

icm[©]

[11] S. McKilligan and A. J. White, Representation of L-algebras, Proc. London Math. Soc., 3-rd Series, 25 (1972), pp. 655-674.

[12] D. Maharan, On homogeneous measure algebras, Proc. Nat. Acad. Sci. 28 (1942), pp. 108-111.

[13] Z. Phelps, A Banach space characterization of purely atomic measure spaces, Proc. Amer. Math. Soc. 12 (1961), pp. 447-452.

[14] H. Porta, Compactly determined locally convex topologies, Math. Ann. 196 (1972), pp. 91-100.

[15] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc., 3-rd Series, 15 (1965), pp. 84-104.

[16] H. Rosenthal, On quasicomplemented subspaces of Banach spaces with an appendix on compactness of operators from L^p(μ) to L^r(ν), J. Funct. Analysis 4 (1969), pp. 176-214.

[17] L. A. Rubel, Bounded convergence of analytic functions, Bull. Amer. Math. Soc. 77 (1971), pp. 13-23.

[18] — and Z. Ryff, The bounded weak-star topology and the bounded analytic functions, J. Funct. Analysis 5 (1970), pp. 167-183.

[19] — and A. L. Shields, Bounded approximation by polynomials, Acta Math. 112 (1964), pp. 145-162.

[20] S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, Berlin-New York 1971.

[21] J. H. Shapiro, The bounded weak star topology and the general strict topology, J. Funct. Analysis 8 (1971), pp. 275-286.

[22] — Weak topologies on subspaces of C(S), Trans. Amer. Math. Soc. 157 (1971), pp. 471-479.

[23] A. C. Zaanen, Integration, 2-nd Ed., John Wilers, New York 1967.

UNIVERSITY OF CHICAGO UNIVERSITY OF ILLINOIS, URBANA

124

Received April 18, 1975

(1002)

STUDIA MATHEMATICA, T. LIX. (1976)

The structure of L-ideals of measure algebras

by

KEIJI IZUCHI (Yokohama)

Abstract. This paper shows that there are L-ideals I_1 and I_2 of the measure algebra on a L. C. A. group such that $Z(I_1) = Z(I_2)$ and there are no L-ideals I such that $I_1 \subseteq I \subseteq I_2$.

1. Introduction. Let G be a non-discrete L.C.A. group and let \widehat{G} be the dual group of G. Let $L^1(G)$ and M(G) be the group algebra on G and the measure algebra on G, respectively. We denote by $\operatorname{Rad} L^1(G)$ the radical of $L^1(G)$, that is, $\operatorname{Rad} L^1(G)$ is the intersection of all maximal ideals of M(G) which contain $L^1(G)$. For $\mu, \nu \in M(G)$ $\nu \ll \mu$ means that ν is absolutely continuous with respect to μ , and $\nu \perp \mu$ means that ν and μ are mutually singular. For $\mu \in M(G)$, we put $L^1(\mu) = \{\lambda \in M(G); \lambda \ll \mu\}$. A closed subspace (ideal, subalgebra) N is called an L-subspace (L-ideal, L-subalgebra) if $L^1(\mu) \subset N$ for every $\mu \in N$.

Taylor [8] showed a characterization of the maximal ideal space of M(G) as follows: There exist compact topological abelian semigroup S and an isometry isomorphism θ of M(G) into M(S) such that the maximal ideal space of M(G) is identified with \hat{S} , the set of all continuous semi-characters of S, and the Gelfand transform of $\mu \in M(G)$ is given by $\hat{\mu}(f) = \int f d\theta \mu$ for $f \in \hat{S}$.

For a closed ideal I of M(G), we put

$$Z(I) = \{ f \in \hat{S}; \ \hat{\mu}(f) = 0 \text{ for every } \mu \in I \}.$$

H. Helson ([2]) showed that: If I_1 and I_2 are closed ideals of $L^1(G)$ with $I_1 \subsetneq I_2$ and $Z(I_1) = Z(I_2)$, then there is a closed ideal I such that $I_1 \subsetneq I \subsetneq I_2$.

In this paper, we show that Helson's theorem is not true in the category of L-ideals of M(G) or in the category of closed ideals of M(G). Our results are the following.

