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Introduction. Yano [9] introduced the notion of an f-structure which
is a (1, 1)-tensor field of constant rank on a C*-manifold M and satisfies.
the equality f*+f = 0. This notion is a generalization of almost complex
and almost contact structures and has been studied by several authors.
(see [3], [4] and [7]) with a particular focus on framed structures. In
its turn, it has been generalized by Goldberg and Yano [2] who defined
a polynomial structure of degree d which is a (1, 1)-tensor field of con-
stant rank on M and satisfies the algebraic equation

Q(f) =f+aaf* ' +...+asf+a, I =0,

where I is the identity mapping, and f*!(z),...,f(«), I are linearly
independent for any xe M. The polynomial @ is called structural, and f
is called a Q-structure.

In this paper we consider a principal fibre bundle P over a C* (para-
compact) manifold M of dimension m, with a structural group G of di-
mension n and a projection n: P—M, equipped with a connection I
In Sections 1 and 2 we show that (1, 1)-tensor fields on M and G may
be lifted to tensor fields on P. In Section 3 we construct a @-structure
on P, which is obtained by lifting @-structures on M and G. In Sections 4
and 5 we study integrability and normality of lifted @-structures.

Similar problems for almost complex and f-structures have been
considered by Ishihara and Yano [6], and Tanno [8].

In the sequel we denote by X, Y (with indices or not) arbitrary
vectors of TP or vector fields on P, by Z, Z' etc. vector fields on M, and
by A, B ete. left invariant vector fields on G. By Z* we denote the hori-
zontal lift of Z; thus Z* is the horizontal vector field on P satisfying
nZ" = Z. A fundamental vector field on P with respect to A will be
denoted by A*. If w is the form of a connection I'; then w(A*) = 4 and
nxA = 0. The Lie algebra of G is denoted by g.
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If V is an arbitrary C*-manifold and % is a (1, 1)-tensor field on V,
‘then we put

(1) [, 1(D, E) = [hD, hE]1—h[D, hE]—h[hD, E]+h*[D, E]

for every vector fields D, F on V. It is easy to verify that [k, 2] is a tensor
field of type (1,2) on V.
1. Horizontal lifts of (1, 1)-tensor fields. Let f be a (1, 1)-tensor

field on M. Put
fUX) = (freX)}  for XeP,.

Then f* is a (1, 1)-tensor field on P, which will be called a horizontal
lift of f. Of course, the rank of f* at a point p of P is equal to the rank of f
at ¢ = n(p). Therefore, if f is a tensor field of a constant rank, then the
rank of f* is constant.

LeMMA 1.1. (a) f*(X) = 0 for any vertical vector X and
(2) M2 = (fz)",

(b) f* is invariant by G: fPo R, = R of", where geG and R, is the
differential of the mapping P> p v pg.
Proof. Part (a) is obvious. If XeP,, then

(B X) = (freBpuX)p, = (freX)py = Boa(fraX)y = Bu(f* X),

since the connection I' is invariant by G.
Since the formula

(3) Fo(Z) = na(FZ")

defines a (1, 1)-tensor field on M and (F,)* = F, each G-invariant (1, 1)-
-tensor field ¥ on P, which vanishes on the vertical subbundle of T'P
and maps horizontal vectors into horizontal vectors, is a horizontal lift
of some tensor field on M.

Remark. Formula (3) defines a tensor field ¥, only if ¥ is invariant
by @ and, in general, the equality (F,)* = F does not hold. More precisely,
(F,)*(X) = hF(hX), and so that equality holds if and only if F(hX) = 0
and hF(X) = F(hX). Of course, always (f*), = f. '

THEOREM 1.1. If a connection I' is flat, then

(4) ™zt z™ = (Lf, f1(Z, Z')

Conversely, if rankf = m and formula (4) holds for every Z,Z’, then T’
48 a flat connection.
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Proof. If I' is flat, then [Z" Z™] = [Z,Z']" for any Z, Z'. Hence,
by (1) and (2),

L "1z, z'™)
= [(f2)", (fZ2' "1 - 12" (fZ' "1 - AU 2% 2]+ (Fh) 12", 2]
= [fZ, 2’ - "2, f2' ")~ f"(fZ, 2T +(f*V((2, Z2'T)
= (Lf,f1(Z, Z")"

Conversely, if rankf = m, then for any vector fields Z, Z" on M
there are vector fields Z,, Z; such that Z = fZ, and Z' = fZ,. It follows
from (1) and (4) that

(2" 2™ = (Uf, f 12y, )" + 112" ZM + 1122, ZM) - (f*)[ 22, 2.

