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On quasi-starlike functions
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Abstract. Let S* be the usual class of normalized starlike functions F(z) on the
unit disk U = {z: [¢] < 1}. If g(2) is regular in U and satisfies the condition MF [g(2)}
= F(2), z¢ U, for some Fe 8* and some positive number M > 1, then g is said to be
in GM, In Ann. Polon. Math. 20 (1968), p. 280-282 and ibidem 26 (1972), p. 175-197,
I. Dziubifski defined the class GM and called g in GM a quasi-starlike function. He
raised the question of inclusion relations between §* and GM and asked if every bounded
starlike function is quasi-starlike. We answer the question in the negative by exhibit-
ing a bounded starlike function that is not quasi-starlike. We also show that if F' is either-
a strongly starlike function of order 1/2 as defined by Brannan and Kirwan in J. Lon-
don Math. Soec. (2) 1 (1969), p. 431-443, or if F is a circularly symmetric function,.
then g defined by MF[g(z)] = F(2) is starlike. We also show that the 1/2 is best
possible in the sense that for every & 0 < &< 1/2, there exists a strongly starlike
function f of order e+1/2 such that the g defined by Mf[g(z)] = f(z) is not starlike.

1. Introduction. Let S denote the class of regular univalent functions
f(2) = 2+ay2*+ ... in the unit disk U. Let S§* denote the subclass of §
of functions f such that f(U) is starlike with respect to the origin. We use
starlike to mean starlike with respect to the origin. In [3] and [4] I. Dziu-

binski introduced the class of functions 8%, that he called quasi-starlike..
He defined for M > 1,

& = {g: Mflg(2)] = f(2),fe 8%, ze U},

where ¢ is said to be generated by f. Then Mg(2) = 2+ ... is a normalized
quasi-starlike function and is in 8. In [4] Dziubinski posed the problem
as to whether every starlike function bounded in U is a normalized quasi-
starlike function. He also discussed the difficulty in obtaining conditions
for a quasi-starlike function to be starlike. He stated that the difficulty
arises because a quasi-starlike function can be easily constructed from
any given starlike function.

In this note we give an example of a bounded starlike function that.
is not a normalized quasi-starlike function and give some sufficient con-
ditions for a normalized quasi-starlike function to be starlike.

2. An example. Let F be the bounded starlike function such that.
F(U) is a disk minus two radial slits. The disk is centered at the origin
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and of radius M, while the slits are non-vertical, non-horizontal and
symmetric about the real axis. We will show that ¥ can not be a normal-
ized quasi-starlike function. Assume to the contrary. Then there exists
an f in 8* and an M > 1 such that F(z) = Mf~'[f(2)/M]. For any set
X let f(X) = {f(®): #e« X}. We first show that f(U) must be a slit domain.
Let g(2) = F(#)/M with F as defined above. Since fe 8*, f[g(U)] = f(U)/M
is a starlike domain and f[g(U)] = f(U)—f(l,) uf(ly), where Ml, and Ml,
are the symmetric, radial, linear slits in F(U). Since f[g(U)] is starlike,
J(y) and f(1,) must be radial slits. It now follows easily from the equation

U
7o) —fadufay = L0
that f(U) is the plane minus two radial slits.
From this geometric description, f must assume the following form:

z
(1—0y2)"(1 —0g2)""°

2) f(z) =

for some a, 0 < a< 2, and |oy] = 1, k¥ = 1, 2. Dziubiriski showed in [4],
Theorem 3, that the only time a function of the form (2) generates a quasi-
starlike function that is starlike is when a = 1 and o, = expi(—1)*'0,
k =1,2, for any 6¢ (0, x). This would imply the two radial slits in f(U)
are opposing slits (i.e., their arguments differ by =). But this would force
the slits in F(U) to be opposing slits also. This contradicts the definition
of F. Therefore F is @ bounded starlike function that is not a normalized
-quasi-starlike function.

3. Conditions for starlikemess. To establish these conditions we need
the definitions of two subclasses of S. Jenkins stated in [6] that a domain
D is circularly symmetric with respect to the positive reals if every circle
centred at the origin intersects D in at most one arc y such that y is sym-
metric with respect to the positive reals. We say a function fis in ¥ if f
is in 8 and f(U) is circularly symmetric with respect to the positive reals.
We will suppress the term ‘‘with respect to the positive reals’’. Also, in
{1], Brannan and Kirwan defined the class of strongly starlike functions
8*(a), where, for given a, 0 < a <1, fe 8*(a), if and only if

7' (2)
f(2)

The main theorem is as follows:
THEOREM. Let F be in Sy, with F defined by

(3) arg i'zi, e U.

==

{(4) Mf[F(2)] =f(2), =2eU
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for fe 8" and M > 1. If either
(a) fe X, or
(b) fe8* (a), 0< a << 1/2,
then MF is in 8*. The 1/2 in (b) i8 sharp.
Remark. The sharpness result of (b) is in the sense that for every

&> 0 there exists a function f, in §*(¢+41/2) that generates a function
in 83, that is not starlike for some M = M (s).

