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On invariant measures for piecewise convex
transformations

by M. JABLONSKI (Krakéw)

Abstract. It is shown that a class of piecewise convex transformations on [0, 1]®
has an absolutely continuous invariant measure.

1. Introduction. The purpose of this note is to show the existence
of an absolutely continuous invariant measure for a transformation
z: [0, 17*—>[0, 1]*. Our theorem is a generalization of some results of
A. Rényi [9], A. O. Gel’fond [3], W.. Parry [4] and A. Lasota [6] to an
n-dimensional space. In the proof, as in [7], we explore the fact that the
Frobenius-Perron operator corresponding to z has the property of shrink-
ing the variation of the function.’

In Section 2 we recall some basic definitions and state the main
theorem. In Section 3 we prove some necessary lemmas and the theorem.
In Section 4 we show a certain property of invariant measures under 7.

2. Let I" = [0, 1]". Denote by (L, || [) the space of all integrable
functions defined on I”. The n-dimensional Lebesgne measure on I® will
be denoted by m, and we shall write m(ds) = do» = ds,...ds,.

We say that a measurable transformation v: I"—I" is non-singular
if m(r7'(4)) = 0 whenever m(A4).= 0 for any measurable set 4.

For non-singular 7: I"—I" we define the Frobenius—Perron operator
P,: I'>L' by the formula

jP,fdw_ [ fia,
—14)

which is valid for each measurable set A <= I®. It is well known that the
operator P, is linear and satisfies the following conditions:

(a) P, is positive: f=>0=>P. > 0
(b) P, preserves integrals:

[P.fio = [fiw, jfeI';
m m
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208 M. Jablohiski

(¢) P = P* (7* denotes the n-th interate of );

(d) P.f = f if and only if the measure du = fd» is invariant under 7,
i.e., p(r7'(4)) = u(A) for each measurable 4.

We shall not make a distinction between functions f: I" - R defined
‘on I" and functions f: I®— R taken as elements of the space L? for p > 1.
This difference will become clear in the context.

,A function f: I" — R is said to be decreasing if

J(@yy ooy 8) < f(Y1y ooy Yn)
for

(@ry coey @p) Z (Y19 003 Yn) (Yt =1,...,70).

For a decreasing function f: I"— R we define the variation by the for-
mula '
. n

VI = Vi,
{ml
Wheré

f{f(@u D1y 0y Byiyy ooy By) —

m-1

—f(@yy ey By 1y By ey @) dey ... Aoy dwy,, ... do,.

»
Denote by [] [a,, b;) the Cartesign product of the intervals [a,, b,),
T e
i =>1’ ‘o vey n ”
TraeorEM 1. Let Aj = nA".‘“j = 1, ...,K, where A“ = [aﬂ, b“) 'if
_ i=1
bu< 1 m’frd Au = [a“, b“] f;f b‘j = 1, be a paﬂit‘ion Of the P 3”0"' that
Jor § # Kk the set A;NA, is empty and
K
U A., = Inn
j=1
Let the transformation v: I"— I" be given by the formula
T(Dyy oooy By) = (‘Pu(a’l)r vedy 9’1#(“’»))! (®1y ...y mn)‘Aj’ *
where the functions gy : A; —.[0, 1] satisfy the following conditions:

(1) pylay) =0,

() Piy(ag) > 0,

(3) gylag) >1  if ay =0,
(4) Py are increasing.

Then there ewists o decreasing fumotion fe L' (Ifll =1,f> 0) such
that the measure duy = fdo is invariant under <.
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ExampLe. Let A, = [0,1/2) x[0,1/2), 4, = [1/2,1]%[0,1/2), A,
= [0,1]x[1/2, 1] be the partition of the I*. For the transformation given
-by the formula

(22, 2y) for (@, y)e 4,,
T(o,y) = {(20—1,2y) for (2,9)e 4,,
(@, 29) for (@, y)e A4,,

there exists an absolutely continnous non-trivial invariant measure.