Hence, the vector field [Z", Z™] is horizontal and [Z* Z™] = [Z, Z']".

Therefore I' is a flat connection.

2. Fundamental tensor fields. A (1, 1)-tensor field ¥ on P is said
to be fundamental if F' sends fundamental vector fields on P into funda-
mental vector fields and vanishes on the horizontal subbundle of TP.

If f is a left-invariant (1, 1)-tensor field on @, then f(A) is a left-in-
variant vector field for every Aeg. Hence the formula

f1(X) = (foX)}, XeP,,

defines a tensor field of type (1,1) on P. Clearly, rankf* = rankf.

ProPOSITION 2.1. The correspondence fi+> f* is a bijection from the
set of left-invariant (1, 1)-tensor fields on G to the set of fundamental tensor
fields on P.

Proof. Obviously,
(5) ff(A*) =(f4)" for Adeg

and f(Z* = 0. Thus f* is fundamental. If F is fundamental, then the
formula f(A4) = B, where F(A*) = B*, defines a left-invariant tensor
field on @ such that f* = F. If f* = f;, then f(4)" = f,(4)* and, con-
sequently, f(4) = f,(4) for every A of g.

ProrosITION 2.2. For any A, B of g we have

(6) [f*, f*1(4%, B*) = (If, (4, B))".

Proof. The correspondence A—>A* is a homomorphism of Lie al-
gebras. Now formula (6) follows immediately from (1) and (5).

3. Polynomial structures. Goldberg and Petridis [1] have proved
that a simply connected manifold M of dimension m is parallelizable
if and only if there exists a polynomial structure on M with structure
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polynomial of degree m having m distinct non-zero real roots. We will
prove here the following generalization of this result:

THEOREM 3.1. If a manifold M is parallelizable, Q@ is a polynomial
of degree d < m = dim M and m is even or Q has a real root, then there is
a Q-structure on M.

Proof. Let
Q@) = F(@—a,)" ... (@—a) (@ +bw+6)™ ... (82 + b5 +0c,)",

where ¢z —a,,...,z—a,,2*+b,x+c¢y, ..., 22+ b,x+¢, are distinct irre-
ducible polynomials over R. Then

d="k+h+...+L+2m+...+2m, < m

Put
n,=k+l+...+1_, for h=1,...,r+1,
Pr = Npyy+2my+...4+my_, for h =1,...,8+1,
—1 . ; .
—2[’2 ;& =j4+(—1y7  forj =1,2,...,
1
Gh= —Ebh, dh =—(4ch—bh) fOI‘h=1,...,8

Taking an arbitrary basis Z,, ..., Z,, of vector fields on M we also

put

(7) Jo(Zy) =0, folZ;) =Z;_, ifi=1o0ri>k and 2<j<k,
j—1

(7') wlZy) =0,  fulZ,,45) = Zznh+t+a’hznh+j

ifi<mpori>mn,,, 1<j<l,and 1<h<r,

(") frrr(Zy) =0, fri(Z h+;)—2 ot T 1)j—lthph+dj+ehZ_’ph+f

t=1
if i<p,or i>pp,, 1< 2my;, and 1 <h<s.

The standard computation shows
ff=0, (fi—uD*=0 and (fi+bfital)™ =
for h =1,...,7r and ¢« =r+1,...,74S8.

Denoting by T' the distribution on M spanned by Z,, veey g, WE
see that the tensor field f = fo +... +f,,, satisfies the equation @ (f|T) = 0
and that (f|T)* (x), ..., (f|T)(z), I are linearly independent for every
xz of M.
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If T' is the distribution complementary to T and dim7’ is even
odd), then for any irreducible polynomial @’ of degree d' = 1,2 (d' = 1)
there is a tensor field f on M such that f|T =0 and Q'(f|T') = 0 (the
field f can be defined by formulas analogous to (7)-(7"')). If @' is a divisor
of @, then the tensor field f = f +f is a Q-structure on M.

