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1. Introduction. In [1] it is observed that the limit laws for pro-
cesses obtained by the rarefaction of a renewal process can be expressed
as limiting distribution theorems for sums of a random number of inde-
pendent random variables. Taking this into account one can also prove
limiting distribution theorems concerning the rarefaction of the pro-

n
cess > X; (n=1,2,...), where X, are independent and identically
k=1

distributed random variables which can take on arbitrary (not only
non-negative) values. In spite of the fact that the intuitive meaning of
the rarefaction is lost in this case, some investigations concerning the
rarefaction of the mentioned process lead to interesting results (see, e.g.,
[8] and [12]).

Let us begin with a look at the model of rarefaction described in [9]
(see also [12]). Let F(x) be the distribution function of the time interval
between consecutive renewal points of a recurrent process for which

P =f zdF (x) < oo.
1]

The time intervals between consecutive renewal points 7, =0< T,
< T,< ... are independent and commonly distributed random variables
X, X,,...,X,,... We rarefy the process T, =0<T,<T,<... in
such a way that every its event, independently one of another, be main-
tained with probability ¢ and cancelled with probability 1 — g for 0 < ¢ < 1.
After the first rarefaction the time distance between the consecutive
renewal points of the new process is

(1) S'l = Xl +X2+ cen +X’l’

where », —1 is the number of cancelled events. The random variable v,



278 D. 8zynal

is independent of every X, and its distribution is equal to
Py, =kl =¢q(1—¢)*" (k=1,2,...).

The time distance between consecutive events after the n-th rare-
faction is
S,,n - Xl +.X2+ PR +X"Il,

where v, is also independent of summands and its distribution is equal to
P, =kl =¢"1—-¢V" (k=1,2,..).
The result of [9] asserts that if g > 0, then

1 — for > 0
limP[g"8, <a] ={ ~ “P\7,~ v
N—=00 0

otherwise.

In [2] and [4], all possible limiting distributions for type (1) and
the domains of attraction of limiting distributions in any cases are given
for 0 < ¢ < 1. The above-mentioned results can also be obtained, by
a simple transformation, in the case where the mathematical expecta-
tion is negative. As it has been proved in [8] and [12], the situation is
different in the case where the mean value is 0.

The aim of this note is to extend some limit theorems concerning
the rarefaction of a recurrent process to the case of non-identically dis-
tributed random variables. Moreover, we are studying the rarefaction of
a recurrent process allowing the number of operations of the rarefaction
to be a random variable. The obtained results generalize theorems con-
tained in [8], [9] and [12].

2. Rarefaction of a process having only finite mean values. In what
follows we need the following theorems, being extensions of the results
given in [7].

THEOREM 1. Let {X,,n > 1} be a sequence of independent random
variables with finite expectations u, = EX, such that

n
n! 2‘“"9” as n—»oo,
=1

where u is finite. Moreover, we suppose that {X,, n > 1} satisfies the weak
law of large numbers.

Let further {v,,n > 1} be a sequence of positive integer-valued random
variables such that v, does mot depend on X,, X,,... and, for a sequence
{a,, n>1}, a,—>oc0 as n—>oo,
limP[ﬂ‘— <a7] —G@) (G(+0) =0)

n—>00 a’n

exists, where G(x) is a distribution function.
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Then
&
G(—) if u>0,
s JZ
limP[ n <m] —{ D(x) if u=0,
n—00 a,,
1—G(—%+O) if u<o,

where D(x) =0 if <0, and D(x) =1 if x> 0.
Proof. It is enough to prove that

S”n P
—> U as n—o0,
vn
By the assumption, »,, X,, X,,... are independent for every n.

Therefore, for every n, ko> 0 and ¢ > 0 we have

lSI’ | OO. S
P[ z —,u]>s]<P[vn<ko]+ ZPH—’}—”’>£]P[%=70].

4
n k=k

Since k'8, Yt>u as k—oco, we can choose, for any given &> 0, the
value k,, in the second probability statement of the previous formula,
such that

[ | S i 0
Pl_ —f—yi}e <§ for every k> k,.

Thus

| S, ] 0
i'k —,u\}ej]?[vn= k]<§ for every n.

cow
27
k=k

Now for this value of k, choose the value of » so large that

é
Py, <k]< 'Y
This can be done, for we assume vn3>oo as n—oo. Thus we have
proved that

S"n P
—> 4 as n—>oo.

Vn

Sv Sv v
Pl <z|=P|22 <uz|,
a"n vﬂ a’n

we see that Theorem 1 follows from Cramer’s lemma.

