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1. Introduction. A variety of common Banach algebras are dual
Banach spaces. For example, a well-known result of Sakai (see [20])
states that von Neumann algebras are characterized, among all C*-al-
gebras, by this property. In Sections 6 through 11 of this paper we congider
several instances of this phenomenon, notably, eonvolution measure
algebras, LP-spaces, H* spaces of plane domains, operator algebras in
Hilbert space and second duals of Banach algebras under Arens products.

The question we consider in such a Banach algebra is whether the
product is continuous for the weak* convergence or for the bounded weak*
convergence, in each variable, or jointly. )

The natural set up for this problem is considered in the first part
of the paper, where we study the following situation. Let A be a (real
or complex) Banach space with dual B = A¥, so that each beB a'cts
on A as a linear functional. Suppose that a second action is defined making

* The first suthor is a Vietor J. Andrew Fellow at the University of Chicago;
the research of the second author was partly supported by NSEF grants.
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‘each beB act on 4 as an operator A—4. Under these hypotheses, a product
bb’ can be defined on B by just taking the composition of the maps b and

b, where b is considered as an operator and b’ a8 & functional: A‘iA LR
(or C as the case may be). Of course such a product need not be associative
in general. When if is, it makes a Banach algebra of B. In all the examples
mentioned above, the Banach algebra products are obtained in this way.
In Sections 3, 4 we determine some relations between continuity properties
of the product and operator properties of the action of B on A.

We use the notations of [7] and [4]. In particular, if aed, bed®,
{a, by is the duality map. For X, ¥ Banach spaces, L (X, Y) is the Banach
space of all bounded linear operators 7: X—Y, and T%: ¥*—»X* is the
adjoint of T. The sequence spaces are denoted, as usual, by ¥, ¢, and their
noun-separable analogues are denoted by *(8), ¢,(8), 8§ an arbitrary set.
Inner products in Hilbert spaces are denoted by (#|y).

TFinally, the weak* topology on a dual space is denoted by w* and
the bounded weak* topology by lw* We will say that b,—~0 for the boun-
ded weak™ convergence (or for lw*) when b,—0 weak® and moreover [b,]|
is bounded. (We use the symbol lw* rather than the more traditional
bw* to conform with the general set up of [14].)

Some of these results were announced in [10]. We received encour-
agement or comments from Felix Rumatione, Ana Roth; and Lee A. Rubel,
and want to express here our gratitude.

2. Bilinear maps. The notations and abbreviations introduced here
will be used throughout.

We shall denote by 4 an arbitrary Banach space and by B its dual
B =A% a,¢,... will be typical elements of A and b,b’,...,¢,¢,...
typical elements of B. We shall consider bilinear bounded transformations
F: Bx A—A. We think on them as “mixed products” and in fact the
notation F(b, ) =b — a, emphasizing this attitude, will be used. We can
dualize b - @ to obtain a bilinear map B x B-»B. More precisely,

2.1. DesINITION. The product associated to (b, )b - a is the
bilinear transformation (b, d")—+b+b" from Bx B into B defined by
a, b0y = (b= a, b

Tt is clear that b-b’ is also bounded and bilinear. A bounded bilinear
map B X B~B arising in thiy fashion will be called a - product.

Consider the family of all operators T': B-»4 of the form b+>b |— ay,
where @, varies in 4. We define the properties (w*-w), (r), (lw*-n),
(wk), (k) and (f) for I by requiring that all T have the corresponding
operator property described below:

(w*-20) weak*-weak continuous;
(" the range of the transpose Tf: B—A4™ is contained in. 4;
(tw*-n) lw*norm continuous;

icm

(wk)

Weak star and bounded weak star continwily

weakly compact;
(%) compact;
N finite rank.

In order to clarify the mutual relations between various types of
continuity of bilinear maps, we shall introduce a list of abbreviations.
Let Z be any (real or complex) linear topological space and let F:
BxB-Z be a bilinear transformation. Consider the following continuity
properties of F':

[, (@0, ¥0)]  F(m, y)—>F (@, yo) when sz, and y—y,;

[J] F has [J, (@, ¥,)] for all (@, ye)e X X Y;

[Z] for each @, Yo, F(@, Yo)>F (@0, Yo) When a—,;

[E] for each @,, Yo, F(#,, Y)—>F (o, Yo) When y—>yo;

where, depending on the case, z—x, and y—>y, will stand for weak® or
bounded weak™ convergence.

2.2. PROPOSITION. For the weak® convergence, [J, (0,0)] and [J] are
equivalent. For the bounded weak™ convergence, [J, (0, 0)]1-+[L]+[R]<[J T
and none of the three properties on the left is redundant in general.

It is perhaps somewhat disappointing that [J, (0, 0)] is not equivalent
to [J]. The proof of the equivalence in Proposition 2.2 is elementary.
The redundance statement will be easily established after some examples
are introduced (see Section 5 below).

In the sequel, properties in square brackets refer to continuity proper-
ties of a |~ -product in the convergence alluded to.

3. The w*-convergence.

(3.1) TEmOREM. Let b-c be the product associated to b — a. Then for
the weak* convergence: :

(3.1.1) [B] always holds;

(8.1.1) [L], (r) and (w*-w) are equivalent;

(3.Liii) [, (0,0)], [J], (f)+[L] and (f)+{(w*w) are equivalent;
(3.1.iv)  [L] holds if A is reflewive; moreover [L] holds for all | -prod-

ucts if and only if A is reflewive.