CoroLLARY 3.1. If G is a Lie group, Q is a polynomial of degree d < n
= dim@, and n is even or @ has a real root, then there is a left-invariant
Q-structure on Q.

COROLLARY 3.2. If M is parallelizable and dim M is even (odd), then
there 18 an almost complexr structure (am f-structure of arbitrary rank
2r < dimM) on M.

Now we return to the situation considered in Sections 1 and 2. M is
a basis of a principal fibre bundle P with a group G and a connection I

COROLLARY 3.3. If M admits a Q-structure f of degree d and n is even
or @ has a real root, then P admits a Q-structure F of rank r > rankf.

Proof. Let Q' be a divisor of @ such that there is a Q’-structure f
on G Put F = f*4+f*. Then

QUF) (2" =(Q(N)(2Z) =0 and QF)(A") =(Q(f)(4)* =o.

If Qo(F) = 0 for some polynomial @, of degree d, < d, then Q,(f)(Z)
= s (Qo(¥F)(Z") = 0 for every Z. Since this is not possible, F is a
¢-structure. Moreover,

r =rank F = rankf+rankf > rankf.

COROLLARY 3.4. If M 1s an almost complex manifold and dimG (or
dim P) is even, then P admits an almost complex structure. In particular, P
18 orientable.

COROLLARY 3.5. If M is equipped with an f-structure of rank r, then
P admits an f-structure of every rank r’ such that r < v’ < r+2[n/2], where
n = dim@.

4. Integrability. Let us consider a polynomial structure f on M with
the structure polynomial

(8) Q(2) = @y 2™ . a7 .
It defines two complementary distributions T, and T, with projectors
By = —Qpu f"—...—af and 7w =a, "+...+af+1,
respectively. Clearly,
wtmy =1, mmy =mm, =0,

”i=7‘17 7‘§=n27 7‘2f=f“2=07 J""1f=f-771 =f.
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Let f' be a left-invariant @-structure on &, f = f*+f™*. Denote by
T,,T, and =,, n, (T,, T, and 7,, 7,, respectively) distributions and pro-
jectors defined in analogous manner for f’ (for f, respectively). Of course,
XeT,; if and only if weXeT; and o(X)eT;, i =1,2. Consequently,
dim7; = dimT;+ dim T%.

THEOREM 4.1. Let a connection I' be flat. Then the distribution T,
(or T',, respectively) is integrable if and only if the distributions T, and T,
(or T, and T,, respectively) are integrable.

Proof. Repeating the proof of Ishihara and Yano [5], one can verify
that the distribution 7', is integrable if and only if

(9) 7(Lf, f1(7 X, 7, Y)) =0 for any X, Y.

Of course, the analogous facts hold for 7, and T,. If I' is flat, then
it follows from Theorem 1.1 and Proposition 2.2 that

7o(LF5 F (72 2)", (7, 2')Y))
7o ((Lf> f1(m 2, mZ ) = (malf, F1(m: 2, 7, 2"))

Ty ([fy f1(z=, 2", ﬁlzlh))

and, similarly,
T, ([f_'yf—](ﬁlA*a ﬁ13*)) = {n; Lf's f/ ](“;A7 n;B))*-
Moreover,
(10)  [f,F1(4% 2" = [(f'A), (f2)"1-f[4%, (f2)"]—
—fU(f AV, 2"+ (47, 2] = 0.
Thus (9) holds if and only if
mafy fl(7Z, m2) =0 and  m[f',f' J(mA, s B) =0

for every Z,Z' and A, B. This proves our assertion.
~ An analogous argument works for the distribution T',, since T, is
integrable if and only if

[f, fl(m, X, 7, ¥) =0 for every X, Y.

