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The structure of L-ideals of measure algebras
by
KEIJI IZUCHI (Yeckohama)

Abstract. Thm paper shows that there are L-ideals I, and I, of the measure

algebra on a L. C. A. group such that Z(I;) = Z(I;) and there are no L-ideals I such
that I; S I & I,.

1. Introduction. Let ¢ be a non-discrete 1.C.A. group and let G be
the dual group of G. Let L'(G) and M (G) be the group algebra on G and
the measure algebra on @, respectively. We denote by Rad[IL'(@) the
radical of I'(@), that is, RadL'(G) is the intersection of all maximal
ideals of M (@) which contain I'(@). For u,ve M(@) v < p means that
v is absolutely continuous with respect to x, and »_| y means that » and
w are mutually singular. For pe M (@), we put L'(p) = {Ae M(G); A < u}.
A closed subspace (ideal, subalgebra) N is called an L-subspace (L-ideal,
L-subalgebra) if L'(u) = N for every ueN.

Taylor [8] showed a characterization of the maximal ideal space
of M (@) as follows: There exist compact topological abelian semigroup
8 and an isometry isomorphism 6 of M (@) into M (8) such that the maximal
ideal space of M (@) is identified with S , the set of all continuous semi-
characters of S, and the Gelfand transform of ue M (@) is given by a(f)

= [fa0u for fe&.
&
For a closed ideal I of M(G), we put

Z(I) = {fe8; a(f) = 0 tor every uel}.

H. Helson ([2]) showed that: If I, and I, are closed ideals of L'(Q)
with I Z I, and Z(I,) = Z(I,), then there is a closed ideal I such that
LgIZI,.

In this paper, we show that Helson’s theorem is not true in the
category of L-ideals of M (@) or in the category of closed ideals of M (@).
Our results are the following.

TEEOREM 1. There are two L-ideals I;, I, of M (@) such that I, Z I,
and Z(I1,) = Z(1,), but there are no L-ideals I so that Ilfé IZI,.

¢
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TEHEOREM 2. There are closed ideals Iy, I, of M(G) and an L-ideal
s of M(G) such that I, S I, S I3 and Z(1) =Z(I,) = Z (1), but there
a;e neither closed ideals I mth 11 Z I3 I, nor with LgIgI,.
THEOREM 3. There owist I/zdea,ls {Ie, of M(@) such that L'(G)
SLZLE S, S ... E RadLMG).
The author is grateful to T. Shimizu for many ‘helpful sugestions.

2. Proof of Theorem 1. After some lemmas, we show Theorem 1.
For pe M(G), we denote by I(u) the smallest L-ideal of M (@) which
containg y. For L-ideals Iy, I, of M (@) such that I, Z I and Z(I,) = Z(I,),
we say that (I, I,) has property (A) if the following condition is sat-
isfied:

(#) There are no L-ideals I of M (@) such that I, ;:éI I,.

For we@, 6(s) 1s the unit point mass at #. For an L-subspace N, we
put N4 = {uwe M(®); u 1 N}. An L-ideal T is called prime if I+ is an
L-subalgebm

LeMmyA 1. Let H be a closed subgroup of G. If there are L-ideals I,, I,
of M(H) such that (I, I,) has property (), then there are L-ideals J1, J,
of M(@) such that (Jy, J,) has property (A4).

Proof. We change the topology of ¢ by adjointing to the original
collection = of open sets arbitrary unions of sets of the form (H +a)nV,
whiere <& and Vev. We denote its L.C.A. group by G5. Then we have
M(G) = M(Gg) @ M (Gg)-, M(Gg)* is a prime L-ideal of M(@) and
M(H) = M(Gg). Let I, (I,) be the L-ideal of M (Gy) generated by Iy (I,).
Then we have [, S Z I,. Next we show %(I,) = Z(I,). Suppose that
Z (Il) 2 #(I,). Then there is a complex homomorphlsm y of M(Gy) such
that 1/)( ) = 0 for every Ael,, but there is vel, WLLh @(») # 0. Since I,
coincides with the L-subspace generated by {6(s)%n; ®<Gy, nely}, there
are weGy and nel, such that y(3(2)+x) % 0. Thus we have p(n) # 0,
but w(A) = 0 for every Ael;. This contradicts Z(I;) = Z(I,). We put
Jy = LOM(Gz)* and J, = [,®M(Gg)*. Then J, and J, are distinet
© L-ideals of M (@), and Z(J,) = Z(J,) is clear. Let J be an L-ideal such
that J, TJ < Jp Weput I = {wed; pe M (Gy)}. Since M (Gy)* is a prime
L-ideal, I is an L-ideal of M(Gy) and I, T I < I,. By the assumption
of this lemma, we have I = I,. Then J ==J,. Thus (Jy, d,) has prop-
erty (4).

