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1. Introduction. The main purpose of this paper is to give some
new results concerning problems indicated in the title (some related
results were published in [16]). We shall formulate conditions concerning
an ordinary graph @G, (on n vertices) and depending upon a parameter s,
study interrelations between them, and prove that each ensures the exist-
ence in G, of a path s-covering of vertices, that is, a covering of vertices
by s disjoint paths if s > 1 or by a Hamiltonian eircuit if s = 0, where

{1.1) n>8=>0, n+s=3, n,seZ.

In what follows we shall show how to prove that each of those con-
ditions is in a sense best possible. Moreover, we shall formulate three
new conditions and find all implications between all conditions. The
weakest condition is of Las Vergnas type. It coincides with that
of Las Vergnas for s <1 and is essentially weaker than the condition of
Chvatal type, the second weakest condition. Finally, we shall prove
that all those conditions ensure the existence of a matching in @, with
a given deficiency and that, for s > 1 and odd n —s, they are sharp.

2. Measures of non-hamiltonity. Results of [16] will be put here in
a new setting. For that purpose consider the notion of a vertex-path par-
tition number of a graph @. This number, denote it by #{f’ (&), is the min-
imal number of disjoint paths (possibly trivial) in G which contain all
vertices of @G. In fact, a path s-covering with s > 1 is a spanning subgraph
with s components each of which is a path.

So, for 8 > 1, it is clear that each of the conditions mentioned in Intro-
duction implies that ={?(@)<s. Each of those conditions with s = 0,
however, ensures the existence of a Hamiltonian circuit in @,.

A Hamiltontan circuit was called in [16] a path 0-covering of verti-
ces. To avoid this, one can consider the parameter s in the above-men-
tioned conditions as an upper bound for the number of new edges whose
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addition to @, in the case n > 3 results in a Hamiltonian supergraph.
This suggests introducing a new invariant which we shall denote by
8g(G) and call the Hamiltonian shortage in a graph G. The Hamiltonian
shortage 8g(G@) in @ is the minimal number of new edges in a Hamil-
tonian spanning supergraph of G if the order |V (G@)| of G exceeds 2. Natu-
rally, the Hamiltonian shortage in a Hamiltonian graph is equal to 0.
There are three exceptional graphs, namely K,, K,, and K,, in which
the Hamiltonian shortage is not defined yet. Therefore, we assume
additionally that

su(K,) =1 and sy(K,) = sg(K,) =2.

Thus we have the following relations between the vertex-path parti-

tion number ={) and the Hamiltonian shortage sy in a non-empty graph G:

P (@) —1 = 0  if @is Hamiltonian,
sg(@) ={aP@H+1=2 it G =K,,
w5 (G) otherwise.

One may doubt whether the definition sg(K,) = 2 is reasonable.
There is, however, another natural definition of sg(G), compatible with
that given above. Assume that, for two given graphs G0 and G®, we
can write GWxG? only if G® and G® are disjoint, and that it stands
for the join of @) and G (defined by A. A. Zykov in 1949, cf. Harary [9]),
i.e., for the graph consisting of both G) and G and of all possible
edges with one end-vertex in @ and the other in G®. Now the above-
-defined Hamiltonian shortage in a graph G satisfies the condition

sg(G) = min{p: GxK, is a Hamiltonian graph}

and this equality can be taken as a simple, uniform, and natural defi-
nition of sg (cf. [17]).

Note that the Hamiltonian shortage is a parameter analogous to the
Hamiltonian index introduced by Chartrand in 1965 (cf. [6] and [7]).
Definition of the latter parameter is implied by the observation that,
for a connected graph G = @, different from a path (so with » > 3), the
k-th iterated line graph L*(@) of G is Hamiltonian for all integers k& > n —3,
with L° being the identity operator. The minimal exponent % for which
L*¥(@) is a Hamiltonian graph is the value of the parameter. We shall
denote it by log,($/G) and call it the (minimal) Hamiltonian L-expo-
nent of @.

- Now, replacing L by another unary operator on graphs (e.g., raising
to a power) or considering a property different from that of being Hamil-
tonian which above is denoted by $, one can introduce new analogous
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invariants. We do not follow this idea here but remark that, for the total
graph operator T: G T (@) (T'(@) denotes the total graph of a graph G,
introduced by M. Behzad in 1965, cf. Harary [9], Chapter 8), the Ham:l-
tonian T-exponent of a connected and non-trivial graph G does not exceed 2,
i.e.,

logr(9H/G) <2 if @ is connected and G # K.