We say that a @-structure f is partially iniegrable (respectively, in-
tegrable) if [f, f1(7, X, =, Y) = 0 for any X, ¥ (respectively, [f, f] = 0).
It is known [3] that an f-structure is partially integrable if and only if
the distribution T, is integrable and, for any integral manifold N of T,,
the almost complex structure f|N on N is integrable. And an f-structure
is integrable if and only if every point # of M has a neighbourhood U
equipped with a coordinate system (u!, ..., ™) such that the matrix (f}),
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where f;j = du’(f(0/0w’)), has the form

o -1, 0
1, 0 0], where 2r =rankf.
0 0 0

THEOREM 4.2. If T is flat, then f is partially integrable (respectively,
integrable) if and only if both Q-structures f and f' are partially integrable
(respectively, integrable).

The theorem can be proved analogously to Theorem 4.1.

COROLLARY 4.1. If M and G are complex manifolds, and a principal
fibre bundle P over M with a structure group G admits a flat connection,
then the manifold P can be equipped with a structure of a complex manifold.

5. Framed and normal (-structures. The polynomial structure f
with the structural polynomial @ of form (8) is said to be framed if the
distribution T, is framed, i.e. if there are linear independent vector fields.
Zyy..., Z,, r = dimT,, spanning T,, and r forms ' such that

(11) ' (Z;) =68, 7 =27;0d"

If, in addition,
[f, f1+Z;Qdw’ =0

and the forms dw® are of bidegree (1,1) with respect to f, i.e. if
dw'(Z,fZ')+dw'(fZ,Z') =0 for every Z,Z’,

then f is called a normal Q-structure (cf. [1], [3], [4] and [7]).

LemMA 5.1. Every left-invariant Q-structure f' on G is framed. More
precisely, there are fields A,, ..., A, «g and left-invariant forms 6%, ..., 6"
(' = dimT,) such that

(12) 0(4;) =68, m=A,R0.

Proof. Since the distribution T, is left invariant, i.e. T,(g) = LT, (e}
for any ge@, vector fields A,,..., A, span T, if only A,(e),..., A, (e)
span T,(e). Take vector fields 4, .,,..., 4, such that 4,,..., 4, form
a basis of 4. We can define left-invariant forms 6%,..., 6™ by putting
6%(4,) = o, k, 1< n. Clearly,

M= A, R0 +...+4,.Q0".

In the sequel, ¢, j and %, I run, respectively, from 1 through » = dim 7,
from 1 through 7' = dim7,, and from 1 through r-++ = dimT,.

THEOREM 5.1. If f is framed, then f = f*+f'* is framed. If I'is flat,
and f and f' are mormal, then f is mormal.
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Proof. Let Z; and o (respectively, 4; and 6°) satisfy (11) (respec-
tively, (12)). Put X; =2, X,,; = 4;, ' = a*o’ and 7" = Fow. Of

course, X,,..., X,,,» span T, and #*(X;) = 6f. Besides,

nt(Z") = n'(4%) =0

and thus
ﬁa(zh) = (sz)h = (wi(Z)Zi)h = ﬂi(zh)xi = ﬂk(zh)xk
and
m(4%) = (md)* = (0/(4)4,)" = 44" X,,; = n*(4") X,.
Therefore, 7, = X,®7", and T, is framed.
Let us suppose that I' is flat, and f and f’' are normal. Then we have
dni(z", fz’h) +dﬂi(fzh7 Z') = (dwi(z,fZ')—{—dwi(fZ, Z’))O” =0,
dn' (4%, fX)+dn'(fA*, X) =0,
do" (2", fX) +dy" 7 (fZ", X) = 0

and

an™t1 (A, fB*) +dy i (fA*, B*) = d0’(A,f'B)+d¢’(f'A, B) = 0.
Thus dn* are of bidegree (1, 1) with respect to f. Finally,
(If, F1+ X ®dn*) (2", Z2™) = ([, f1Z, 2" + (Ao’ (Z, Z") o n) 2}
= (([f, f1+Z:®do")(Z, Z')) =0,
(Lfs 1+ Xi® dn*) (4%, B*) = ([f', f'N(4, B))* +d6°(4, B) 4]
= (([f", f'1+ 4,046} (4, B))* =0
and (cf. (10))
(If, F1+ X @dn®) (2", A4™)
=Z"0’A)-X,,;— A" (o' Zon) X, —y*([Z", A*])- X, = 0.

Hence f is normal.
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