THEOREM 1. There are two L-ideals I_1 , I_2 of M(G) such that $I_1 \subsetneq I_2$ and $Z(I_1) = Z(I_2)$, but there are no L-ideals I so that $I_1 \subsetneq I \subsetneq I_2$.

THEOREM 2. There are closed ideals I_1, I_2 of M(G) and an L-ideal I_3 of M(G) such that $I_1 \subsetneq I_2 \subsetneq I_3$ and $Z(I_1) = Z(I_2) = Z(I_3)$, but there are neither closed ideals I with $I_1 \subsetneq I \subsetneq I_2$ nor with $I_2 \subsetneq I \subsetneq I_3$.

THEOREM 3. There exist L-ideals $\{I_k\}_{k=1}^{\infty}$ of M(G) such that $L^1(G) \subsetneq I_1 \subsetneq I_2 \subsetneq \ldots \subsetneq I_n \subsetneq \ldots \subsetneq \operatorname{Rad} L^1(G)$.

The author is grateful to T. Shimizu for many helpful sugestions.

2. Proof of Theorem 1. After some lemmas, we show Theorem 1. For $\mu \in M(G)$, we denote by $I(\mu)$ the smallest L-ideal of M(G) which contains μ . For L-ideals I_1, I_2 of M(G) such that $I_1 \subsetneq I_2$ and $Z(I_1) = Z(I_2)$, we say that (I_1, I_2) has property $(\not R)$ if the following condition is satisfied:

(#) There are no L-ideals I of M(G) such that $I_1 \subsetneq I \subsetneq I_2$.

For $x \in G$, $\delta(x)$ is the unit point mass at x. For an L-subspace N, we put $N^{\perp} = \{\mu \in M(G); \ \mu \perp N\}$. An L-ideal I is called *prime* if I^{\perp} is an L-subalgebra.

LEMMA 1. Let H be a closed subgroup of G. If there are L-ideals I_1 , I_2 of M(H) such that (I_1, I_2) has property (\divideontimes) , then there are L-ideals J_1, J_2 of M(G) such that (J_1, J_2) has property (\divideontimes) .

Proof. We change the topology of G by adjointing to the original collection τ of open sets arbitrary unions of sets of the form $(H+x) \cap V$, where $x \in G$ and $V \in \tau$. We denote its L.C.A. group by G_H . Then we have $M(G) = M(G_H) \oplus M(G_H)^{\perp}$, $M(G_H)^{\perp}$ is a prime L-ideal of M(G) and $M(H) \subset M(G_H)$. Let \tilde{I}_1 (\tilde{I}_2) be the L-ideal of $M(G_H)$ generated by I_1 (I_2). Then we have $\tilde{I}_1 \subseteq \tilde{I}_2$. Next we show $Z(\tilde{I}_1) = Z(\tilde{I}_2)$. Suppose that $Z(\tilde{I}_1) \supseteq Z(\tilde{I}_2)$. Then there is a complex homomorphism ψ of $M(G_H)$ such that $\psi(\lambda) = 0$ for every $\lambda \in \tilde{I}_1$, but there is $\nu \in \tilde{I}_2$ with $\psi(\nu) \neq 0$. Since \tilde{I}_2 coincides with the L-subspace generated by $\{\delta(x) * \eta; x \in G_H, \eta \in I_2\}$; there are $x \in G_H$ and $\eta \in I_2$ such that $\psi(\delta(x) * \eta) \neq 0$. Thus we have $\psi(\eta) \neq 0$, but $\psi(\lambda) = 0$ for every $\lambda \in I_1$. This contradicts $Z(I_1) = Z(I_2)$. We put $J_1 = \tilde{I}_1 \oplus M(G_H)^{\perp}$ and $J_2 = \tilde{I}_2 \oplus M(G_H)^{\perp}$. Then J_1 and J_2 are distinct L-ideals of M(G), and $Z(J_1) = Z(J_2)$ is clear. Let J be an L-ideal such that $J_1 \subsetneq J \subset J_2$. We put $I = \{\mu \in J; \ \mu \in M(G_H)\}$. Since $M(G_H)^{\perp}$ is a prime L-ideal, I is an L-ideal of $M(G_H)$ and $I_1 \subseteq I \subset I_2$. By the assumption of this lemma, we have $I = I_2$. Then $J = J_3$. Thus (J_1, J_2) has property (#).