Now, since
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To prove the next theorem we need the following

LEmMMA 1 (Heyde [3]). Let {X,,n > 1} be a sequence of independent
random variables with finite expectations u, — EX, such that

n
n~! Z‘uk—>‘u as n—>o0o,
k=1

where p >0 is finite. If n'8, %>y as n—oo, then

— ) P -
n'max 8, Z>p  and n”'max |8, Erp  as n—>oo.
1<ksn 1<k<sn

Using this lemma we can prove a stronger result than Theorem 1:
THEOREM 1'. Under the assumption of Theorem 1 with u > 0 we have

w .
limP[a,;! max §, < 2] = limP[a;! max |S,| < 2] = G(;) if p>0,
n—>00 I<k<yy, n—-00 1<k<ry, .

D(x) if u=0.

Proof. By Lemma 1, we have

max S, max |8,]
n n

Hence, supposing that vn£>oo as n—oco, we can prove, in the same
way as for S,ﬂ/ v,, that

max 8§, max |S,]|
1<k<r 1<k<y
_”£->y and —= P4  as n—>oo.
Vn Vn

Now, as in the proof of Theorem 1, it is enough to use Cramer’s lemma.
By Theorems 1 and 1° we obtain the following theorem and corollary
which are a strengthening and an extension of Rényi’s result [9].

THEOREM 2. Let {X,,n>1} be a sequence of independent random
variables with finite ewpectations u, = EX, such that

n
n~! Z,u,;—uz as n—>oo,
k=1
where p is finite and strictly positive. Moreover, we suppose that n='8, > pu

as n—oo. If {v,,n>1} is a sequence of geometrically distributed random
variables with parameter ¢" (0 <gq¢<1l, n =1,2,...) and such that, for
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every n =1, v, is independent of the sequence {X,,n > 1}, then

(2) limP[¢"8, < =] =1lmP[¢" max §; < z]
n-—>00 ' n—>00 1<k<yy,
= limP[¢" max |§;]| < ]

Nn—>00 1<ksy,
x

1——exp(——) for >0,
14

0 otherwise.

Indeed, by Theorems 1 and 1’ it is enough to observe that
x
limP[q¢"», < 2] =1—exp (— —).
n—>00 /2

COROLLARY 1. Let {X,, n > 1} be a sequence of independent, identi-
cally distributed random wvariables with finite expectation EX, = u > 0,
and let {v,, n > 1} be a sequence of geometrically distributed random variables
with parameter ¢" (0 <gqg<1, n =1,2,...) and such that, for every n > 1,
v, is independent of the sequence {X,,n > 1}. Then (2) holds.

It is obvious that the random variables of Corollary 1 satisfy the as-
sumptions of Theorem 2. Therefore, we have (2).

Following the investigations in [6] and [8], we consider also a more
general rarefaction when », is an arbitrary positive integer-valued random
variable (see the definitions of »; in Section 1) for which 1 <a =1/q
= E», < oo and 0 < o%7, < oo. If f(2) for |2| < 1 is the generating function
of a random variable, then », is the n-th iteration of f(z), i.e. it is f(z).
For such random variables we have

LeMMA 2 (Mogyorédi [8]). Suppose that 0 < o2y, < oo. Then
(3) IimP[¢"y, < x] = G(x)

n—00

exists, where G(x) is a distribution function with mean value 1 and variance
o?v,/(a*— a). Furthermore, G(x) has a probability density function, and
the limiting distribution (3) belongs to the class of limiting distributions for
Galton-Watson processes with a > 1.

Using Lemma 2 we can obtain an extension of a result given in [6]
(see also [8]).

THEOREM 3. Let {X,,n > 1} be a sequence of independent random
variables with finite expectations u, = EX, such that

n
n~! Zﬂk—’l‘ as n—»oo,
k=1

where u = 0 is finite. Moreover, suppose that n“Sn3>,u as n—>oo. If
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v,, # =1} is the above-given sequence with 0 < ¢%v, < oo, then
n? q )

(4) NmP[¢"8, <a]=lmP[¢" max §, < ]

n—>00 n—»00 I<k<yy,

= limP[¢" max |§;| < #] = H, () = G(%) if u>0

n—o0o 1<k,

and

(5) imP[¢"8, < a]=H, («) =G(—%) if u<o0.

n—00

Assertions (4) and (3) follow immediately from Theorems 1 and 1’

3. Rarefaction of a process with mean values equal to zero and finite
variances.

THEOREM 4. Let {X,,n > 1} be a sequence of independent random
variables with EX, =0 (n =1,2,...) and finile variances satisfying
Lindeberg’s condition and such that
o n
—, where s% = Zai and 2> 0.

k=1

2
(6) lim>m —
n

n—>00 A

If {v,,n =1} is a sequence of geometrically distributed random varia-
bles with parameter ¢" (0 < g <1, n =1,2,...) and such that, for every n,
v,, 18 independent of the sequence {X,, n > 1}, then

x

— A
(7) HmP V'S, <a]= fge—lwzd?/-

—>00
— 00

Proof. Let {Y,,n > 1} be a sequence of independent, identically
distributed random variables with EY, = 0 and ¢*Y, = 2/2%. In what

follows we put
8, = DY,
k=1

It is known [12] that

T

— A
limP[l/an;n <z] = fge““"dy.