Let K be a compact subgroup of @ and let » be the canonical homo-
morphism from @ onto G/K. Then ¢ induces the homomorphism @ from
M (G) onto M (G/I(). ‘We denote by mg the normalized ITaar measure on K.
We note that if u;, gy, M(G) and @ (u,) = P(u,), then uyxmg = pysmg.

Leyma 2 ([1], Lemma 3.2). Let feS’, the mazimal ideal space of M(@T
such that f = 1 a.e. Omg. Then there is a non-zero complexr homomorphism
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v of M(G/K) such that
2(f) = p(®u)  for every pe M(@).

Remark. If fe§ and f # 1 a.e. Omg, then siug(f) = 0. Thus if fed

and Mmg(f) # 0, then there is a non-zero complex homomorphism ¢ of
M(G/K) such that i(f) = p(Pu) for every pue M(G).

. LeMMA 3. Let K be a compact subgroup of G. If there are L-’Ldeals

I, I, of M(G/K) such that (I, I,) has property ( #), then there are L-ideals

J1, Js of M(G) such that (J1,J5) has property ().

Proof. Let J, = ®7(I,); then J; is an L-ideal of M (@). Let J, be
an L-ideal of M (G) generated by @' (I,) xmy. Since ®(D~(I,)xmg) = I,,
we have @(J,) = I,. Suppose that J is an L-ideal of M (@) such that

&(J) = I,. Since J o Jsmg = O~ (I,)*mg, we have J o J,. We put
Jy = J1+dJ;; then J, is an L-ideal of M (@), Jg) = & (J,)+D(J})
=I,+I,=1, and J, T J,. Next we show Z(J;) = Z(J,). Suppose that
Z(J,) G Z(J,). Then there exist feS and peJ, such that wedy, A(f)
# 0 and i(f) = 0 for every AeJy. Since &~1(I,) «my is dense in J,, we have
g(f) # 0. By the remark of Lemma 2, there is a non-zero complex
homomorphism y of M (G/K) such that (P (»)) = #(f) for every »< M(G).
Then we have weZ(I,), but w¢Z(I,). This contradicts Z(I;) = Z(I,).
Thus we have Z(J,) = Z(J,). Let J be an L-ideal of M (G) such that
J1ZJ <dJ,. Then we have I; = &(J,) < @(J) = @(J,) = I,. Since
Jy = &7(1,), we have I, T §(J) < I,. By the assumption of this lemma,
we have @(J) = I,. This implies J, = J. Since J, = Jy+dJ, < J, we
get J, = J. Thus (Jq, J,) has property ().

Levya 4. Suppose that there is a positive measure u on G satisfying
the following conditions: (1) and (2); then there are L-ideals I,, I, of M (&)
such that (I, I,) has property (4).

(1) I(g) = I(A) for every non-zero A < .

(2) There emist fe@ and a positive number b (0 < b < 1) such that
Ifl =0 a.e. Ou.