This is a new formulation of a result of Behzad and Chartrand [1].

Each of the three quasi-Hamiltonian invariants (sg and the two
exponents) attains 0 precisely for Hamiltonian graphs. However, only sy
has a definite value for any graph, while the two exponents may have
not. So, from among the three parameters only the Hamiltonian shortage
sg (and for a large part also the vertex-path partition number #{P) yields
a satisfactory classification of all ordinary graphs (connected and discon-
nected) with respect to Hamiltonian (or rather quasi-Hamiltonian) prop-
erties. Also, only the Hamiltonian shortage in an arbitrary graph can
be viewed as a measure of non-hamiltonity of that graph.

However, one more (at least) measure of the non-hamiltonity of
a graph G can be introduced in another natural way. This measure can
be determined by means of an invariant defined as the minimal number
of hanging vertices (with degree 1 or 0) among all spanning forests of G.
Upper bounds for the last invariant (in the case where the graph G is
connected) follow from results of Las Vergnas [12] and Bermond [4].

3. Terminology and notation. By a graph we mean a finite ordinary
graph. So a graph G is an ordered pair (V, E) consisting of two finite
sets: V (the vertex set V(@) of G) and E (the edge set E(@) of G), where

VAa2,(V) =@ and E < 2,(V),

2,(V) being the set of all two-member subsets of V. The cardinality
n = |V| of the vertex set V(@) and the cardinality |E| of the edge set
E (@) are said to be the order of G and the size of @, respectively. If » is
the order of @, we write G, instead of G. The graph <V, 2,(V)) is called
complete and is denoted by K, {(V), or <G) in the case where V(K) = V(G).
It is also denoted either by K, or by {(n) if n is its order.

The terms subgraph, supergraph, factor (i.e., spanning subgraph),
k-factor, Hamiltonian graph, complementary graph of a graph G (denoted
by @), disjoint graphs, union, join, isomorphism of graphs etc. will be
used in the usual sense. However, the terms path and circuit are names
of graphs consisting of vertices and edges in a simple open chain and
in a simple closed chain, respectively. In connection with this convention,
note that a Hamiltonian path of a graph is not any Hamiltonian

graph.
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If v,yeV, we write xy (or yx) to denote the edge {r, y}. The degree
of a vertex « in @ is denoted by d(x, @G). The minimal degree among all
vertices of G is denoted by d(@).

The symbols Z and R denote the set of integers and the set of real
numbers, respectively. Given a number ze¢R, the symbols [#] and [*z]
stand for the integer nearest to x in the sets {y: ¥y <z} and {y: y > x},
respectively. Thus, [*z] = —[ —=].

4. Conditions on graphs. At present there are known many non-
-trivial sufficient conditions for an ordinary graph @, to contain a Hamil-
tonian circuit (for » > 3) or a Hamiltonian path (for n» > 2). Eleven types
of such conditions (including two new ones, both being modifications
of the known conditions due to Erddés and Ore, respectively) are consid-
ered in [16]. Each of those conditions appears, however, as a special
case (namely, with s = 0 or s = 1) of a certain new condition that depends
upon an additional parameter s. Recall that (1.1) is assumed throughout
this paper.

In some conditions one more additional numerical parameter k
appears, and so all conditions from [16] are uniformly denoted by A{) (k)
(or by AT (k; @,) if @, is not specified), where r is a distinguishing para-
meter, r =1,2,...,11. The parameter k appears only if r =1, 2, 4.
In what follows we shall quote some of those conditions together with
formally new conditions 4{?, o = 1.0, 2.0, 4.0, each of which is a genera-
lized or-connection of conditions A4{)(k) with different values of k (r =
1, 2, 4, respectively). The conditions we shall deal with will be denoted
by A® with o =01, 02, 1.0, 2.0,3,4.0,5,6,...,11. In conditions A
the variable k¥ will not be free: for ¢ = 1.0, 2.0, 4.0 it will be bounded
by the existential quantifier 3. We shall not quote the conditions with
r=p0=>5,6,...,9; we shall only give some information about them.

