the sum iy extended over those & for which

(2.13) Bunfys o < olla—yl) < 26} 0.
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On account of the fact that o(|z—y,|) > 58t;, there exists a fixed
constant r >~ 0, depending on 58 and the ;s only, such that

(2.1.4) Ry c{ysre<o(lm—yl) <1 2.
Consequently :
(2.1.5) [ E@—nfmay < > [ E(@—)f ) gnly) dy

B Q(liw--y|) e 1
re<o(la--y)<2r” te

= E fK("I""’g/)f(y){f)k(?/)([.7/»
“

k

Call 1, to the mean value of f over Ry, The latter integral in (2.1.5) can
be written as

2.1.6) N [K(@—y)(f)—m)op®)dy+ > [ K (w—y) upyaly)dy.
Ld ead

k' pn K Rrn

On account of (i) and (4) we have

@17 Y [E@—ypwmpmdy<B [ Ee-ydy.

u R sy<e(lz—u|)<2y~le

On the other hand, on view of the fact that the (f(y)— u)e.(y) have
mean value zero we could write \

@18 |3 [K@-y)fy ukmw)dy\
k' pn

IZ fLKuv ~y) —E(@~a0)] [f(y) — m s (v) dy

< Z Rf K (@ — ) — K (@ —y) (17 (9)] + ) @ (y) dy

1

Oall 6(«) to the right-hand member of inequality (2.1.8). On account of paxt
(ii) of the hypothesis we have

(2.1.9) [ b@de<Clfl.

. 00
RN li) ss,‘?%(“’lz)
On view of (5) and (2.1.9) we have

(2.1.10) | B(0(w) > 2)| < %Ilfill-

o far, we have proved the following inequality

(2.1.11) [ E@—yfy)dy < 0@ +01

s<g(|ae~-yl)<2e

7 — Studia Mathematica LIX.1
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Since the right-hand member in the above inequality does not depend

on & we have
. . .
(2.1.12) K(f,) < 0(x)+CA.
Therefore, if we select D > 20 we have
D D
(2.1.13) E(lft(fz) > Dl) < E{B(w)> _Q—A}UE{(M > —51}.

Observe that

(2.1.14) E{m; CA > -—1211} =@.
Consequently :

* D
(2.1.1B) IB{E (f,) > DA} < lE {O(m) > —2—2} L

On the other hand,
¢ 1 L H
<527 11+ | Llj Sspy (i) | < == Ifl-

D
) {O(w) > —2——1} D
Tet us return to f;. On account of the fact that f1< 4 a.e. and from (i)
it follows: i
(2.1.17)
Therefore,

(2.1.18) E{K f> I3} < BE(f) > %z}uU{I'é(fzp—g—z};

(2.1.16)

R(f2) < Moi

if we select L > max(2M,, 40) we obtain

(2.1.19) | B (K (f) > L-2)|<£Ilf|\1-

Property (i) shows that K maps continuously L™ into L*; consequently,
by interpolating (2.1.19) and the L* result, we get the thesis and also
the sizes of the type constants.

92.9. LeMMA. Let (%) be o real valued measurable funclion defined on
B™ satisfying the conditions stated in 1.2. Define:

*

) Jola)=Sup|s= (@ —y)f oy |-
Then, we howe

(8) Wylp < Gylifllps Op < O-p[(®
If p =1, we have mstead

(b) IE(f¢> A) I< = [fll-

Here, the constamis O, Op, and Cq do mot depend on f.

o(lz—vl)<s

»p>1L

icm
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Proof. Observe that the kernel K ()

. = |p(® z])lal isfi .
conditions of Lemma (2.1). In fact, Ip(@)fe(lal)® satisties the

ip(y)l
(2.2.1) —_——dy < g7V [ d
s<p(ly])<2e Q(]’}/I)I ! s<o([y]) <28 (p(y)l Y
0(2¢)~ lo(¥)idy < O,.
‘ e(ly) <28
Now, we have to check the smoothness condition
(2.2.2) lple+h)  lp@)
o(lw+-r) — o(jm|)
3} lp(@+n)  lp@+h) | lp@+hl  lp(@)
Q@+ 1™ (e} T o(le)™ T g(le)®
_ ) 1 1 |lp (@+ )| — |g()]
< + 7 — e
Pt e i g e
&;ﬁaeooum of the fact that ||p(w-+h)| —lp (@ W< lp(@+h)—g(a)] it follows
(2.2.3) @+~ lp(@)|] do < 0.

e(lmp™

e(lzh)>4a(1])

On the other hand,

1 1 1 =
o(le+hl)™ " g(la])™ o(Jal)™ 12
See [4], pp. 27 and 28.