3. In the proof of Theorem 1 we will use the following lemmas.
LemMA 1. If functions Fi: I+ R,4 =1,...,n, do not depend on
@; and F?~'e L'(I"), then

[I1Fy...Fylda< [(F}dw... f1Fe|do.
m m m

The proof of this lemma is given in [3].

' LEMMA 2. The set 8 of functions f: I~ R such that
(e) f: I" >R is decreasing,

&) Vf< M,

(g) f flo<1

18 weakly relatively compact in L'.
Proof. Let f: I"» R satisfy (e), (f), (g). Since f is decreasing, Lemma
1 implies that
6) [ Ya)da < f 100, @y, ..y @,)... f1 ey, ..., @,_,, 0)do
m

ffO,m,,,.., ,,)dm,... e s ff(wl,_...,a)_I,O)dm,...d.fv,,.-_,.
m-1 m-1 '

Since the function
gi(@;) = ff(‘”u ceny @) daty .. doy_,day .. doy,
m-1
is decreasing, we have

(6) ff(ml,...,w,_l,O,m,“,...,mn)dm}...dw‘_ldm‘+,...dw“
-1 : ‘
= 9,(0) < lgh+Vai(@) < £l +VF.
From (5) and (6) it follows that
( ff”"““)(m)dm)‘"'-‘”" < ("f“"‘\/f)“—l < (1 +M)n—l.~
m e
Since n/(n—1) > 1, from the last inequa.lity it follows that the set

8 iz weakly relatively compact in L™*-" and consequently in L'. This
completes the proof.
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LeMmA 3. If a function k: [0,1] — R is decreasing, then

h
hs) < ) E"“ , 0<s<1.

Proof. The proof is a consequence of the following inequality:
8. 8
Il > [ h(u)du> [h(s)du = sh(a).
0 0

LEMMA 4. The linear subspace E generated by all decreasing functions
f: I">R s dense in L' (I").

Proof. Let y, denote the characteristic function of a measurable
set A. Consider the function

8
(7) 9= a4,
r=1

where

= [[1an, b.:].

=1
~

For each A, there exist sets B, = n (—ooy by, j=1,..., N,
such that =1

r
4, =jzlﬂﬁlp,, Bric B.

It is clear that X8, is decreasing; therefore ge E. It is known that any
L' function may be a.pproxlma,ted by functions of form (7). Thus the lemma
is completely proved.

Proof of Theorem 1. Let
o' (3;) for ae g (lay, by)),
bij‘ fOl‘ w,-e [0’ 1]\?)‘-1([61-1, b,'j)).

A simple computation shows that the Frobenius—Perron operator
corresponding to r may be written in the form:

vy(2) =

K
(Pf)(@yy ...y ®,) = Zf('l’u(a’l)y ceey V’nj(wn))w;j(wl) ey 'P;u(mn) .
J=1
By its very definition the operator P, is a mapping from L' into L',
but the last formula enables us to consider P, as a map from the space
of functions defined on I" into itself. It is easy to verify that P, f is de-
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creasing for any decreasing f. For any decreasing f > 0 we have, moreover,

K
YPJ:E f [f(?’lj(a’i)r"'!wlj(oh

j=1 m-1
Xy (@)...94(0).
— [l (@), ..oy py(1), ..

x'#’;;(“ﬁ) 'I’:u(l) "'p;j(mn)] de, ..
bi—1,5 Yit1,5 bnj

[ U

-1, "i+ 1.5 Bng
_f(a’h ] wn) 'plj(l)]dml
and consequently

8 VPi<ea [ [fie,..
1 el

—Jf(@y, ..
var [ o

_pn—.l
[ fan .

j:a‘j>0 m-1
X V;j(O)dwl .o

f S22y,
j=1 -1
x'l’:’j(l)dwl-'

v V’:u (wn) -

Zf

=] ay;
oy &iyy 07"”i+1’ ...,0),,)—

,)]do,..
L ®,)do,..