To quote conditions A (k) with r = 1,2 we need to recall the fol-
lowing definitions:

n—t—s

puttim 1 (" o,

% =u,,:=[(mn—8—1)/2] (hence max{l —s, 0} < x),
k,:=max{l—s,0,[*k]} with keR,

¢ (k) ma;x{qym(t) |7‘-:s<t<%} lf ’—Esgx,
T o otherwise,
O (k) 1= Max {pn, () +k—t [k <t<w} if k< x,
- 0 otherwise,

(n—5s8+1)/6 for odd n+s,

a=Qy:= .
(n—5s+4)/6 otherwise.
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Now one can prove (see [16]) that
a#x, [a]l<wx, [%a]=I[a+4/6],
a+4/6 #x and [a+4/6]1<x iff nds #4;
By (k) = Py (k).

Moreover,

D,,(k) = @ps(7) and 7> k<te{{a,x} if k, = a,

{=} if a<k,<x
and, analogously,
D) (k) = @pa(r)+k—7 and 7> k<
{k} if ¥ <min{a+4/6, x},
<7ei{a+4/6,x} if k=a+4/6<zx,
{2} if a+4/6<k<x%.

Hence, for keZ and % > max{2 —s, 0}, one can easily deduce that
either

(4.1) Plg (k) < Py (k) = gy (%)
if

(4.2) max{l—s, —1,a}<k<=x
or

&, (k) = D,,(k) otherwise.
It is easy to prove the following equivalences:
An integer k satisfying (4.2) does exist <
<x>max{3—s,1} and a+1 <%
>n—8=>3 and T n+s #8.
Now we are able to formulate the conditions
AS)(k; G): (VeeV(G,): d(w,Gy) = kA |E(G,)| = Bp,(k))
(R2k<n-—1),
AQ) (k5 G,): 8(G,) = kA |E(G,)| = Dy, (K),
(keZn[max {2 —s, 0}, n—1]).

Remark. For a given integer k¥ > max {2 —s, 0}, if k satisfies (4.2)
(cf. (4.1)), then the increase of information about @, in the first logical

10 — Colloquium Mathematicum XXXVI.2
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factor of A®(k; @,), compared with that of A%)(k; @,), is followed by
the decrease of information in the second factor.

For certain values of k, one can bring the condition A® (k) (r = 1, 2)
to a simplified form, in [16] denoted by AY)(k), by omitting an unessen-
tial logical factor. For instance, we can put

A(G,) 1= AQ)((n—8)/2; G,): (Ve V(8,): d(z,8,) > (n—s)[2),
ALD(G,) 1= A5)(0;G,): |E(G,)] = Pay(0).
In connection with the latter condmon, notice that in [16] it is
proved that
(4.3) By (0) = Dy (k) = gpy(1—8) = (” 1)+2—s
f 0<s8<1 and k<<1-—s.

We have denoted the above conditions by 01 and 02 to obtain a uni-
form numbering of all conditions A and to keep (if possible) the nota-
tion the same as that in [16]; it is precisely the same for o = 3,5, 6, ..., 11.

Now define

AE9(@,): (Ak<n—1: AD(K; 6,);
A%G,): (AkeZn[max {2 —s, 0}, n—1]: AQ(k; G,));
AQNG,): (Vo,y<V(G,): 2y E(G,)=d(z,G,)+d(y,G,) > af)
with
n—s—1 if §>2 and n—s is even,

a® —
ns
n—s otherwise;

A%9(@,): Ak < n: AY(k; G,)),
where
AN (k3 Gy): [{eV(Gy): d(z, @) = n—1}]
>kt Ak <x=Vo,yV(G,): ay¢E(G,)=>d(x,G,)+d(y,G,) > a (k)
with
kt := max{0, k}

and
! — — 1 + — .‘|
@5 — n—s—1 if s+%k7>1 and n—s is even,
Ong (k) = :
n—s8 otherwise.
In all conditions with r > 6, an arrangement y of vertices of G, is

involved. Therein, y is a bijection
{1,2,...,n} > V(G,),
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v(¢) being denoted by v; (¢ =1,2,...,n), and y itself by (v;). All condi-
tions to be considered can be uniformly formulated by the use of the
followmg scheme of conditions £, dependent upon a further condition,
§ay @,,, on @, and (v;):

A")(@,) is defined to be the condition

2,(Gy, ®D): (I(v)): GG, (v))),

where .
o . — d(vl7Gn)<d(v27 ﬂ) ('Un,G )A w(') for 6 <r< 10,
N for r =11

and, in particular,
oGy (v)): (VieZ: max{l,s}<i< (n+s)/2=
=>d(v;, G,) > 1 —8 or A(V,,,_;, Gp) =n—i).