Let K be a compact subgroup of G and let φ be the canonical homomorphism from G onto G/K. Then φ induces the homomorphism Φ from M(G) onto M(G/K). We denote by m_K the normalized Haar measure on K. We note that if $\mu_1, \, \mu_2 \in M(G)$ and $\Phi(\mu_1) = \Phi(\mu_2)$, then $\mu_1 * m_K = \mu_2 * m_K$.

LEMMA 2 ([1], Lemma 3.2). Let $f \in \hat{S}$, the maximal ideal space of $M(\widehat{G})$, such that f = 1 a.e. θm_K . Then there is a non-zero complex homomorphism

w of M(G/K) such that

 $\hat{\mu}(f) = \psi(\Phi\mu)$ for every $\mu \in M(G)$.

Remark. If $f \in \hat{S}$ and $f \neq 1$ a.e. θm_K , then $\hat{m}_K(f) = 0$. Thus if $f \in \hat{S}$ and $\hat{m}_K(f) \neq 0$, then there is a non-zero complex homomorphism ψ of M(G/K) such that $\hat{\mu}(f) = \psi(\Phi \mu)$ for every $\mu \in M(G)$.

LEMMA 3. Let K be a compact subgroup of G. If there are L-ideals I_1 , I_2 of M(G/K) such that (I_1, I_2) has property (\divideontimes) , then there are L-ideals J_1, J_2 of M(G) such that (J_1, J_2) has property (\divideontimes) .

Proof. Let $J_1 = \Phi^{-1}(I_1)$; then J_1 is an L-ideal of M(G). Let J_2' be an L-ideal of M(G) generated by $\Phi^{-1}(I_2) * m_K$. Since $\Phi(\Phi^{-1}(I_2) * m_K) = I_2$, we have $\Phi(J_g) = I_g$. Suppose that J is an L-ideal of M(G) such that $\Phi(J) = I_2$. Since $J \supset J * m_K = \Phi^{-1}(I_2) * m_K$, we have $J \supset J_2$. We put $J_2 = J_1 + J_2'$; then J_2 is an L-ideal of M(G), $\Phi(J_2) = \Phi(J_1) + \Phi(J_2')$ $=I_1+I_2=I_2$ and $J_1\subsetneq J_2$. Next we show $Z(J_1)=Z(J_2)$. Suppose that $Z(J_2) \subseteq Z(J_1)$. Then there exist $\hat{f} \in S$ and $\mu \in J_2$ such that $\mu \in J_2'$, $\hat{\mu}(f)$ $\neq 0$ and $\hat{\lambda}(f) = 0$ for every $\lambda \in J_1$. Since $\Phi^{-1}(I_2) * m_{\pi}$ is dense in J'_2 , we have $\hat{m}_{\mathcal{R}}(f) \neq 0$. By the remark of Lemma 2, there is a non-zero complex homomorphism ψ of M(G/K) such that $\psi(\Phi(v)) = \hat{v}(f)$ for every $v \in M(G)$. Then we have $\psi \in Z(I_1)$, but $\psi \notin Z(I_2)$. This contradicts $Z(I_1) = Z(I_2)$. Thus we have $Z(J_1) = Z(J_2)$. Let J be an L-ideal of M(G) such that $J_1 \subseteq J \subset J_2$. Then we have $I_1 = \Phi(J_1) \subset \Phi(J) \subset \Phi(J_2) = I_2$. Since $J_1 = \Phi^{-1}(I_1)$, we have $I_1 \subsetneq \Phi(J) \subset I_2$. By the assumption of this lemma, we have $\Phi(J) = I_2$. This implies $J_2 \subset J$. Since $J_2 = J_1 + J_2 \subset J$, we get $J_2 = J$. Thus (J_1, J_2) has property (#).

LEMMA 4. Suppose that there is a positive measure μ on G satisfying the following conditions: (1) and (2); then there are L-ideals I_1 , I_2 of M(G) such that (I_1, I_2) has property (#).