.Proof. Let u be a positive measure satisfying the conditions of this
lemma. We put I, = I(u) and put I, = {lel,y; |A|* M (@) 1 u}; then I is
an L-ideal, I, | p and I; I,. By condition (2), there exists feS‘ and
0 < b <1 such that |f|] = b a.e. Bu. Since [f] = b* a.e. O(u+*u), we have
(p#p)* M(G) L s Thus we have pxpel;. Since Z(I(p)) = Z(I(p*p) and
I(usp) < I, = I,, we have Z(I,) = Z(I,). Next we show that there are
no L-ideals I such that I, I Z I,. Suppose that I is an L-ideal such
that I]L I <1, Then there exists »<I such that »> 0 and » 1 I,. By the
deflmtlon of I, there exists e M (@) such that 7 > 0 and »«xnon | u Then '
there is 1,eL*(u) so that 4, s 0 and 4, < »=7. By condition (1), we have
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I(%) = I(u) = I,. Since A, we have I(4) <= I. Thus I =1I,. This
- completes the proof.
Let G, be one of the following metrizable L.0.A. groups;

00
(1) a countable product of finite eyclic groups ig Z(pq),
(2) a p-adic integer group 4,
(3) the cirele group T,
(4) the additive group of the real line K.
In [5], Johnson shows that there is a measure u on @; which satisfies
condition (2) of Lemma 4. We will show that such u satisfies condition

(1) of Lemma 4. }
be a basic system of compact neighbourhoods of

Let Vo, Viy .ot
0 in G, with V;> Vi + Vips My, My, ..., positive integers and ay,
$=1,2,...,4 =0,1,..., m—1 such that z, = 0, 3¢V, _,, and V,, is

equal to the union of the disjoint sets @y V,, § = 0,1,..., m;—1. Let
'X1={wij;j=.0717"'}mi'—“1}7 =-X1+»Xg+.-- -}—Xi,
2 . my—1 .
M = 61‘ = M —1 6 X,
§ T mD) ¢ ;’ (m;—3) 8 (@),

U =-§; é;, and u, = * 6¢ (convergence in the weak-" topology). Then
=1 i=n

4, is supported in V,, Mn/ 0 and |ju,|l = 1. We note that
Bo="D wy+ V) 8(y) % py
ye¥;

and 8(y)xu; L 6(y') = u; for distinet y, y'<¥,.

Levma 5. IYu) is the closed linear spam of {§(
i=1,2,..}

Y)xp; YeXy,
o0

Proof. Since MV, = {0} and V,_, is the union of the disjoint sets
im0

@+ V;, Lemma 5 is clear.

Remark. For ¢> 0 and for veL*(u), there arve a positive integer
m and complex numbers {a(y)}y.yr,, such that

[v= 3 atw)ow)em| <.

veXy,

LeMMA 6. Let N be an L-subspace and Ae M (Gy). If for every v < A there

i neN such that Anon | %, then AeN.
Proof. It is clear by Lebesgue’s decomposition theorem.
LeMuMA 7. Such a measure u as above satisfies condition (1) of Lemma 4.

icm
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Proof. Let AeL*(u) and A 5 0. Then we have I(1) = I(u). Next
we show that AeL'(u) implies peI(2). To show this fact, it is sufficient
to show that for every v < u there is #e@, such that d(s)=Ainon | » by
Lemma 6. Here we may assume that 1> 0, » > 0 and [li] = || =1. By
Lemma 5, there are a positive integer n and complex numbers {a(y),
b(9)}yex,, such that

(1) 2= 3 awswyem| < 4
EY

and

(2) [r= X oo s < 2.
ye¥y

For yeY,, we can decompose

(3) M = /"nyl—l-:“;b,'y,h

where 0(Y) %ty g1 < A and 5(?/)*Hnw L4, and

(4) My, == Aun,y,v_l_ l‘;,y,w

where &(4) %y, < v and 8(y)*ty,y, L ». Since

2= > a)s@)+p |
== > aln) 8(9)* |+ | > atw) 8) b <1
yeT,, YTy,
we have

2 |3 o1 stesi] <.

On the other .hand, (1) 1mphes that
(6) < Dlaly
ye¥y,

Here we show that there is y,< ¥, such that a(y,) 7% 0 and li, y,l > %-
Suppose that [, 4.l < % for every ye¥, with a(y) 0. Then we have
ltomyall > % for every ye¥, with a(y) # 0.

By (b), we have

1> 3 a) (9 stinyal

ye¥y,

= D la@l ]| >3 Y la@).
ye¥p . veXy,

Hence we have > 3 |a(¥)|
such that v

&) . a(y,) #0 and.