Proof. (3.1.1) follows trivially from the formula {ag,by- ¢y = {by |- @y,0)..
The equivalence between [L] and (w*-w) is proved as follows: assume
that 5,505 then by-¢20 iff <a, by 0) = <by b a, y—>0iff b, - a-30.
The equivalence between [L] and (r) is proved as follows. First, let T':
B-A be the operator Th = b | a,. Then <b, T'¢d = (Th, c¢> = (b | a,c>
= {a, b-¢> so that [L] holds iff T'e is a weak* continuous functional
on B, i.e., an element of 4. This concludes the proof of (3.1.ii). We want
to prove now that [J, (0, 0)] implies (f). Assume that [, (0, 0)] holds.
and that dim{b - ay; beB}= oo for a suitable a,eA. Consider the w*-
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neighborhood of 0¢B defined by V = {beB, |{ay, b)| <1}. Let now

U, W be arbitrary w*-neighborhoods of 0«B. We are going to show that
there are elements bye U, ¢ye W such that by- ¢ ¢ V. First, there is a finite
. family @y, @4, ..., &, in 4 such that {a;, b =0,j =1,2,..., m, implies
beU and a finite family, which we can call @y 1, Gpig, -+ ¥y, in A such
that {a;, b =0, j =m+1,...,n, implies be W. Consider now the sub-
space S8 = {beB; (a;,b) =0, L<j<<n} Clearly, § € UnW and § has
finite codimension in B, and so dim(S8 — @) = + oco. Hence, there is a
byl such that by - a, does not belong to the linear span of ay, @y, ..., dy.
Therefore, by Hahn-Banach, there is a ¢,eB such that <a;, ¢ =0,
1<ji<n and <{by  ay, ¢ = 1. Thus by, ¢eeS and a fortiori, bye U,
¢oe W while by-¢,¢ V. This proves that [J, (0, 0)] implies (f). In order
to prove that [J, (0, 0)] implies [L] we shall need: )
(8.2) For an arbitrary Banach space X, an element ™ eX™* belongs
to X iff for each net 20, there is By with {(&h, a**y, B> fo} bounded.
The “only if” part of (3.2) is trivial. Assume now that ao**¢X;
a standard argument applies to show that for each finite set ' = {w, ...
., @} there is @ e X* such that (v mF> =0,1<j< kand {oh, &™) =k,
Then m}f;o as Fincreases while {{a}, 2™} is unbounded for each tailF > 7.
Assume [J, (0, 0)] holds for b-c. Then (f) holds and so for each
ayed there are linearly independent ¢y, @s, ..., a,c4 and by, by, ..., bl eB*
such that b — ay = D, <b, b3y a;. We will use now (3.2) to show that each
b} belongs to A. Fix j with 1<j < n. Assume that b,%-0. If {{b, b)Y,
> fBo} is unbounded for each B,, then for an appropriate subnet, still
denoted by, we have 0 < [{bs, b} Dj—o0. Pick now ¢ e B with {ay, ¢;) = 9
for 1<k<n and define ¢; = (b, bi>™" Clearly, |lcgl—0 so that

cﬂ—>0 But then <{a,, bz ¢ = (bg b ay, cﬂ> = 2 Cbgy iy <Log, oy =
2 (b, by <bg, b)Y ay, ¢;> = 1, which contradicts [J 0, 0)]. Thus bjecd

fo1 each j =1,...,m, and so relabelling b = @;, we have b |~ a, =
PRGOS and <au, beoy = 3 <@y, b)<{ay, ¢). Clearly [I] follows.

Now the fact that [J, (0, 0)] implies [J7] follows from this and (3. ] i)
using Propomtlon (2.1). If 4 is reflexive, (r) holds trivially and according
to (8.1.ii), [L] follows. The second half of (3.L.iv) will follow from Example

5.1. This completes the proof of 3.1.

Remark. The equivalent conditions in (3.1.vii) obviously imply
the equivalent conditions in (3.1.i). For the fact that the converse is
false in general, see Section 5. '

4. The lw*-convergence.

4.1. TEROREM. Let b c be the product associated to b\~ a. Then for
the bounded weak”™ convergence:

icm

llepll = 1/dist (mp, ¥Yp) <

“of |l < 1, there is a w*-convergent subnet c,,li";o
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(4.1.1) [, (0, 0)1 is equivalent to (k);
(41i)  [J], [, (0, )] (for all o), [, (0, 0)]-+[L], (k)+[L], and
(lw*-n) are equivalent;
(4.1.4i)  [L] implies (wk).

Proof. We begin with (k)=[dJ, (0, 0)], so let us assume that (%)
holds and let bﬁﬂ;o, cyi”—;(), lIbgll < 1, le,ll < 1. Consider the compact subset
K = A defined by K = closure{b = ap; beB, |bIl<1}. From the fact
that ¢,~0 pointwise on K and that {¢,} are norm bounded, and hence
equicontinuous, we conclude that ¢,—0 uniformly on K. Then, (bs} ay,
¢yy—+0 uniformly on § as y increases; hence bg-cy 2.

Conversely, assume that [J, (0, 0)] holds. Suppose there is an element
@yed with bb |~ a, not compact, and let M = {b I a,, beB, b < 1}
M is bounded but not precompact. Hence there is an # > 0 such that
for each finite dimensional subspace ¥ < 4, there is an me M with
dist (m, ¥)>r. For each finite subset ¥ = {ay,...,a,} of 4, let ¥
be the linear span of F and let myp = by | @y, with |bz] <1, satisfy
dist(myp, ¥p)>r. From a corollary of Hahn-Banach (see [7], Lemma
II. 3.12) there is a cpeB satisfying: ¢y = 0 on Yg, (mp, ¢z> =1 and
1/r. Clearly, cFl-"i;O. Moreover, by = @, czy =
{Mmg, ¢gy = 1. By w*-compactness there is a w*convergent subnet
by by 80 50 (ay, (b, —bee) 0z) = b, = yy 05> — by 1= 4y, €7D
=1—Lby = @, tppy—1, a contradiction with [J, (0, 0)].