- (1) $I(\mu) = I(\lambda)$ for every non-zero $\lambda \ll \mu$.
- (2) There exist $f \in \hat{S}$ and a positive number b (0 < b < 1) such that |f| = b a.e. $\theta \mu$.

. Proof. Let μ be a positive measure satisfying the conditions of this lemma. We put $I_2=I(\mu)$ and put $I_1=\{\lambda\epsilon I_2;\ |\lambda|*\ M(\theta)\perp\mu\}$; then I_1 is an L-ideal, $I_1\perp\mu$ and $I_1\subsetneqq I_2$. By condition (2), there exists $f\in S$ and 0< b<1 such that |f|=b a.e. $\theta\mu$. Since $|f|=b^2$ a.e. $\theta(\mu*\mu)$, we have $(\mu*\mu)*\ M(\theta)\perp\mu$. Thus we have $\mu*\mu\epsilon I_1$. Since $Z(I(\mu))=Z(I(\mu*\mu))$ and $I(\mu*\mu)\subset I_1\subset I_2$, we have $Z(I_1)=Z(I_2)$. Next we show that there are no L-ideals I such that $I_1\subsetneqq I\supsetneq I_2$. Suppose that I is an L-ideal such that $I_1\subsetneqq I\subset I_2$. Then there exists $\nu\epsilon I$ such that $\nu\geqslant 0$ and $\nu\perp I_1$. By the definition of I_1 , there exists $\gamma\epsilon M(\theta)$ such that $\gamma>0$ and $\gamma*\gamma$ non γ . Then there is $\lambda_0\epsilon L^1(\mu)$ so that $\lambda_0\neq 0$ and $\lambda_0\leqslant \nu*\eta$. By condition (1), we have

 $I(\lambda_0)=I(\mu)=I_2$. Since $\lambda_0 \in I$, we have $I(\lambda_0) \subseteq I$. Thus $I=I_2$. This completes the proof.

Let G_1 be one of the following metrizable L.C.A. groups;

- (1) a countable product of finite cyclic groups $\prod_{i=1}^{\infty} Z(p_i)$,
- (2) a p-adic integer group Δ_p ,
- (3) the circle group T,
- (4) the additive group of the real line R.

In [5], Johnson shows that there is a measure μ on G_1 which satisfies condition (2) of Lemma 4. We will show that such μ satisfies condition (1) of Lemma 4.

Let V_0, V_1, \ldots be a basic system of compact neighbourhoods of 0 in G_1 with $V_i \supset V_{i+1} + V_{i+1}$; m_1, m_2, \ldots , positive integers and x_{ij} , $i = 1, 2, \ldots, j = 0, 1, \ldots, m_i - 1$ such that $x_{i0} = 0, x_{ij} \in V_{i-1}$, and V_{i-1} is equal to the union of the disjoint sets $x_{ij} + V_i, j = 0, 1, \ldots, m_i - 1$. Let

$$egin{align} X_i &= \{x_{ij}; \ j = 0, 1, \ldots, m_i - 1\}, & Y_i &= X_1 + X_2 + \ldots + X_i, \ & M_i &= rac{2}{m_i(m_i + 1)}, & \delta_i &= M_i \sum_{j = 0}^{m_i - 1} \left(m_i - j\right) \delta(x_{ij}), \ & \end{array}$$

 $\mu = \overset{\infty}{\underset{i=1}{\star}} \delta_i$, and $\mu_n = \overset{\infty}{\underset{i=n+1}{\star}} \delta_i$ (convergence in the weak-*topology). Then μ_n is supported in $V_n, \, \mu_n \geqslant 0$ and $\|\mu_n\| = 1$. We note that

$$\mu = \sum_{y \in Y_i} \mu(y + V_i) \, \delta(y) * \mu_i$$

and $\delta(y) * \mu_i \perp \delta(y') * \mu_i$ for distinct $y, y' \in Y_i$.

LEMMA 5. $L^1(\mu)$ is the closed linear span of $\{\delta(y)*\mu_i;\ y\in Y_i,\ i=1,2,\ldots\}$.