The above definitions of A} with 6 <» <10 can be restated. In
fact, the scheme £, can be replaced by another one, say Q,, which is
obtained from Q, by substituting the phrase V(v;) for the phrase I (v;).
However, the last condition (with » = 11) does not enjoy this property.
Namely, we have

A('}:)( . (B(vi)Vi,jeZ- max{l_,s}<i<j<n, ji>n+s—i,
d(v;, @) <i—s,d(vj,q,) <j—s—1,v,0%4¢E(Q,)=>
=d(v;, @)+ d(v;, G,) =n—3).

_As' stated at the beginning of this section, most of the conditions in
question, for s = 0 and s = 1 or for s = 0 only, coincide (see references
in Sachs [15] and Berge [2], [3]) with known conditions due to Dirac
(1952, for ¢ = 01 and s = 0), Ore (1961, for ¢ = 02 and 0 <s <1 and
for r = 3 and s = 1; 1960, for »r = 3 and s = 0), Erdos (1962, for o = 1.0
and s = 0), Pésa (1962, for r =5 and s = 0), Bondy (1969, for r =7
and s = 0, cf. Corollary 1.1 (with a misprint, however) in Bondy [5]),
Bondy (and Nash-Williams) (1969-1970, for » = 8 and s = 0), Chvétal
(1972, for r = 10 and 0 < 8 < 1), and Las Vergnas (1971, for r = 11 and
8 < 1). Moreover, the condition with » = 8 and s = 0, that was found
by Bondy and Nash-Williams (cf. Berge [2], p. 199), is a slight refinement
of the original condition of Bondy [5]. Similarly, the condition with »r = 9
and s = 0 is an analogous refinement of the original condition formulated
(with errata, however) in a paper by Wojda and the present author [19].
Both conditions 4{) and. A{) are reformulations of the condition of Péxa
type AL).

5. Interrelations between conditions. Some interrelations (impli-
cations) between the conditions with 0 < s < 1 are obvious, some others
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are already proved or can be proved, and most of those implications can
be extended for all s > 0. This is done in [16] in Lemmas 1-9. Implications
between 13 different conditions 4{?(@,) with any admissible integers =»
and s satisfying (1.1) (¢ = 01, 02, 1.0, ...,11) can be visualized by means
of the digraph D shown in Fig. 1.

02 1.0 20

01 1
3 40 7 a 10

Fig. 1. The digraph D

Vertices and arcs of D represent conditions and implications between
them, respectively. For the sake of simplicity, many arcs are omitted.
However, the digraph which represents all implications between the condi-

tions can easily be obtained. It is the digraph, call it 15, obtainable from
the transitive closure of the digraph D by adding loops so that each vertex
is the end-vertex of exactly one loop. The following conclusion is of great
importance: N

(5.1)  Each condition A®(G,) (¢ = 01,02,1.0,...,10) implies the con-
dition of Las Vergnas type ALY (@,).

One can give examples of graphs which show that the implications

corresponding to non-loop arcs in the complementary 1-digraph of D
do not hold true for some admissible values of » and s. All of those implica-
tions, excepting two ones which correspond to arcs 02—3 and 02—4.0,
are not true also in the most interesting case, namely, for s = 0. In fact,
a graph which may be taken as a counterexample to any one of such impli-
cations with s = 0 can have at most 7 vertices (see Table 1, where C,
and P, denote a circuit with »n vertices and a path with »n vertices, respec-
tively, and @,*GyxG,:= (G*@;) U (G*G,)).

Using formula (4.3) one can easily obtain Ore’s result which says
(see [14]) that, for 0 < 8 < 1, the condition with ¢ = 02 implies that with
¢ = 3. However, the implication is not true for s > 2. On the other hand,
the implication

A%Y(G,) > A0(G,)

is clearly true for s > 2 (and any admissible »n) but is not true for 0 <s << 1
and even n-+s8 > 6.

Graphs which satisfy only the condition of Las Vergnas type (i.e.,
the condition with ¢ = 11) for any #>s8+5 (¢ =0,1,...) are given
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in [17]. So, in the case n > s+ 5> 5 the condition of Las Vergnas type
is essentially weaker than any other condition in question.

In [16] there were studied interrelations between conditions A (%; G,)
and the operation of joining the complete graph K, to G,, that is, between
the conditions A%)(k; G,) and A7), ,_,(k+p;G,*K,) withn>s>p >0,
peZ.