. This contradicts (6). Thus there is y,¢Y,

I.[/un,yo,l" > % .
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By the same argument as above, there is y,¢ Y, such that
(8) ) b(y,) #0 ”/’Ln,yl,vn > %.
By (3) and (4), there are characteristic functions y, and x, such that
s = Habn and fi,y 0 = Aok By (7) and (8), we have M1, O | fly
This implies that
8 (Y1 —Y0) % (8 (Yo) # fhn,p,3) DOD L 8 (Y1) * iy

yo)* Axv. This completes the proof.

Lavma 8 ([B], 3.1, 4.1, B.1, 5.4). There emist {V }io, and {m}2, such
that p satisfies condition (2) of Lemma 4.

By Lemmas 1,2, 3, 7 and 8, we have Theorem 1 as usual.

3. Proofs of another theorems. We put M, = {ue M(@); 4 is a con-
tinwous measure}, then M, is an L-ideal of M (G). For a subset N of M (@),
[N] means the closed subalgebra gemerated by N. By Varopoulos [9],
we have [M,« M, Z M, and [M, * M, is an L-ideal of M (G).

Proof of Theorem 2. Let I3 M, and I, =[M,x M,]; then
I, is an L-ideal, I, 3 I, and Z(I,) = Z(I;). We can decompose I, = I,N
such that ¥ = M, and N 1 I,. For y;, y,¢@ (y1 # pa)y we put I, = {uelN;
wlyy) = 0} and Iy = {ueN; ilys) = (y) = 0}. Then I, and I; ave
closed subspaces of N and I3 Z I,. We put I =I,@I; and I, = I,®Il,;
then I, and I, are closed ideals of M (@), I, Z I, and Z(I,) = Z(I,) = Z(I,).
At firgt, we show that there are no elo&ed ideals I such that I, ZIZ I,
Suppose that I is a closed ideal with I, T I < I. Then there exists el
such that A¢I, and AN, so we have j.(yi) # 0. For vel, we have

and

thus we have 6(y;—

(v (?’1) Z) (72) = 0.
Ays)
Thus
¥(y1) (1)
— Ael,- and ve—t-A-4+I,< 1.
T AN TN

This implies that I, = I,@N < I and I = I;. As the same way as the
above, we can prove the fact that there are no closed ideals I such that
LgIZI,

As the same way as Theorem 2, we have the following:

TemoREM 2'. Let M be an L-ideal of M(G) such that M # [+ M].
Then there are closed ideals I, and I, such that I, SI,S M and Z(I,)
=Z(1,) =Z(M), but there are neither closed ideals I with ILgI gIz
nor with I, S I & M.

For subsets N, M of M(G), we put Ns M =
and we put N® = N+ N"for a Ppositive integer n.

{pyxpy; pye N, pge M}

icm

Btructure of L-ideals 131

To prove Theorem 3, we use the following lemma.

LemmA 9 ([3], P.419). For each integer k> 1, there is a mon-zero
positive measure w in Rad L*(Q) such that u™ | THG)(n =1,2,...,k—1),
where u* = pxp™ " and ptel (Q).

Proof of Theorem 3. We construct such Z-ideals {I.}i>; induc-
tively. The first step, there is a measure g, > 0 such that g, | L' (G) and
WelM@) by Lemma 9. We put I; = I(u,). Since L(@) is the smallest
I-ideal of M(®), we have IMN@G)Z I, Z RadL' (@) and I,+I, < IMG)..
Suppose that for a positive integer k there are L-ideals I, I, ..., I and
a positive integer s(k) such that LM Z L, Z L. Z... £ I, E Rad ING)
and It < L‘(G). By Lemma 9, there is a measure u,.; > 0 such that
pra LING) (n=1,2,...,s(k )) and w®eIN@). We put Iy, = I+
+I(piyy); then I, is an L-ideal. Since ui® | IL}@), we have ., ¢1;
and pyoqelyyy. Thus I, & I,.,. We pub s(k-+1) = 2s(k); then we have
IfY < IM@). This implies that I, ,; & Rad I*(G). This completes the proof.
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