Proof. Since $\bigcap_{i=0}^{\infty} V_i = \{0\}$ and V_{i-1} is the union of the disjoint sets $x_{i} + V_i$, Lemma 5 is clear.

Remark. For $\varepsilon > 0$ and for $v \in L^1(\mu)$, there are a positive integer m and complex numbers $\{a(y)\}_{y \in Y_m}$ such that

$$\|v - \sum_{y \in Y_m} a(y) \delta(y) * \mu_m\| < \varepsilon.$$

LEMMA 6. Let N be an L-subspace and $\lambda \in M(G_1)$. If for every $v \leqslant \lambda$ there is $\eta \in N$ such that $\lambda \text{non} \perp \eta$, then $\lambda \in N$.

Proof. It is clear by Lebesgue's decomposition theorem.

Lemma 7. Such a measure μ as above satisfies condition (1) of Lemma 4.

Proof. Let $\lambda \in L^1(\mu)$ and $\lambda \neq 0$. Then we have $I(\lambda) \subset I(\mu)$. Next we show that $\lambda \in L^1(\mu)$ implies $\mu \in I(\lambda)$. To show this fact, it is sufficient to show that for every $v \leqslant \mu$ there is $\alpha \in G_1$ such that $\delta(\alpha) * \lambda \operatorname{non} \perp v$ by Lemma 6. Here we may assume that $\lambda \geqslant 0$, $v \geqslant 0$ and $\|\lambda\| = \|v\| = 1$. By Lemma 5, there are a positive integer n and complex numbers $\{\alpha(y), b(y)\}_{y \in Y_n}$ such that

(1)
$$\left\|\lambda - \sum_{y \in Y_n} a(y) \, \delta(y) * \mu_n \right\| < \frac{1}{4}$$

and

(2)
$$\left\| v - \sum_{y \in Y_n} b(y) \, \delta(y) * \mu_n \right\| < \frac{1}{4}.$$

For $y \in Y_n$, we can decompose

(3)
$$\mu_n = \mu_{n,y,\lambda} + \mu'_{n,y,\lambda},$$

where $\delta(y) * \mu_{n,y,\lambda} \leq \lambda$ and $\delta(y) * \mu'^{!}_{n,y,\lambda} \perp \lambda$, and

(4)
$$\mu_n = \mu_{n,y,v} + \mu'_{n,y,v},$$

where $\delta(y) * \mu_{n,y,\nu} \ll \nu$ and $\delta(y) * \mu'_{n,y,\nu} \perp \nu$. Since

$$\begin{split} \left\| \lambda - \sum_{y \in \mathcal{V}_n} a(y) \, \delta(y) * \mu_n \, \right\| \\ &= \left\| \lambda - \sum_{y \in \mathcal{V}_n} a(y) \, \delta(y) * \mu_{n,y,\lambda} \right\| + \left\| \sum_{y \in \mathcal{V}_n} a(y) \, \delta(y) * \mu'_{n,y,\lambda} \right\| < \tfrac{1}{4}, \end{split}$$

we have

(5)
$$\left\| \sum_{y \in Y_n} a(y) \, \delta(y) * \mu'_{n,y,\lambda} \right\| < \frac{1}{4}.$$

On the other hand, (1) implies that

(6)
$$\frac{3}{4} < \sum_{y \in V_n} |a(y)| < \frac{5}{4}.$$

Here we show that there is $y_0 \in Y_n$ such that $a(y_0) \neq 0$ and $||\mu_{n,y_0,\lambda}|| > \frac{1}{2}$. Suppose that $||\mu_{n,y,\lambda}|| \leq \frac{1}{2}$ for every $y \in Y_n$ with $a(y) \neq 0$. Then we have $||\mu'_{n,y,\lambda}|| > \frac{1}{2}$ for every $y \in Y_n$ with $a(y) \neq 0$.