Table 1
Implications Counterexamples
(arcs) (for 8 = 0)
01 —» 02 0O,
02 - 01 K ,«K,*K,
1.0 — 4.0 K,s Ky« K,y; K\#Ky»(Ky* K,)
2.0 > 1.0 K,x»K,»C, (9 graphs with » = 7)
3—>20 K,«K,xK,
4.0->3 K,xK,xP,
8—>5 Ki»Kyx K, K,
10 - 8 C¢ with an inscribed triangle C3
11 - 10 Cs with 1 diagonal

Some of the results formulated in Lemmas 10, of [16] can be summa-
rized as follows.

- If r=2,4,5,...,11 (i.e., r 1 and r #3) and k < n—1 except
for r = 4 when k < n, then

A (k3 @)= AL o p(k+D; s Ky)
and, furthermore,
ALY (ks @) = AL} (k3 G) < AQ) o (B + 95 Guv Ky)  VE<n—1
with &, = max {1 —s, 0, [*k]}.
Hence one can easily obtain the equivalences
AQ(G,) < AQ, . p(G.*K,) for o #02,3.

The situation in cases ¢ = 02 and ¢ = 3 is a little involved. However,
only the case where o = 11 is of importance for our purposes. Indeed,
owing to (5.1) and the above equivalence with ¢ = 11 and p = s, we have
the following proposition:

(5.2) Veo: AQ(6,) > AL (Gu*K,).
6. Upper bounds for Hamiltonian shortage. It/ is well known that
the condition A(Y(@,) (with s = 0) is sufficient for a graph G, to be

Hamiltonian (see Las Vergnas [12], cf. also [20]). Therefore, by (5.2),
each of the conditions A?(@,) implies that the graph @, *K, is Hamilto-
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nian, which is clearly equivalent to the following implication:
(6.1)  Each condition AQ(Q,) implies the inequality
(6.2) se(@,) < s.

Hence we obtain the following upper bounds for the Hamiltonian
shortage sg(@,) in a graph @, with » (n > 2) vertices:
(6.3) sm(@,) <min({n}u(se{0,1,...,n—1}| AD(G,)}),

where ¢ =01, 02,1.0,...,11.

By (5.1), the smallest upper bound is that for ¢ = 11. For certain
values of p, the upper bounds can be expressed more explicitly, e.g.,
max{0,n—26(G,)} (e =01), &, #K,, K,

m(h) < I max {0, w(Gy,)} (e =3),

where, for % := min{d(x, @,) +d(y, G,)| vy¢ E(G,)} if G # K,, and
w:=2n—-3 if @ =K,

(6.4) w(G,) =

n—u—1 for odd u<n-3,
n—u otherwise.

There is one more upper bound for sg(@). To quote it, let a(@) and
%2(@) be the independence number of G and the commectivity of @, respec-
tively. In [17] it is proved that the inequality

8 (@) < max{0, a(@)—x(@)} for G #K,, K,

is equivalent to the following theorem of Chvdtal and Erdos [8] (see also
Berge [3], p. 213):

a(@) < #(@) and G # K, implies that sg(G) = 0,
i.e., that the graph @ is Hamiltonian.

7. Sharpness of conditions. One can show, by means of examples
of graphs, that each condition 4{?(@,) is in a sense best possible as the
scfficient condition for inequality (6.2). For instance, the condition A40
of Chvéatal type is best possible in the following sense.

The degree sequence (being the non-decreasing sequence of degrees
of vertices) of any graph @, which does not satisfy the condition A{?
(with » and s satisfying (1.1)) is majorized by a non-decreasing sequence

(7.1) ty...pt,m—s—1t—1, :..,'n—_s—t—l, n—1,...,n—1,
t+8times n—s8—2¢ times ¢t times

where max{l—s,0}<t< (n—8)/2.
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Moreover, (7.1) is the degree sequence of the unique graph, say G(?),
(7.2) G(t) =G(t;n,8) := K, ,+K+K, ,_,

with 8g(G(?)) =>s+1 (factually, sg(G(t) =s+1). |
Hence, putting ¢ = ¢ —s in (7.1) and considering the definition of ASY,
we obtain the following conclusion with ¢ = 10:

(7.3) Any essentially weakened condition obtained by changing only
numerical bounds which appear in the condition A'® is not suffi-
cient for inequality (6.2).

Proposition (7.3) can be proved for all ¢ (¢ = 01, 02,1.0,...,11).

(7.4) The exé,mples of graphs needed for the proof of (7.3) can be found
among graphs G(t;n,s) (see (7.2)) and, only for ¢ = 2.0, also
among their spanning subgraphs.