Incidentally, we know that g(|h|) < }o(|#])
member of (2.2.4) iy dominated by

o(]n)) =

o(|z))

(2.2.4)

, thus the right-hand

1
(225) W@(I D

Applying the above estimate to the integral:

(2.2.6) lo( -+ )| — 1 Z
a(jal) > 1e(171) 1™ ([ + k) — o ([])] 2

lp(@+B)|

< Oe(lhl) LidCasoly

e(lc))>e(1h1) Q(Iml)l 1+1

< CH,(lpl)(0),
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where
L,(06D(0) = 5w [ Ip(@)de.
>0 aal)<ce

The estimate (2.2.6) together with (2.2.1) shows that K (#) satisfies the
hypothesis of Lemma (2.1). Call

* : ) lop (0 —

’ ) = Sup S [f )y

e =7 e

s<g(lz—-1]) <28

Now, fix ¢> 0 and consider the integer & such that 2% < ¢ < 2841, We
have the following estimate:

(22.7)  elal fj(p ) 1f(z—y)| dy

ally)<e )
<ol Il @—pldy+e7 D [ ew)lif@—y)lay
s co(yl) <ok tl j’lc 2= Lep(lyl)<ed
<0 D e WL o gty < ) @),
j<k 29 —L<o(lut) <21 ellyl)

This last estimate finishes the proof.

2.3. COROLLARY. Let oy = 1,4 =1,2,...,n, and ¢(2) be a homo-
geneous fumction of degree zero, absolwiely inlegrable over the wwit sphere.
“Call w(d) to the integral modulus of continuity of ¢ on the unit sphere,
that is:

(2.3.1) Sup [ lp(@+h) —p(@)de = (9),

k<6 3

where £ = {®; x| = 1}; do is the “area” eloment on X, and h stands for

a “vector” on X, |h| its magnitude.

1f
f (o)
af 5+ < o0
then
(2.8.2) Ep =swe [ lpwlIfta—y)liy
2> y)<t

satisfies the imequalities of Lemma 2.2.
In the first place, the Dini condition on w(8) implies

(2.3.3) [l(ﬁj‘_"%n:ﬂ@_ aw < O,.

. 121 >21h|
for some C,. See Theorem 1 in [1].
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On the other hand, the homogeneity of ¢ and its integrability gives

(2.3.4) s [ Ip(a) ldm/Ofl(p(mldw
zj<e

This result is due to R. Fefferman [5].

2.4. Now, we are going to return to the elliptic ease. Let ¢(#) be
a function satisfying the following conditions:

(2.4.1) & [ Jp(@)|de < O

|zl <8
Let: ' !
(24.2)  I'(e)=  Sap  |Log|hl|llp(@+h)—p@)l2i™

I\ h|<|x(2, D) <2/3
and suppose that I'(z) satisfies the following inequality:

(2.43) |B (@) > 4)| < 9
Then, we have the following
2.5. TumoreM B. Suppose that ¢ satisfies conditions (2.4.1), (2.4.2)
and (2.4.3). Call
*
Jp = Sup 1&"” f (/‘(i'/)f(w*“?/)dil/;
1>e>0 lvl<s

%
Then f, satisfies the following estimates:

sk
(1) Wolp < Cpliflly, 1 < p < 00, 0, < o};-f—’«—-

s Co
(1) 1B (fy> 1)l < e (171t

Here, s before, Cy, €y, and O do not depend on f.

Proof. The proof of this theorem follows very closely the eorrespond-
ing ones of Lemias 2.1 and 2.2 and we shall avoid unnecessary repetitions.
Let £ 0 be in L'(R™) and fix A > 0. Consider now a denumerable fmmlv
o non-overlapping eubes {I} that have the following properties.

(2.5.1) (a) If Gy = U Iys then f < 4 in R"—@,.

l
(LY If py, = jf(li then A <<y, < 272,
| ]cl Iy,

(¢) The I, have cdges parallel to the coordinate ames.
(A) If bI, denotes o diclation of I, five times cbout its center, we

00
define b6y, = U 51,
1
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Clearly:
By < — f Tdy.

Iy,
Now we decompo:e f as fy+fa; where f; = fin R* —@, and zero otherwise

and f, = Zf 9)p,(y) where the ¢,(y) are the characteristic functions of

the Ip. !
Now, f; is handled in the same way as in Lemma 2.1, If @< R" D56,

then we have that

(2.5.2) )< Z f

where 4, denotes the center of Iy.
Notice also:

ple—y)  p@—m)

lo—y"  lo—yl"

__(p(m Y)
!w W @ — "

If = el ) dy

O
< lp (@) : ‘

( _ +
(2.5.3) e — yl” 1w—~'r//.~.l” !

i«r(ww/w (p( =Yl
o "“’/hl"

, The contribution of () in (2.5.3) is handled in the same way as in
Lemma (2.1). Therefore we are going to turn owr attention to the con-
tribution procduced by (#x), only, that is for:

Y lple—m)—gp@—m)l . ) .
(2.5.4) ;I T () — teel o (1) ly
I

To begin with, we may asswime that all dinmeters d(I;) are less than §e
That is not a restriction because when considering weR™ - 66/, and & < 1
the cubes whose diameters are bigger than § give no contribution. Like-
wise, we may assume that I'(w) 2= L a e. and supported on a ball B aboul,
the origin, since we are studying the hehmwm of gy for values of @ sueh
that o] < 1.