In order to prove (4.1.ii) it will suffice to show that [J, (0, ¢)] (for
all ¢)=(lw*-n)=(k)+[L] and to use (2.1) and (3.L.i).

, Assume. then that [J, (0, ¢)] holds for all ¢ceB and let b,“>0. Pick
acd and let {b,} be an arbitrary subnet of {b,}. Clearly for each y there
is & ¢,¢B with (b, - @, ¢,> = b, I al, lle,]| = 1. By the w*-compactness
«- Then, by [, (0, ¢.)],
lIbs Fall = <bs = @, ¢s» = <a, by-c;>—0, and (lw*-n) follows.

Clearly (lw*-m)=(k). We show that (lw*-n)=[L] as follows: for
bp>0, Ka, by oyl = 1By b= 6, 3| < [y = all el 0.

(4.1.iii) is immediate from the w*-compactness of ||b|| < 1

Remark. Clearly the equivalent conditions in (4.1.ii) imply the
equivalent conditions in (4.1.i). The fact that, in general, the converse
of this and of (4.1.iii) fail will be shown by appropriate examples in the
next section.

5. Examples.

5.1. Let A be a non-reflexive Banach space, B = 4% and pick a;*ed™"
with a;*¢A. Deline b - ¢ = <D, a;*>a. Clearly, b-¢c = <b, ag*>e¢. Since
[L] does not hold for w*, this completes the proof of (3.1.iv).
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icm®

.5 2. Let 4 be any real Hilbert space, B = A and pick 0 7 gped.

Define b |- a = (a]ag)b, so that b-¢ = = (b|e)@y-
Using + and — to mean “it holds” and “it does not hold”, reqpect-
ively, these examples satisfy, for the bounded weak* convergence:

() | &) | k)| (L] | [J,(0,0] | [J]
L | + | < |+ | = + -
52 | — | - | + | + - -

6. Convolution algebras. Let @ be a locally ecompact group. We denote
by 0o(6) the Banach space of all complex continuous functions vanishing
at infinity and by M*(G) the space of all bounded regular measures on &
C,o(@) and M'(G) are Banach spaces under the sup norm [ [, and the
‘total vallatlon norm |ju] = |u|(@), respectively, and the pairing {f, &>

f f(8) ) identifies M*(@) with the dual of Cy(@). In the sequel, the

“w topology on M 1(6%)” refers to the weak* topology of M*(G) as the dual of
0, (@) (for the relationships with other standard measure topologies — e.g.,
the vague topology —, see [3], Chapter VIIL, Section 3, Example 11).
IE fe Oy (&), pe MH(G) and s <@, we define (u - f)(s) = [f(ts) u(dh), ie.,

@

(6.1) (= 1)(s) =<y (8)f, wy, where  p(s): Oy(@)—>Co(G) is
the regular (right) representation (y(s)f)(#) = f(ts).
‘We have
(6.2.1) # = fe0y(@),
(6.2.ii) s = Flloo < flloo Iell;
(6.2.4ii) ~ w, fr>p = fis a bilinear map M(G) x Cy(G)—>C,(GF).

For (6.2.1) see [3], dépliant II; (6.2.ii) follows from |(x & f)(s)
= [y (8)f; w] <y (8)flloo el = I flleo lell and (6.2.3d) ix obvious.

This shows that we are in the situation described in Section 2 with
A = 0y(@), B = MG and |~ defined by (6.1) above.

Tiet now w,ve M*(@). Then for feOy(@), {fypu») = ut [,
zdfgf(ts),u(dt))v(ds) =Gf6{f(ts)y(dt)v(ds). This shows that the product

« .

associated to t— is the ordinary convolution of measures p-» = ux».

The following theorem extends Example 1.4 in [6] and Corollary
1 on page 284 of [21] (cf. also Theorem 3 of [217]):

(6.3) THEOREM Let @ be a locally compact growp, M*(@) the Banach
space of regular bounded measures on G, and pxv the convolution of the
measures u,ve M*(G). Then:
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(6.3.1) sy 18 w*-continuous for each u;
(6.3.if) pspsy 48 w*-continuous for each v;
(6.3.il1)  p, vr>pxv is jointly w*-continuous if and only if @ is finite;
(6.3.1v)  p, v>pxvis jointly lw*-continuous if and only if G is compact.
Proof. (6.3.i) follows from (3.1.i). Let fi7)( s) =f(s7") and define

a4 by fuh = (f(‘),,u)._Then (/mv)( ) = p(T 5y} and therefore
{fy prvy = () = fON) b5, which proves (6.3.ii).

From 1.4.3 in [6] follow& that if & is compaet, then px» is jointly
Iw*-continuous (the proof of 1.4.3 in [6] a.etually shows that ur—>u - f
is a compact operator for each feCy(@)). Conversely, assume that G is
not compact and for each compact set K < @ pick ug to be a unit point

mass measure with support {ix} outside K. Clearly MKZ—"i;O. For the same

reasons, if »; is the unit point mass measure with support {tz'}, then

also vKlZ;O However, ug*vx = ¢ is the unit point mass with support

{6} ¢ = identity of @) for all K. Hence, u*» is not lw*-jointly- contmuous
t (0, 0), and (6.3.iv) follows.

Assume now that convolution is jointly w*-continuous. Then it is
also jointly Iw*-continuous and, from (6.3.iv), G is compact. Then 1.4.2
in [6] applies and @ is finite. The converse is obvious, so that (6.3.ii)
follows and the theorem is proved.

Observe that (6.3.iv) together with (4.1.i) and the fact that C(G) has
the approximation property, imply the Peter—Weyl Theorem (as for-
mulated, for instance, in [7], p. 940).