This follows from properties of G(t), e.g., we have
(EM) =t<(m—s)/2, |B(GQ) = @nlt)—1,
the minimal sum of degrees of two non-adjacent vertices of G(t) is equal to
n—s—1 if t+8 =1,
2t < n—s otherwise.

Note that the statement “the condition, say A, which is sufficient
for the property, say P, of graphs is in a sense best possible” or “sharp”
is often used in the literature on graph theory. The following general
definition related to Proposition (7.3) seems to be satisfactory in general:

(7.5) A condition A which is sufficient for a property P is best possible
if any condition 4’, which has the same logical structure as that
of A and is essentially weaker than A4, is not sufficient for the
property P. The statement that the logical structure of A’ is the
same as that of 4 means usually that A’ is obtained by changing
some numerical bounds which appear in A.

8. Sufficient conditions for a given deficiency. It is worthy of noting
that graphs G(t) appeared already in paper [4] by Bermond. He proved
that each G(f; n,s) with ¢t > 0 is a maximal (connected) graph which
has no Hamiltonian cycle and no spanning tree with less than s-+2
hanging vertices.

For odd n —s, graphs G(t; n, s) have also another interesting prop-
erty. Namely, each of them is a maximal graph with the deficiency s+ 1.
The deficiency of a graph @, denoted by a(@), is the minimal number of
vertices whose deletion results in a subgraph with a perfect matching
(i.e., with a 1-factor).
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It is obvious that
(8.1) a(@,) =n (mod 2).
One can prove the following proposition:
(8.2) Assume that s =n (mod 2). Then
(8.3) AR (@) =>a(@,)<s for o =01,02,1.0,...,11

and, moreover, each As,‘f},+1(G”) (with s+1 instead of s) is the best
possible sufficient condition (in the sense of (7.5)) for the inequality
a(@,) < s.

v To sketch a proof, assume that A;"L +1(G,) holds true for a graph G,
with n and ¢ satisfying (1.1) and such that s =% (mod 2) (so 0 <s<<n—2
and n > 3). Hence, by (6.1), sg(G,) <s+1.

Therefore, there is a partition of vertices of the graph @, into s+ 1
paths. However, if 8 =% (mod 2), then any such partition contains
a path L, of odd length (i.e., with even |V (L,)|). Hence a(@,) < s since,
for any path L, the deficiency a(L) is O or 1 according to whether |V (L)|
is even or odd. Thus (8.3) is proved. \

Further, from Mader’s description of maximal graphs with a given
deficiency (see [13], cf. also [18]) we infer that each graph G(t;n,s+1)
is a maximal graph with % vertices and the deficiency s+2. Hence
(cf. (7.4)) we obtain the second part of Proposition (8.2).

Moreover, we have proved the inequality

sg(@,) if 8g(@,) =n (mod 2),
a(G,) < .
max {¢,, $g(G,) —1} otherwise,
where
0 if » is even,
(8.4) &y i = )
1 otherwise.

By (6.1)) we have also the following generalization of implication (8.3):

8 if $s =n (mod 2),
AQ@,)=>a@,) < |1 if s =0 and » is odd,
s—1 otherwise. ’

Now, by (8.1) and (8.2), we have the following analogue to inequal-
ity (6.3):

a(G,) <min{{n}u{s |0<s<n,s =n (mod 2), and 4%, (G,)}).
Hence, for ¢, defined by (8.4),
max {¢,, n —26(G,)} (¢ =01),

a(Gn) <l
max {e,, w(G,)} (e =3),
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where w(@,) is defined by (6.4). Owing to (8:.1), w(@,) in the last inequal-
ity can be replaced by 1 if w(@,) = 2 and = is odd.

Remark. After completing this paper, I obtained manuscripts of
new papers by Jolivet. One of them (see [10]) contains some closely re-
lated results on partitions of vertices into paths. Furthermore, in [10] and
[11] Jolivet has introduced and investigated a new interesting measure
of that a connected graph G of order not less than 3 is not Hamilto-
nian. This invariant is defined as the difference between the length of
a Hamiltonian pseudo-cycle of the graph G and the order of G.

Added in proof. Las Vergnas studied partitions of vertices into
paths and proved (see [12a], Chapitre IV, §4, Proposition 3 and
Corollaire 2 to Proposition 3) that A, _,..,(G,) for r =10,11 are
sufficient conditions for @, to contain a matching of size g.
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