Proof. Take the logarithmic derivative of (4) with respect to z and
then multiply by 2 to obtain:

d d d
tap/ el g re s g 1w
fF ()] - f@

Let w = F(2), where |w] <1 and let f'(w) =

df(w)

™ Then using

(4) we have
5) F'(2) _ f(w) of (2)
F(z) wf'(w)  f(2)
Since MF is starlike if and only if
2F' (2) T
F(2) 2’
we need only show that conditions (a) and (b) separately imply that
(6) ‘M f'() fw) | _=

arg

Re U’

- <-, zel.
571 uf ) |2
To prove part (a) of the theorem, consider an f in Y. Let P({)
= {f'(&)/f(L) for any e U. It follows from & result of Jenkins in [6] that
if fe Y, then either f is the identity function or

Im{z}Im{f(2)} > 0,
(7) ze U.
Im {2} Im{P(2)} > 0,

The case when f is the identity follows immediately, so assume f
is not the identity. Consider the two cases, Im{z} > 0 and Im{z} < 0.
When Im{z} > 0, since F'(2) = w is defined by (4), we have that Im{w}
= 0. Hence, since fe Y, property (7) assures that Im{P(2)} >0 and
Im{P(w)} > 0. Thus, since Re{P(2)} and Re{P(w)} are positive from the
starlikeness of f, we have 0 < argP(?) < =/2 and 0 < argP(w) < =/2 for
Im {z} > 0. Hence |arg[P(z)/P(w)]| = |argP(z) —argP(w)|= ]largP(z)| —
— |argP(w)|| < max[argP(w), argP(2)]< n/2. A corresponding argu-
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ment will show that if Im{z} < 0, then |arg[P(z)/P(w)]} << ®/2. There-
fore (6) follows.

For part (b) of the theorem, let fe 8*(a) for 0 < a < 1/2. Then using
(3),

g 2

d

T
i w0 || A 1T
Thus (6) follows.
To verify the sharpness result, we s how that for every &> 0 there
exists a function in 8*(e+41/2) that generates a function in S‘}',, that is

not \starlike for some M > 1. Let D(a) denote the pie shaped convex
domain bounded by the left half of the unit circle AC and two line seg-
ments AB and BC having angles of inclination with the positive real
axis t+(1—a)xn/2 (0 < a< 1), respectively. Let g be the corresponding
mapping function such that g(U) = D(a) with g(0) = 0 and ¢'(0) > 0.
It is clear that g extends to a continuous function on the closure of U
that is differentiable on U except at the preimages of the three corners
of D(a). We denote the extended function as ¢ also. Note the function

o () _fw) <‘M o' (2)

<
fw) |~ 4

g(2) = a,2+ ..., where a, is positive, is such that aig is in 8*(a). Given
1
an ¢> 0, let a, = 1/2 +¢/2. Choose an M > 1 such that Mg(w,) = g(2,)
defines a w, with arg[wog’ (w,)/g(we)] = (1/2 +¢/8)=/2. M can be chosen
in this manner since w, -z, as M —1 and arg[w,g (w,)/g(w,)] increases
to arg[2eg’ (%) /9(%s)] = (1/2 +¢/4)%/2. Now we shall construct a sequence
of domains which converge to D(a,) and such that their corresponding
mapping functions will converge uniformly on compact subsets of U to g.
Let n be a large positive integer. Consider the domain bounded by an

arc A C, that is the left half of a circle centered at the orlgm with Im {4,}
> 0, the line segment C, C, B, parallel to CB & line segment E D,, of length
1/n, parallel to CB and having ¢(2,) as its midpoint, and the line seg-

ments A, D, and E,B, that are parallel to AB and that complete the
boundary of this simply connected domain. Denote this domain as G,
with corresponding mapping function ¢, such that ¢,(U) =@G,. It is
clear that as n — o0, G, converges to D(a,) in the sense of Carathéodory.
From the Carathéodory convergence theorem [5] g, converges to g uni-
formly on compact subsets of U. For each =, let 2z, be the point on the
unit cirele such that g,(z,) = g(2,). From the construction of g, we have
arg(2,9n(2,)19.(2,)] = —(1/2 +3¢/4)n/2 for each n. Let w, be the point
in U such that Mg, (w,) = ¢,(2,) = 9(2,). From the uniform convergence
of g, to g on compact subsets of U we have that w, - w, a8 n — oo, while
Weierstrass’ Theorem assures that arg[w,g,(w,)/g.(w,)] approaches
arg [wog (we)/g(wy)]. Thus there exists an integer N such that g is in
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SR

Te\m =
=(1+?)—>—.

8*(¢+1/2) while

zNg;V(zN)_ " ’wNy}v('wN)

e g (e g (103)

2 2

Therefore it follows from (6) that g, generates a quasi-starlike function
that is not starlike. This completes the proof of the theorem.

Let C(B) denote the subclass of S of function f such that f(U) is
convex and |f(2)| < B, ze U. The author can show by long, but straight-
forward, arguments that there exist finite B’s for which there are functions
in C(B) that generate quasi-starlike functions that are not starlike. Thus
there exists a finite B, that is the supremum of all B’s such that if fe C(B),
then f generates & quasi-starlike funetion that is starlike for all M > 1.
The following corollary gives a lower bound for B,.

CoROLLARY. If fe C(B) with B < V32/27, then f generates a quasi-
starlike function that is starlike for all M > 1.

Proof. In [2] Brannan and Kirwan proved that if fe C(B), then
fe 8% (a) with

(8) a= 1—-i—a,rcsir_1[6(B)/B],

where 4(B) denotes the Koebe constant for C(B) (i.e., the radius of the
largest open disk centered at the origin and contained in the image of
U under every function in C(B) for a fixed B). The value of 3(B) has been
determined by Krzyz in [7] to satisfy

(9) 8(B) = Bsin6,

where 0 is the unique solution of the equation,

{10) (7 +286)sin = 2rnB~'cos 0.

47
w120
The result follows by letting a = 1/2 in (8) and then solving for B
in (9) and (10).
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