By Ly Bigy ey

yBi_yy 1y @44, ..

y B 1y Gy Dyyqy eeny By) X

da;_,do; ... do, +

oy By by Bypgy oony BR) X

Jdo;_,de,,...dz,,
where

a;= max yy(0) < 1.
j:a,j—'o

Lemma (3) implies

(9) ff(ml’ ---’wﬂ).dmlcood$‘_ldM‘+luo.dm
m-1
Applying (9) to (8), we obtain
~ (0
VRs<aVi+alfi+ 3 24
' ! $:055>0 Gy
'1 1
+ "‘;‘ Ly =
i
=1
where
m,= Y vy(0) Z w;;,(l)
Fiagg>0 aﬂ J=- Y

,a“, ceey

Jde;_,dw, ..
cde;_,da;, ..

211

J'Pnj( ))X

vy Yoy (@,)) X
Ao, dw;, ..

.de,,

@,) py(0) —

do;_,de;,,...do,

.da, +
.do, +

v}

@y

at\_/f'l'M{ "f" '
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'Therefore
" M, '
limsupV/ P{f < ——IIfil
k—~o00 { 1—aq
and finally
(10) limsupV/ ( P" f)
00 {
The last inequality and Lemma 2 imply that the set
r—1
11y X
k=0

is weakly compact in L'. This conclusion and Lemma 4 enable.us to use
the Kakutani-Yosida ergodic theorem. For any fe L' sequence (11) con-
verges strongly to the function f*, which-is invariant under P,. From (a)
and (b) it follows that f* > 0.and [If*].= IIf]l > 0.

4. Final remarks. Let A c I" and m(4) = 0 Given f: I" >R and
@1y o0ey By_yy Dypyy -0y B,Y, WrTite 3

(S‘lipf)(wu ceey Ly 19 Bipqy oeey mn) )

—suP{f(“’lz ) “’(‘(0 1), (Wn ),a’a"-~-_a_w;la)¢A}7

\. -

(‘i]ff)(mu ceay By gy Bypgy enny By)
= inf{f(?y, ..., @,): 2;¢(0,1), (B3, ..., Dy, ..., T,)¢ A}.

The functions supf and mf f depend upon the n —1 variables (&, ...
f,4

oy By_yy Byyqy eeny By)e i
If the functmn It I" —R iy decreasmg, we detme the variation \/ f by
the formula

vf = ‘;l‘xf,
where |
Vf= f (supf— mff)dwu ey Ty Byyry oo ey GB,
4 I‘n— . l‘ ) ‘n

(functions sup f a.nd mf f are measurable because f is decreasing and m(4)
i,4 1,4

= 0). It is easy to see that ! .
Vi< Vf.
_4 B
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LeMMA 5. If a sequence of fumctions f,: I"-> R* satisfies the conditions
- (h) f; i8 convergent .in L' norm;
(1) fi i8 decreasing,
() Vi< My,
then there evists a set A < I*, m(A4) = 0, such that

V f<limsupVf,.
A k—o0

Proof. There exists a subsequence f,, convergent to f almost every-
where in I™. Let A be the set of points from I" for which fk is not convergent.

It is easy to see that
supf— mff< hmmi(supf,,j—lni Ti)-
i,4 i,4

From the la.st-mequahty and the Fatou lemma it follows that

Vf < limint V/f,, < limint\f,.
Therefore
VfE liminfVf,
A I-’D LY
and consequently
Vf < limsupVfy.
k-

This .completes the proof.

Using this lemma, we are enable to prove the following

THEOREM 2. Assume that t salisfies the condition of Theorem 1. Let
J: I*>R be a given integrable decreasing function (not an element of L').
Then there exists a set A < I", m(A) = 0, and there emists a constant ¢ in-
dependent of the choice of the initial deoremng f such thai

(12) y;“ < olifll,
where

1 k-1
. *=lim-— ) P
f=lim g 2B

Proof. Writing
k=1
1

Q =lim M7,

from (10) and Lemma 5 we have

Vor<elfl
4
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for o decreasing f of bounded variation and a certain set 4 such that m(A)
= 0. Applying Lemma 5 once more, we have inequality (12) for any inte-
grable decreasing function.

This finishes the proof.
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