‘We close this section with two remarks. First, we point out that
the results in Theorem 6.3 actually hold for a.n arbitrary invariant olosed.
subspace 4 of Cy(@) and its dual.

Second, minor modifications will also apply to the following situation.
Let § <@ be an open semigroup of &, A = C,(8), B = M*(S8). Here
again the product associated to (u I f)(s) = [ f(fs)u(dt) is the comvolu-

&

tion p*w» in M*(S). The concluswn is: if § is not finite then the convolution
product is not jointly w* -continunous and if § is not compact, then it is
not jointly lw*-continuous. This requires a different version of 1.4.1 in
{67, namely: if @ is locally compact and not compact, for each feCy{G) not
identically zero there are infinitely mamy linearly independent tramslates
of f (“the anti-Peter—Weyl lemma”). This fact can in turn be proven
as follows: assume that all translates y(s)f of f are linear combinations
of n linearly independent translates f; = y(s;)f. For each se@, there are
Bz 0and d®,j =1, ..., nwith fo+ 3 |af?| =1 and g,y (s f+2 af'f; = 0.
Let “8—>oo” so that (y(s)f) (t)->0 for each ¢ and pick a subnet s'—oco such
that Bi)—>fe and of’—af,j =1,2,...,n. Then

[ af95;] (1) = lim[— By (s)5100) = 0

w
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50 that ol = 0 for each j. Then 1L = Bo,- ¥ |a{®)| implies f,, = 1. But

J
now, taking ¢ = (s')"'a, we get

Brf(@) = By (150 a) = — D [1(()a)
; an@ therefore

If(@)] = |Lm B f(a)] =lim ] DA e | < mlfi Y o) =0,

as claimed.
A typical application of the second generalization is the case 4 == ¢,,
B =1 with@ =Z and § = N.

7. The space L®(g). In [21], J. Shapiro proved that L*(T), T the
unit circle, is not a topological algebra under pointwise multiplication
and the Tw* topology (which has an intrinsic meaning since L®(T), as
any other W*-algebra, is the dual of only one Banach space — namely,
I(T)). We aim to explain this result in terms of measure theoretic prop-
erties (see (7.3.1) below). ‘

All measures congidered below are positive measures. We recall that
a measure space (X, X, u) is localizable if for each family {U,} of measurable
sets, there is a measurable set U such that: (1) w(U,— U) = 0 for all
ay and (2) if u(U,— V) = 0 for all a, then u(U— V) = 0 also; a measure
space (X, X, u) has the finite subset property if any set of positive measure
has a subset of finite positive measure (see [23] for both definitions).
The following important fact can be found in Theorem 4, Section 50,
Chapter 12 of [23]. .

(T.1) Let (X, X, u) be a measure space with uz=0. Necessary and
sufficient for L™ (u) to be the dual of L' (u) is that the measure space. be localiz-
able and have the finite subset property.

Under these conditions, we can take A = L'(u), B = L®(x) and
define g (— feIt(u) for geL™(u), feL(p) by (f b g)(s) = f(s)g(s). The
— -product is the ordinary pointwise product in L% (u).

‘We shall adopt the following definition: an afom in a measure space
(X, X, u) is a measurable set B with 0 < u(F) < + oo such that for no
F < B we have 0 < u(F) < u(H). The measure space is purely atomic
if for each measurable set 4 = X, the set 4" = A—{J{¥; H < 4 and
B is an atom} is measurable and u(4') = 0. With these definitions we
have (see [13]):

(1.2) If (X, Z, u) is purely atomic, L'(p) is isometric to 11(8) for an
appropriate set S, and an isometry T can be picked to also map pointwise
products f-g {when f, g and f-g are in L () into {(Tf)(Tq)a W} for an
appropriate weight {W },.e, 0 < W, < + co. '

w
i
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The set § is the set of atoms and T: L*(u)—I*(8) is the map defined
by: for each aeS, (Tf), = f(a)(a), where f(a) is the common value f(),
tea; also W, = p(a).

We can now state our result:

(7.83) TomoreM. Let (X, X, u) be a localizable measure space with the
finite subset property (so that L™ (u) is the dual of IL'(u)). Then for the
pointwise product in L™ (u),

(7.3.1) [J, (0, 0)] holds for Ww* if and only if (X,Z,u,) is purely atomic;

(7.8.ii) [J,(0,0)] holds for w™ if and only if AiMI™®(u) < =+ oo (i.e.,
(X, 2, u) is purely atomic and it has only finitely many atoms).

Proof. The “if” part in (7.3.ii) is obvious and the “if” part in (7.3.i)
reduces, in view of (7.2), to the statement in (8.4) below.

Assume now that (X, 2, ) is not purely atomic. Since (X, X, u)
is localizable and has the finite subset property we can pick a measurable
set T with 0 < u(T) < +oo and containing no atoms. Let {Z'yyp)...a0)
be a dyadic partition of T ie., for each 0-1 word (1) &(2) ... &(k), Tuy...cp9
is a measurable subset of T such that: (1) T = T,UT,, Ty = Ty VT,
Ty =T1qUTu1, ooy Lopry.aly = Lotry...oto Y Leqry.oomry . €665 (2) Loqny..eq O
N Loy, a0 =D e(f) # 5(3;) forsomej =1, ...,k and (3) p(Lyy...cmeie+n)
= §u(Leqy...cqp) For each kb =1,2, - define the function ¢, on X by:
@ = 0 iff T and if @y oy, let g = 3 2°Pand set gy (2) = w(T)2(—1)%

=1
Clearly, {p,} is an orthonormal system in L?(x) and therefore ¢,—0 for
w* in L™(u). However, ¢, ¢, = u(T)xr (xr = characteristic function of
T), so that ¢, @, does not converge to 0 for lw* and this proves that
the product is not jointly lw*-continuous at (0, 0).