Further on, let for any given ¢ > 0
Xp = XI[X, <mel, Xp*=XJI0XI>me] (k=1,2,...,m),

where I[A] denotes the indicator of A, and let us set

m

m
* §' * *2 §' 2 t ]
S,’n == ‘Xk El:nd Sm = g Xk‘
k=1

k=1
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Finally, let us put

¢r(t) = Eexp(itX,), ¢i(t) = Eexp(itX;), ¢ () = Eexp(itX;").
Now it is easy to see that

B Wy, 0=y OIS Z ¢"(1— " s, (VE"t) 953, (Va™0) +

00

+ D (1= lgs;, (Ve ) — o5, (Va0

m=1
- qu ¢! [] [ (VED—o™ V01— [ [ (Ve +
k=1 k=1
N n n\m— qﬂtz *2 2
+m2=lq (1—g" 1—2—‘ Sm — lz +o(sp)—o (m?) .

Using the identity

[Ttwwto= [T = 3o ([ ) ([T uo0)

j=1 k<j

(where an empty product is to be replaced by 1) to estimate the first
series in the last equality, we obtain

f[ " (V"t) +9™ (Va"0)]— [m] Ve
k=1

00

S

m=1

k=1
o0 m
< D =g Y PIX] > em]
[+ <] 1 m
< Dea-gmi-— [ stdFe).
r; me k=1 |x|>em

Now Lindeberg’s condition and (6) allow us to choose, for any é > 0,
an m, such that the series in the last formula is bounded by

2 8 8
Tz Pl <ol + 2Pl > mo] = —5 [1—(1—q"')"‘°“]+Z(l—q")’"*’“-

Hence, for sufficiently large n, we have

Dea—gm| [[ o o/do+oveo-[ [oven| <+
k=1 k=1

m=1

8
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Now we estimate the second term on the right-hand side of (8). We
can observe that for any s > 0 there is m, such that

wl ‘nt2 2 2

S et L2 n s ofn)
m=l

< D ea-g@rietm| 2 - —— N [ Fab, )

m=1 m k=1 |z|>=em
£ 2 1 -
<qtmy max |22 2 __2 f AP (w) | Py, < my]+
1sm<m; | M k=1 |ziz>em

+q‘nt2% Z qn(l _qn)m—lm < t2n.

m=my

Thus, by (8), for |¢| < V8/2y and sufficiently large n, we have

I<P'/;,—,s’n(t)—q)@s;n(t)| < 4.

Hence, our assertion follows from the fact that {12]

A2
lim . () = 5——=
71—>00 ¢'/q"S,,n( ) 12 + tz

and that for n > 0 we can take an arbitrary small number.

Now consider the class of random variables satisfying the assumptions
of Theorem 4.

Definition. The sequence {X,,n>1} of independent random
variables is said to satisfy condition (A) if there exist some positive constants
&y, Oy and a random variable X such that

1 n
;anXkl > 2] < CoP[1X] > ).

It is easy to prove

LeEmMMA 3. Let {X,, n > 1} be a sequence of independent random varia-
bles with EX,, = 0 and finite variances o), = 6*X,,. If {X,, n > 1} satisfies
condition (A) with a random variable X such that EX = 0, ¢*X = ¢* = 2/3*
< o0, 1> 0, then for any given ¢ > 0

n

1
;'/—Z fwzdFk(w)—>0 a8 n—>o0o.

k=1 |z|i>en
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Using Lemma 3 we can obtain the following
THEOREM 5. Let the assumptions of Lemma 3 be satisfied. If, moreover,

82 2
lim = = —

neo M A
and if {»,, n =1} is a sequence of random variables from Theorem 4, then (7)
holds.
It is enough to observe that, under the assumptions of Theorem 5,
the sequence {X,,n > 1} satisfies Lindeberg’s condition.

4. More general rarefaction process.

THEOREM 6. Let {X,,n >1} be a sequence of independent random
variables with EX, = 0 and finite variances o> = ¢*X,, satisfying Linde-
berg’s condition and such that

32
(9) lim % = 202 < 0.
n—soco M

Suppose that {v,, n = 1} is a sequence of positive integer-valued random
variables independent of {X,,n >1} and such that the probability gener-
ating distribution function f,(2) of v, (n = 1,2, ...) is the n-th iteration of
f(2), where, for 12| <1 and 1 <f'(1) =1/q, f'(1) < oo is the probability
generating distribution function of »,.