By (5), we have

$$\textstyle \frac{1}{4} > \Big\| \sum_{y \in Y_n} a(y) \, \delta(y) * \mu'_{n,y,\lambda} \Big\| \, = \, \sum_{y \in Y_n} |a(y)| \, \|\mu'_{n,y,\lambda} \Big\| > \frac{1}{2} \sum_{y \in Y_n} |a(y)| \, .$$

Hence we have $\frac{1}{2} > \sum_{y \in Y_n} |a(y)|$. This contradicts (6). Thus there is $y_0 \in Y_n$ such that

(7)
$$a(y_0) \neq 0$$
 and $\|\mu_{n,y_0,\lambda}\| > \frac{1}{2}$.

By the same argument as above, there is $y_1 \in Y_n$ such that

(8)
$$b(y_1) \neq 0$$
 and $\|\mu_{n,y_1,r}\| > \frac{1}{2}$.

By (3) and (4), there are characteristic functions χ_1 and χ_2 such that $\mu_{n,y_0,\lambda}=\chi_1\mu_n$ and $\mu_{n,y_1,\nu}=\chi_2\mu_n$. By (7) and (8), we have $\mu_{n,y_0,\lambda}$ non $\perp \mu_{n,y_1,\nu}$. This implies that

$$\delta(y_1 - y_0) * \left(\delta(y_0) * \mu_{n,y_0,\lambda}\right) \operatorname{non} \perp \delta(y_1) * \mu_{n,y_1,\nu},$$

thus we have $\delta(y_1-y_0)*\lambda*\nu$. This completes the proof.

LEMMA 8 ([5], 3.1, 4.1, 5.1, 5.4). There exist $\{V_i\}_{i=0}^{\infty}$ and $\{m_i\}_{i=1}^{\infty}$ such that μ satisfies condition (2) of Lemma 4.

By Lemmas 1, 2, 3, 7 and 8, we have Theorem 1 as usual.

3. Proofs of another theorems. We put $M_c = \{\mu \in M(G); \mu \text{ is a continuous measure}\}$, then M_c is an L-ideal of M(G). For a subset N of M(G), [N] means the closed subalgebra generated by N. By Varopoulos [9], we have $[M_c * M_c] \subseteq M_c$ and $[M_c * M_c]$ is an L-ideal of M(G).

Proof of Theorem 2. Let $I_3=M_c$ and $I_0=[M_c*M_c]$; then I_0 is an L-ideal, $I_0 \subsetneq I_3$ and $Z(I_0)=Z(I_3)$. We can decompose $I_3=I_0 \oplus N$ such that $N \subset M_c$ and $N \perp I_0$. For $\gamma_1, \gamma_2 \epsilon \hat{G}$ $(\gamma_1 \neq \gamma_2)$, we put $I_4=\{\mu \epsilon N; \ \hat{\mu}(\gamma_1)=0\}$ and $I_5=\{\mu \epsilon N; \ \hat{\mu}(\gamma_1)=\hat{\mu}(\gamma_2)=0\}$. Then I_4 and I_5 are closed subspaces of N and $I_5 \subsetneq I_4$. We put $I_1=I_0 \oplus I_5$ and $I_2=I_0 \oplus I_4$; then I_1 and I_2 are closed ideals of $M(G), I_1 \subsetneq I_2$ and $Z(I_1)=Z(I_2)=Z(I_3)$. At first, we show that there are no closed ideals I such that $I_2 \subsetneq I \subsetneq I_3$. Suppose that I is a closed ideal with $I_2 \subsetneq I \subset I_3$. Then there exists $\lambda \epsilon I$ such that $\lambda \epsilon I_2$ and $\lambda \epsilon N$, so we have $\hat{\lambda}(\gamma_1) \neq 0$. For $\nu \epsilon N$, we have

$$\left(\nu - \frac{\hat{\nu}(\gamma_1)}{\hat{\lambda}(\gamma_1)}\lambda\right) \hat{\lambda}(\gamma_1) = 0.$$

Thus

$$\nu - \frac{\hat{\nu}(\gamma_1)}{\hat{\lambda}(\gamma_1)} \lambda \epsilon I_4$$
 and $\nu \epsilon \frac{\hat{\nu}(\gamma_1)}{\hat{\lambda}(\gamma_1)} \lambda + I_4 \subset I$.

This implies that $I_3 = I_0 \oplus N \subset I$ and $I = I_3$. As the same way as the above, we can prove the fact that there are no closed ideals I such that $I_1 \subsetneq I \subsetneq I_2$.