Agsume finally that the product in L*®(u) is jointly w*-continuous
at (0,0). In particular it is jointly Iw*-continuous at (0,0) and' so
L®(u) = 1°(8). Then (8.5) applies to show that § is finite and dimL® (u)
< -eo.

Remark. It is clear that the failure to joint lw*-continuity in L% (u)
follows in our proof from the existence of an orthonormal system {g.}
with i = some fixed constant on a set of positive measure. Such a system
can be defined easily on any cube [0,1]% (@ an arbitgary set) by just
taking zpk((a;,l)qsq) = exp(ikm%), where ¢, is a distinguished index. But
then the existence of similar systems for aibitrary (X, 2, u) follows from
Maharam’s theorem ([12]). This provides an alternative proof of (7.3.i).

In view of (7.3.i) and (4.1.i), we conclude that, for (X, X, u) as above,

(7.4) Al the operators L™ (u)—L* () defined by fi>f- gy, with goeL(u)
fiwed, are compact if and-only if (X, X, w) is purely atomic.

8. The spaces L”(u) with x purely atomic. Assume in this section
that (X, X, 4) is a purely atomic space. For each p with 1 <p < + o0,
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the dual of 4 = I%(u) is B = L¥(g), where (1/p)+(1/g) =1 (and ¢ =1
if p = o0). When 1 < p < +oo (as always for reflexive spaces) all prod-
uets (i.e., bounded bilinear maps B x B—+B) on B = L”(u) are |- - prod-
uets. Hence, from Theorem 3.1 we geb:

(81) For 1<p< 400, all norm contmuous produots on LP(u)
(u purely atomic) satisfy [L] and [R] for the w* and the lw™ topologies.

On the other hand, Rosenthal's generalization of the classical result
of Pitt (see [16], Theorem A2.3 and Remark 2 on p. 211) iroplies that
all operators T': L"(u)—-L*(u) are compact when wx is puvely atomic and.

1<s<r<+ooor 1<s<2, = -+oco. Then, using (2.2), (8.1) and
(4.11), we conclude that
(8.2) If 2 < p < + o0, all norm continuous products on LP (u), u purely

atomic, are joimtly lw*-continuous everywhere.

Tt is easy to see that the econclusion is not generally true for 1 <p <2
orfor p = co.Inthecasep = oo, the space L (u) being no longer reflexive,
the products are not automatically |~ - products. We can only conclude
that:

(8.3) All |- - products on L™®(u), w purely atomic, satisfy [J, (0,0)]
{and of course [R]) for the bounded weal* conyergence.

In order to interpret the pointwise product in L®(x) as a particular
case of pointwise produects in L?(u) for each p, we first observe that (7.2)
can be used to identify L?(u), u purely atomie, with the space I7(S8, W)
of all () g sSuch that F [B,7 W, < 400, where W = (W,),.q 8 a “weight”

satistying W, > 0. The norm in P(8, W) is (Z‘ [m,f? Wo)?, 8 = {a} is

the set of atoms of and W, = u(a). We can now define the pointwise
product on IP () = [2(8, W) by (#,):(¥.) = (2), where 2, = .y, WL,
Clearly this is a |- - product with |- defined by the same formula. It is
now easy to verify that (c¢f. 1.3.1 and 1.3.5 of [6]):

(8.4) The pointwise product in LF(u), u purely atomic, 1< p
48 jointly Tw*-continuous everywhere. ‘

Routine arguments and (3.1) also yield:

(8.5) The pointwise product in L¥(u), p purely atomic, 1 << p < o0,
satisfies [J, (0, 0)] for the w* topology if and only if AimI?(u) < -h oo
(i.6., p has fzmtcly many atoms).

In the last two statements, L'(u) = I"(S, W) is to be interpreted as
the dual of ¢,(8, W). We leave the details to the reader.

9. The Arens product. Let X, ¥,Z be Banach spaces and let m:
X x Y—Z be a bounded bilinear map, Define m‘: ¥x X-+Z and m*:
Z*x X->Y* by:

< + o0,

m! (@, y) = m(y, ),
(& @)y = (m(s,y),".

*

y,m
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Tteration of this procedure yields the maps
m: XX Y7,
m*: Z*x X—-XY",
’ m* Y**XZ*—>X*,
D
These definitions were i.ntrodﬁced by Arens who studied several
properties of them in [1], [2].

In the sequel only the case X = Y = Z will be considered and we shall
use the symbols 4 = X*, B = X™. Thus we have

m: X X XX,
m*: Ax X4,
m*: Bx A4,
m*™**: Bx B—>B.

Cleaxly, m** can be considered to be a | - product. From the definition
follows that:

(9.1) The + - product associated to m*™

Thus, by (3.1.i):

(9.2) m*™* always has property [L] for w*

We borrow from [2] the following

(9.3) DEFINITION. m is regular when m™* = m****
that ([2], Theorem 3.3):

(9.4) m is regular if and only if m*** has property [R] for lw*.

In view of (9.2) and (9.4) it is quite natural to take up the question
of joint hw*-continuity. This has been considered by Pym ([15]; cf. also
Theorem 2.1 of [11]) and by McKilligan and White ([11], Theorem 2.2).
Pym proved that m is regular iff all a4 are weakly almost peuodle
and McKilligan and White proved that m*** has property [J] for Iw*
itf all aed ave almost periodic. Also for the “scalar case” (i.e., X=1,
Z =reals), this is considered in [8]

Our goal here is to give some other conditions closely related to [J]
or [J, (0, 0)] for the i~ - produet m™™, but in the spirit of cur general
setup.

We Dbegin by defining an auxiliary space X# ag follows: X¥ is the
vector space L(X, B) of all linear bounded maps u: X—+B made into
a locally convex space by means of the seminorms .