Then

o0

(10) LmP[Ve" S, <] =f qb( ””_)da(z),

n—> oV 2z

0

where D (x) is the standard normal distribution function, and G(x) is the
distribution function given by (3).
Proof. By the assumptions concerning », and by Lemma 2, we see
that
ImP([q¢"r, < x] = G(x)

n—00

exists, where G (#) is a distribution function with mean value 1 and variance
a%v,/(a®—a).
Moreover, by Lindeberg’s condition we have

S 1 ; y?
limP | —= <2| = — fexp(———)dy.
n—00 Ij'/g‘ ] 1/27': — 2

Hence, by (9) and Cramer’s lemma, we also have

IimP — < | = — exp|——]dy.
n—>co [ oV2n ] Vor f P 2
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Now, using the random central limit theorem [10], we obtain

imP < —_— fex (——)d }
n—>00 al/2v l/27r _J P 2|

To use the methods of the proof of Dobrushin’s lemma [1], let us
denote by U and V random variables with distribution functions G(z)
and ®D(x), respectively. Then we can write

[ 8
(l/q"v,,—U)al/z( d

o¥ 2y,

l/q—"S, = l/q v, oV2

wp _ﬂ+

+(Vg*v,— U) Vf +(

— V) +a¥/20V
V29,

Now the proof is based on the fact that if a sequence of distribution
functions H,(2) for n =1,2,... is weakly convergent to H(z), then
a sequence {Z,,n > 1} of random variables can be constructed so that
P[Z, < 2] = H,(?) and Z, converges in probability to a random variable Z
for which P[Z < 2] = H (2). By this fact and the construction given in [12]
(details are omitted because they need only insignificant changes), we
have

HmP(ygs, <a] =PI2UV <u].

But, it has been proved that [12]

P[V2o UV —
D/ ° <ol = -n.-f (ol/2z) “

and this completes the proof.

Using Lemma 3 we can obtain the following generalization of The-
orem 3 from [12]:

THEOREM 7. Let {X,,n>1} be a sequence of independent random
variables with EX, = 0 and finite variances ¢* X, = o> such that

32
lim = = 2¢% < oo.
n—->co N
Moreover, suppose that {X,,, n > 1} satisfies condition (A) with a random
variable X such that EX = 0 and o*X = 202
If {v,,n >1} is a sequence from Theorem 6, then (10) holds.

5. The number of operations of rarefaction is a random variable. Now
we investigate the rarefaction of a recurrent process in the case where
the number of operations of rarefaction is a random variable.
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By the previous results and the well-known Toeplitz’s lemma [5],
p- 238, or by results of [11], the following theorems can easily be proved.

THEOREM 8. Let {X,,n > 1} and {»,,n > 1} be sequences of random
variables such as in Theorem 2. If {1,,, m > 1} is a sequence of positive
integer-valued random variables such that A, is independent of {X,,n > 1}
and of {v,, n > 1}, and A, Y>oc0 as m—oo, then
(11) lim P[qlmS,,_ <#] = lim P[qim max S, < #]

m-—>00 m—>00 1<k<y .

= lim P [¢" max |[§,| < #]

m—>00 lskgum

x

1—exp (— —) for ©> 0,
U

0 otherwise.

COROLLARY 2. If {X,,n > 1} and {»,, n > 1} are sequences of random
variables such as in Corollary 1, and {4,,m > 1} is a sequence of random
variables satisfying the assumptions of Theorem 8, then (11) holds.

THEOREM 9. If {X,,n > 1} and {v,, n > 1} are sequences of random
variables such as in Theorem 3 and {1,,, m > 1} is a sequence of random vari-
ables satisfying the assumptions of Theorem 8, then

. A . A
lim P[q "‘»S'v;_m <#] =lim P[¢g™ max §,,

m—o00 m—o0 1<k<y Aon

< ]
3

(4

= lim P[qzm max S, < x]

m->o0 1 skgvlm

G(%) if u>0,

1—G(—%) if £<0.

In a similar way we can change Theorems 4, 5, 6 and 7 for the case
where the number of operations of rarefaction is a random variable.

N
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0 TWIERDZENIACH GRANICZNYCH
DLA SUM 0 LOSOWE] LICZBIE ZMIENNYCH LOSOWYCH
WYSTEPUJACYCH W BADANIU
ROZRZEDZONEGO PROCESU REKURENCYJNEGO

STRESZCZENIE

W pracy podano twierdzenia o granicznym rozkladzie procesu, uzyskanego
w wyniku rozrzedzania procesu Ty = 0< T, < T, < ..., gdy zmienne losowe X; = T;
—T; ¢ (¢ =1,2,...) maja rézne rozklady. Twierdzenia tej pracy rozszerzaja lub
wzmacniaja niektére wyniki zawarte w [8], [9] i [12].