On account of the preceding rewark, if we call D (s) to the distri-
bution function of I'(#), we have

D8y B it S«1,
D®)y< Cls i S=1.
Besides the exceptional ot 5@, we are going to contriet w recond

exceptional set H,, depending on I'(®), and A. Call d; to d([,) and leb
Hy, be the set where I'(w) > 1/|I;]. :

(2.5.6)
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Olearly we have
(2.6.7) [H | < O,

H, is going to be U {H;,— y,c}, ‘where H,, —1; is the translation of Hy in yy.
Thus

0
@ 0 ~
(2.5.8) < D 1<~ [ fay.
1 BN
Oonsider now weR"—b@G, —H, and let us return to the integral
[ le@—y) —p@—y)
\ p&—Y)— —Yx
2.5.9 . — d
(2.5.9) 2 [ = )
i
Obhserve that
o (2 —4) —q (@ —yy)| 1 1
L I'(w—wy, < Ol(m —yp) =—-
oo T g < T T
Therefore the integral (2.5.4) is dominated by
NI 1 f
%_/ I'(w—y, ]10{,”}1 l' fly)d
On account of 5.6 we get the following inequality
(2.5.11)
N [sww<e S [rom<on,
) TPRL y<0 D [y <Cifls
RP-5G—H 1 1 I

This finishes the proof.
2.6. Remark. The technique in the proof of the above theorem is
an adaptation to this particular case of Lemma 2.3 in [3].
2.7. Remark. If we replace conditions (2.4.2) and (2.4.3) by the
following one
(2.7.1) Sup oG-t ) g ()]

Rilh|=le s foe)™
RN--1,

(here, the B, is a family of measurable sols satisfying |B,| <t Og¢™), then
weo have in this case the same result of Theorem B. The proof follows the

dw < ¢

0
same lines. The exceptional set in this case is BEUH 5 Hy== ) {Bd(,‘h) = Ypt
’ 1

3. Proof of Theorem A, We shall follow the typo of proot introduced
in [8]. In the first place, J, (@) = T;(x) when weT, that shows that the
boun(le(lmm of Ty () in LP (B™) implies the boundedness of J, () in L? (I

(see [8], pp. 262 and 253).
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We shall consider instead of T3(%) & modification, namely

(3.1.1) dy.

Ff W) lple =)
5@ = [~ Wi

0 !.’L‘ __y[)[a|+ﬁ__|_ a(y)\aH-’-

If £ 0, there exist two constants 0; and €, independent from [, such
that

) f () lg (=)l
Hilo) <0 [ e e
»r

) f(y) "
o= OZR‘[ o(lw—y))!@*h 48 (a) 1+ ip(

dy,

(3.1.2)

~ 1) dy .

To show inequalities (3.1.2), consider fivst the inequality
[8(2) = 8(y)I <

(Whose proof is exactly the same as in the Huclidean metric case.) On
the other hand, on view of the inequality &(y) <t ¢(la—yl)-+ d(w), we
have, by Jensen’s inequality,

(3.1.3) o(l@—y).

(3.1.4) 3(y) I+ < 2 g o —y ) 4 B ()
and a similar inequality with o and y interchanged. From this fact we
deduce immediately the inequalities (3.1.2).

From Lemmas 2.1 and 2.2 we have that

* P
(8.1.5) 9y = Sup e~ f oo (e ) g (37 iy
&>0 ole—yl<s
satisfies
* , P .
(3.1.6) lgglly << € ‘15:1, IR

o
Here, ¢ independent from g. (Jmmdm now fe L7 (R"), l/clﬂ' 1(Ia'“) and the
integral

(3.1.7) [ 9(@) K(f) (@) dw.

nn

After interchanging the order of infegration wo gob

51 ) 1 ]
(3.1.8) Wy ( MW=l goay,
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The inner infegral can be dominated by

(3.1.9)  S(y)~' g9 (@) (2 —y)l do +

ollm—v()<8(y)
2 o =(tal+3)(k—1) f lg(
;2% 8(y) 3~z g(fmy]) <2P

Consequently, (3.1.7) is dominated by

+ 8y )Mo (y ~w)ldw 09,,( ).

(3.1.10)
That shows that:

(3.1.11) B (Nl < O Il

Here, ¢ does not depend on f.

Finally, the growth of C-p gives the exponential estimate (see argument
in [8], p. 254).
This finishes the proof of Theorem A.

0 [ ) gy dy

I1<<p<oo.
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