As the same way as Theorem 2, we have the following:

THEOREM 2'. Let M be an L-ideal of M(G) such that $M \neq \lfloor M * M \rfloor$. Then there are closed ideals I_1 and I_2 such that $I_1 \subsetneq I_2 \subsetneq M$ and $Z(I_1) = Z(I_2) = Z(M)$, but there are neither closed ideals I with $I_1 \subsetneq I \subsetneq I_2$ nor with $I_2 \subsetneq I \subsetneq M$.

For subsets N, M of M(G), we put $N*M = \{\mu_1*\mu_2; \ \mu_1 \in N, \ \mu_2 \in M\}$ and we put $N^n = N*N^{n-1}$ for a positive integer n.

To prove Theorem 3, we use the following lemma.

LEMMA 9 ([3], P. 419). For each integer k > 1, there is a non-zero positive measure μ in Rad $L^1(G)$ such that $\mu^n \perp L^1(G)$ (n = 1, 2, ..., k-1), where $\mu^n = \mu * \mu^{n-1}$ and $\mu^k \in L'(G)$.

Proof of Theorem 3. We construct such L-ideals $\{I_k\}_{k=1}^\infty$ inductively. The first step, there is a measure $\mu_1>0$ such that $\mu_1\perp L^1(G)$ and $\mu_1^2\epsilon L^1(G)$ by Lemma 9. We put $I_1=I(\mu_1)$. Since $L^1(G)$ is the smallest L-ideal of M(G), we have $L^1(G)\subsetneqq I_1\subsetneqq \operatorname{Rad} L^1(G)$ and $I_1*I_1\subset L^1(G)$. Suppose that for a positive integer k there are L-ideals I_1,I_2,\ldots,I_k and a positive integer s(k) such that $L^1(G)\subsetneqq I_1\subsetneqq I_2\subsetneqq \ldots \subsetneqq I_k\subsetneqq \operatorname{Rad} L^1(G)$ and $I_s^{s(k)}\subset L^1(G)$. By Lemma 9, there is a measure $\mu_{k+1}>0$ such that $\mu_{k+1}^n\perp L^1(G)$ $(n=1,2,\ldots,s(k))$ and $\mu_s^{s(k)+1}\epsilon L^1(G)$. We put $I_{k+1}=I_k+1(\mu_{k+1})$; then I_{k+1} is an L-ideal. Since $\mu_{k+1}^{s(k)}\perp L^1(G)$, we have $\mu_{k+1}\epsilon I_k$ and $\mu_{k+1}\epsilon I_{k+1}$. Thus $I_k\subsetneqq I_{k+1}$. We put s(k+1)=2s(k); then we have $I_s^{s(k+1)}\subset L^1(G)$. This implies that $I_{k+1}\subsetneqq \operatorname{Rad} L^1(G)$. This completes the proof.

References

 W. J. Bailey, G. Brown and W. Moran, Spectra of independent power measures, Proc. Camb. Phil. Soc. 72 (1972), pp. 27-35.

[2] H. Helson, On the ideal structure of group algebras, Ark. Math. 2 (1952), pp. 83-86.

[3] E. Hewitt and H. S. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Camb. Phil. Soc. 62 (1966), pp. 399-420.

[4] K. Izuchi, On a zero set of Gelfand transforms of L-ideals of measure algebras, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 11 (1972), pp. 227-230.

[5] B. E. Johnson, The Šilov boundary of M(G), Trans. Amer. Math. Soc. 134 (1968), pp. 289-296.

[6] W. Rudin, Fourier analysis on groups, Interscience, New York 1962.

[7] T. Shimizu, L-ideals of measure algebras, Proc. Japan Acad. 48 (1972), pp. 172–176.

[8] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), pp. 150-166.

[9] N. T. Varopoulos, A direct decomposition of the measure algebra of a locally compact abelian group, Ann. Inst. Fourier Grenoble 16 (1966), pp. 121-143.

DEPARTMENT OF MATHEMATICS FACULTY OF TECHNOLOGY KANAGAWA UNIVERSITY YOKOHAMA, JAPAN

Received April 30, 1975

(1007)