@Hl el <13,

is m™,
(and then for ™).

. Arens proved

(9.5) p(u) = sup{|{a, v
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where a varies in 4. It is clear that this topology is weaker than the norm
topology of L(X,B) and therefore the matural inclusion L(X)->X* is
continuous.

Let us use the notation

mg: X>X%,  my: XX

for the maps defined by my: @—>u, myg: @0 with u(y) = m(s,y),
o(y) = m(y, @).

(9.6) DErINITION. We shall say that m is s-compact (resp., d-compact)
when m,: X—X%* (resp., my: X—X%) is a compact operator.

Then we have:

(9.7) TumoreM. Let X be o Banach space ond m: X X X—X a bounded
bilinear map. Consider the following conditions:

(1) m is s-compact; ‘

(2) m is d-compact;

(3) m™* has property [J, (0, 0)] for luw*;

(4) m™* has property [J] for lw*.

Then:

(9.7.1) (3) and (4) are equivalent;
(9.7.ii) (1) implies (3) and (4);
(9.74i) (2) implies (3) and (4).

Moreover, if X* is separable, then (1), (2), (3) and (4) are equinalent.

Proof. We still uge the notation 4 = X* B = X™,

Clearly, (4) implies (3). In order to prove the converse we first observe
that for fixed a,c4, if the operator T: b>b | a, is compact from B
to 4, then it is also lw"norm continuous. In fact, let {b} < B with
bl <1 and b,—0 for w*. Let {by} be an arbitrary subnet of {b,}. By
compactness, there is a subnet {b,} of {b;} with {Z',} convergent, so that
Tb,~a in norm for some aeA. However, o, m*™(b,, a,)y = {m*(ag, ), b,
implies that Tb, = m"‘*(b,, @y)->0 in the norm, as claimed. Now, using
(4.1) we conclude that (3) implies (4).

Next we shall establish (1)=-(3). Tt will suffice to show that if m is
s-compact and aged is fixed, then 7: B4, Tb = m** (b, a,) is compact.
Since 7' is the adjoint of §: X4, 82 = m*(ay, @), this amounts to
proving that § is compact. Let then {#,} be a bounded sequence in X.
From (1) follows that there is a subnet {y,} of {,} such that Mg (Y,) 18
convergent in X*. This means that there is a bounded linear operator
u: X—B such that for each seminorm p, p(m,(y,)—u)->0. Then, if ¢ is
the element of X* that defines p as in (9.5):

sup{I<a, my(ya) (@)> —<a, w(@))]; o] < 1}-0
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and so, by definition

sup {[<z, m*(a, y.) —u*(a)]; Il <1}-0,
where u*: B*—>4 is the adjoint of w. This means that for each aed,
Im* (@, yo) —u*(a)|—0, and so, in particular, S(y,)—>u*(a,). Hence § is
compact. :

In order to show that (2)=-(4), we use implication (1)=-(4) applied
to m' to conclude that m™** has [J] for lw*. But then (9.4) implies that
m! is regular. Now it follows from Theorem 3.3 in [2] (implication “(3.34) =
(3.32)") applied to m™*** that (m))' =m is regular, ie., m™™ =m™",
50 that m**™* (and therefore m™* also) has [J] for lw* as observed above.

We assume now that A is separable and pick a sequence D = {a,)7;
dense in 4. Assume further that (4) holds. By the argument used in the
proof of (1) =(4), we conclude that S,: w—>m* (e, ) is a compact operator
8: XA for each aeA. We shall abbreviate S, = 8§, when ¢ = a,.

Let now {#,} be a bounded sequence in X. Since 8, is compact, there
is a subsequence {@,} with {S;@,} convergent. Similarly, there is a sub-
sequence {w,} of {},} with {S,,} convergent, and so on. Denote by {y,}
the diagonal sequence produced by the iteration. Then {Sy¥,}n=; is
convergent for each k = 1,2, ...; let dycd be defined as d; = lim8S,y,.

n
We define T: D—A by Ta, = dy. Since 8,9, — Sl = ™ (ap—ay, ¥,)|l
< Klay—ayll, where E = [m*[Sup|y,]l, then fd,— & < Klla,— ] and
therefore T' can be extended to a continuous map (with the same
name) T: 4—>A. We claim that T is linear. In fact, let &, j, ¢ be positive
integers. Then
1T (a,+ a;) —Ta,—Ta;|| < 1T (g + a5) — Lol + 1Ta;—Taz —Tayll
"= | T (ag+ ;) — Ta;l| +Um [(8;— S; — Sp) Ynll

1T {ay+ a;) — Tagl| +lim [m* (a;— ar,— a5, ¥l

<

< T (g + ag) — Tl 4 Ko, — (ag+ ay)il -
Picking the indices 4 so that a;—a,+ a;, we get |1 (a;+ ay) —Ta,—Ta)l| =0
and then, by continuity, |T(a’ +a')—Ta¢' —Ta’'| = 0 for all a’,a’ cA.
Therefore, T: A—A is a continuous linear operator. It is now easy to
see thatm*(a, y,)—Ta for each a. Let u: X—B be the restriction « =T*X
to X of the adjoint of 7. Our final claim is that m,(y,)->u in X*. In fact,
for aed, eX,

{8y M5 (Yny @)D — <8 U(0)y = <M(yﬂi @), ay —{a, Ta)
= {z,m (a,y,) ~Ta)
so that, with p the seminorm defined by & = a in (9.5),
_'p(ms(yn) -——'l,b) = “'m’*(aa Yn) — Ta’””'O

and we are done.
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‘We have therefore proven that (2) :(4)‘ and (when 4 is separable),
(4)=(1). Thus (2)=(1) and so, by symmetry, when .4 is separable, (1)
and (2) are equivalent, and equivalent to (3) and (4), which completes
the proof of (9.7).

It is clear from (9.4) and (9.7) that

(9.8) If (1) or (2) s satisfied, then m is regular.

One can see that the implications in (9.8) cannot be reversed in gen-
eral by examining Bxample (5.2).

We close this section with the observation that s-compactness or
d-compactness of m are properties that generalize weak compactness in
the sealar case, as in [8], p. 5. In fact, the Grothendieck canonical extensions
and the Arens products are closely related, as follows. For X, ¥, Z Banach
spaces and m: X x ¥—Z bounded and bilinear, define the right canonical
extension mf: X x ¥** 2" by first interpreting m as a map X--L(Y, Z)
and then following it by the double-adjoint map L(Y, Z)—L (XY ** Z),
The resulting map X—L(Y™, Z**) determines m® in the obvious way.
In 2 similar way we can define ‘m: X**x Y2 as the composition
Y->L(X,Z)~L(X**, 2*). The two iterated maps ¥(mf) and (*m)! have
the same domain (X** x ¥**) and the same range (Z*™). Tt is (tedious
but) routine matter to determine the following identities involving Arens
products and Grothendieck extensions:

m** = Poi(mf), m™™ = Po('m)t,

where P: Z*™*—Z** is the canonical projection.

10. The Hardy space H*. Let 2 be a plane domain. Denote by BH(.Q)
the vector space of all bounded holomorphic functions on £. We assume
that 2 supports non-constant bounded holomorphic functions.

For beBy(Q) and p a regular complex measure on £2, write (with
2 =w+Yyi):

(10.1) Kuy by = [ f b () p(dedy).
This defines a duality between the space M*(Q2) of all regular complex
measules on £ and By(R), with degeneracy Thus, we can take
N = {pe MY{); {, ) =0, YVbeBy(2)} and define A = M*(Q)/N as
the quotient Banach space. It follows from [19] (4.3, 4.4 and 4.5) that
the dual of 4 can be isometrically identified via the duality (10.1) with
"By (£) under the sup norm (that is, the Hardy space traditionally denoted
by H%(Q), ef. [17], where the notations used here are introduced).
Also we can define, for beBy(R), a = u-+ N M*(Q)/N, the element
bt a=>but+ N, where bue M (L) is the ordinary product of a bounded
function and a meagure. The product in By(@) associated to |— is again
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the ordinary product be(z) = b(z)c(2) of holomorphic functions. Thus we
find again the situation in Section 2 with 4 = M*(Q)/N, B = B,(Q)
and the ordinary product in Bg(R) as | - product.

The lw*-continuity properties of this product are known:

(10.2) TrEOREM (Rubel and Shields). The product of By (Q
lw™-continuous.

This result, however, depends on the fact, due to Rubel and Ryft,
that lw* is the strict topology of By (), ie., w* is the topology defined
by the seminorms Sup |b(z)@(z)|, where qosC’(.Q) with ¢ = 0 on 8LQ. This

2e2

) is joindly

result is hard to get (see [18]). We can, however, get Theorem (10.2)
from Theorem (4.1) and the following easy consequence of the normal ~
families Theorem.
(10.3) PROPOSITION. Let b,(2) be holomorphic funciions on Q with
b (2)| < M and assume that b, (2)—>0 for each zeQ, as o increases. Then.
ff[b Y |ul(dzdy)—0 for each we M*(Q).

Proof. Write
f [ ba(2)] Iul(dedy) <

where K < £ is a compact subset. Given ¢ > 0, we can pick K such that.
the last integral does not exceed ¢/2M. Now, from the normal families
theorem follows that thé integral in the middle is also small for a large,
and we are done.

This proposition just means tha,t b—b I~ a, is lw*norm continuous
from Bg(£2) into 4 = M*(Q)/N, and therefore from (4.1.ii) follows that.
the product is jointly lw*-continuous, i.e., the statement in (10.2).

Similarly, we can use Theorem (3.1) to prove that:

(10.4) TEmoREM. The product in Bg(Q) is not jointly w*-continuous.

Proof. We first give an elementary proof for € bounded. Pick zye 2~
and choose a>0 with z,+te2 for all 0 <t< a. Define the measure
Uns® =0,1,..., by

1@ miaoay)

» &y, be complex numbers and suppose that Z’zkykzzv the.
) in M*(2). Then, for bsBH( ),

[ ba@) \ul(@wdy) + X [ [ |ul(dody),
K 2-K

f f (2 + ) @t

Let 44, 4, ..
annihilator of By (R

0= [foe (Zwk) (dady) = [ bleg+ )P0,

> }%Jﬂ Thus, if @(2) = Y T, (2—2,)%, then

= f@<z0+t)1><t)dt =/
0 0

where P(z) =

[P (t)]2de,
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and therefore the polynomial P(z) is identically zero, whence A, = 1,

= ... =4, =0. But then u+N, u+7N,..., u,+N are linearly inde-
pendent in M'(Q)/N. Since 2" |~ (uo-+N) = w,+ N, it follows that the
range of b+—>b |- a, is infinite dimensional when a, = p,+ N. Then (10.4)
follows from (3.1.ii).
The following proof that (3.1.iii) implies (10.4) for general Q iy
due to L. A. Rubel, to whom we wish to express our appreciation.
First, take feBg(2) non-constant and with |fll, = 1. Let w,<Q he
all different for » =1,2,... with |f(w,)|—1l and denote z, == f(w,).
It follows from [9], Oorollamy, p. 204, thwf a suitable hubqequcn(‘ 6 (also
denoted {z,}) is an interpolating sequence for Bg(R). Hence, for each
" bounded sequence {w,} there is a geBy(D) (D = open unit disc) with
9(#%,) = w,. The same is true, of course, for {w,}: there is beBy(2) with,
b(w,) = w, (take b = g(f)). Let now u be the measure y = Y 27%g
Jo==1
where ¢, is the unit point mass at wy,. Clearly, if b e By (2) with b(w,) = wy,

then for a, = u+N we have
b ay = (Z" ’“w,cek)—ﬁ—N

and this shows that the range of b—b | a, contains all the (finite) linear
combinations of the measures s, and therefore it is not of finite rank.
i Theorems (10.2) and (10.4) obviously imply that w* == Iw* (see
Theorem 3.14 of [19]); in fact this can be obtained directly from the
first and second propositions on p. 180 of [18] (cf. remark of last two
lines of [18], loc. cit.).
We remark that the statements above extend with no changes to
domains in 0" In fact, in this case it is also true that the lw*-topology
coincides with the strict topology ([22], p. 476) and that lw* ¢ w*.

11. Operator algebras. The supporting reference for this section is [5].
Let H be a Hilbert space, L(H) the Banach algebra of all bounded linear
operators in H under the operator norm and L, (H) the trace class, that
ig to say, the space consisting of all TeL(H) with X (1T eg, ) < -0,
where {¢,}, is an arbitrary complete orthonormal system and |7 = (r T)l’2
For T'eL.(H) the trace of T' is the number tr(T) = ¥'(Te,, e,). Tt is
known that L. (H) and tr(T) do not depend on the complete orthonormal
system {e.},; also, Ly(H) is o two sided ideal in L(H), [Ty == tr(|T])
is a norm on L.(H) that makes it a Banach space, and

T, 8 =tr(T8), TeL.(H), SeL(H),
-defines a pairing of L*(H) and L(H) that identifies L(H) with the dual
of Iy (H).
With this background, we can consider 4 = Ly(H) and B = L(H)
from the point of view of Section 2, and a natural | - map suggests itself:
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8 = T =1T8, the composition of operators. It is easy to see that the
- - product is again compoqition of operators: T, 8;-8,) =<(8; T, 8>
= (T8, 8y) = tr(T8:8,) =T, 8,8.). The w* and lw* continuity prop-
erties of the product in L(H ) are not hard to get (see [5], I. 3.5, Example
2, or [6], 2-nd paragraph on p. 293) and can be summed up as follows:

11.1. The product in L(H) has always properties [L] and [R] for w*
and lw* ; it has property [J, (0, 0)] for w* or lw™ if and only if dim (H) < + co.

We aim to show here that our previous theorems are quite related
to 11.1. A further property of the trace will be used (see [5], I. 6, Prop-
osition 1), namely: if TeL, (H), SeL(H), then tr(T8) = tr(8T). It follows
that if UeL(H), thanalso <TU, 8 = (8T, Uy = (S T, U>. But then
it is clear from this identity that if Saﬁlo, then S, — T—0 in the weak
topology of L.(H). Consequently, (3.1.li) implies that the product in
L(H) has property [L] for w* (and hence also for lw*); since it always
has [R] by (3.1.ii), the first half of 11.1 follows.

The w*- and lw*-discontinuity when dim(H) = co is not hard to
prove directly (see again [6], 2-nd paragraph on p. 293). It can be also
obtained from (4.1.i) as follows: pick a countable orthonormal system
{tn)me1 and define TieL(H), S,eLi(H) by T2 = (#,6) 61, 8,61 = €,
Spn = 61,86, =¢; for j#1, j#mn, and 8, =0 on the orthogonal
complement to the span of {¢,}. One has []Sn]] =1 and ||S, - T;,—
— 8 = Tqll« =2 when # = m, so that S8 | T, from L(H) into L, (H)
is not compact. Now apply (4.1.i).
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The structure of L-ideals of measure algebras
by
KEIJI IZUCHI (Yeckohama)

Abstract. Thm paper shows that there are L-ideals I, and I, of the measure

algebra on a L. C. A. group such that Z(I;) = Z(I;) and there are no L-ideals I such
that I; S I & I,.

1. Introduction. Let ¢ be a non-discrete 1.C.A. group and let G be
the dual group of G. Let L'(G) and M (G) be the group algebra on G and
the measure algebra on @, respectively. We denote by Rad[IL'(@) the
radical of I'(@), that is, RadL'(G) is the intersection of all maximal
ideals of M (@) which contain I'(@). For u,ve M(@) v < p means that
v is absolutely continuous with respect to x, and »_| y means that » and
w are mutually singular. For pe M (@), we put L'(p) = {Ae M(G); A < u}.
A closed subspace (ideal, subalgebra) N is called an L-subspace (L-ideal,
L-subalgebra) if L'(u) = N for every ueN.

Taylor [8] showed a characterization of the maximal ideal space
of M (@) as follows: There exist compact topological abelian semigroup
8 and an isometry isomorphism 6 of M (@) into M (8) such that the maximal
ideal space of M (@) is identified with S , the set of all continuous semi-
characters of S, and the Gelfand transform of ue M (@) is given by a(f)

= [fa0u for fe&.
&
For a closed ideal I of M(G), we put

Z(I) = {fe8; a(f) = 0 tor every uel}.

H. Helson ([2]) showed that: If I, and I, are closed ideals of L'(Q)
with I Z I, and Z(I,) = Z(I,), then there is a closed ideal I such that
LgIZI,.

In this paper, we show that Helson’s theorem is not true in the
category of L-ideals of M (@) or in the category of closed ideals of M (@).
Our results are the following.

TEEOREM 1. There are two L-ideals I;, I, of M (@) such that I, Z I,
and Z(I1,) = Z(1,), but there are no L-ideals I so that Ilfé IZI,.
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