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Abstract. If f is a transcendental meromorphic function in the plane, an upper
bound is obtained for the number of exceptional values in the sense of Borel for f
for distinct zeros of order < %, where k is a positive integer. Relations between the num-
ber of exceptional values of f and the deficiencies of f are also obtained. Earlier results
of Valiron, Xiong Qing-Lai and others are improved and several new results are deduced.

1. Introduction. We denote by C the set of all (finite) complex num-
bers and by C the extended complex plane consisting of all (finite) complex
numbers and oo. By a meromorphic function we shall always mean
a transcendental meromorphic function in the plane. If f is a meromorphie
function, aeC and 7 > 0, we use the following notations, of frequent
use in the Nevanlinna theory, with their usual meaning; m(r, a, f), n(r, a,f),
a(r,a,f), N(r,a,f), N(r,a,f), T(r,f), é(a,f), O(a,f), Ala,f), etc.
(see, e.g., [1] and [5]). If k is a positive integer, we also denote by
n.(r, a,f) the number of distinct zeros of order <k of f—a in 2| <»
(each zero is here counted only once irrespective of its multiplicity).

Thus, in the notation of [5], %,(r, a,f) = n,(r, a,f) and 7% (r,a,f)
= My,(7, a, f). As usual, if @ = oo, then by a zero of f —a we mean a pole
of f. Ny(r, a,f) is defined in terms a #,(r, a,f) in the obvious way. In
what follows we write limsupg(r), liminfg(r), g(r) = O(h(r)) and g(r)
= o(k(r)) for limsupg(r), liminfg(r), g(r) = O(k(r)) as r—oco and g(r)

00 r—oc0

= o{h(r)) as r—>oo, respectively. If f is meromorphic, a¢ C' and % is a posi-
tive integer, we further define

log* 7 (7, a, f) — Lim log+ﬁk("a.a’7f)

= li
eu(a, f) = limsup —— 7 sup —— o
) log*n(r, a, f) . log*N(r, a, f)
e(a,f) msup Togr imsup logr
and
. log+”‘("1a7f) log*N(r,a,f)
= h =1 .
e(a,f) msup Togr limsup Togr
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If f is a meromorphic function of order g, 0 < p < o0, aeC and &
is a positive integer, then we say that a is

(i) an evB (ewceptional value in the sense of Borel) for f for distinct
zeros of order < k if g.(a,f) <o,

(ii) an evB for f for distinet zeros if g(a, f) < o,

(iii) an evB for f (for the whole aggregate of zeros) if p(a,f) < g.

Thus we call a an evB for f for simple zeros if g,(a,f) < ¢ and an
evB for f for distinct simple and double zeros if g,(a, f) < o.

Valiron proved [6] the following generalizations of the classical
theorem of Borel for entire functions of finite order.

THEOREM A. Let f be an entire function of finite order o. Then

(i) there exist at most two distinct elements of C which are evB for f for
simple zeros,

(ii) if there exists ae C such that a i8 an evB for f for the joint sequence
of simple and double zeros (double zerogs being counted twice here), then
3,(b, f) = o for all be C with b # a.

In [5] Singh and Gopalakrishna obtained results stronger than the
above for meromorphic functions of finite order. For entire functions
of infinite order, Xiong [8] introduced a new definition of order and
a corresponding new definition of an evB and showed that the above
results of Valiron are valid for entire functions of infinite order with these
new definitions. In this paper we obtain stronger results than those of
Valiron for meromorphic functions of all orders (finite or infinite) with
‘the usunal definitions of order and evB even for functions of infinite order.
We also obtain analogous results for other types of exceptional
values.

Theorems and their proofs.
THEOREM 1. Let f be a meromorphic function of order o, 0 < p < o0e

If there ewist distinct elements8 @y, Gy, ..., 85y byybay.ooybyy €1y €5y .0ny €y
in C such that a,, ..., a, are evB for f for distinct zeros of order <k,
by, ..., b, are evB for f for distinct zeros of order <1 and ¢y, ..., ¢, are evB

Jor f for distinct zeros of order < m, where k, I and m are positive integers,
then

@) Pk @ m
E+l ' 141 m+1

Proof. If ac C and d is a positive integer, we clearly have

— 1 —
(2) N("aaff)gd__i_f{de('r’a"rf)‘i"l\r(rra';f)}'



Meromorphic functions 85

By Nevanlinna’s second fundamental theorem, we have, for r > r, > 0,

M-

@) (p+g+s-2)T(r,f)< Elv(f,as,fH

=1 j=

N("’bjaf)'f‘

» -

+ Y N(rye, f)+8(r,[),

-~
-

where

- 8 * logT

“ [o5las - o [ 25 a0
x x
fo. To
whenever 1> 0 (see [3], p. 69, and [1], Theorem 2.1). We have g, (a;,f)
<pfori=1,...,p, 0i(b;,f)<pe for j =1,...,¢ and gn,(c;, f) < o for
t=1,...,8. We choose a positive number 4 < g such that g,(a;, f) < 1
for ¢ =1,...,p, @b, f)<A for j=1,...,q and g,(q,f) <A1 for
t=1,...,8
Then

(5) f Nk(wv ag, f) 3 Nl(mvbj’f)

wH‘A dr < oo, ITM<M
l’o o

and fwdm<m

m1+1
o
for ¢ =1,...,p, j=1,...,¢ and t =1,...,8. Using (2), we obtain
from (3), for r > r,,

(P +a+1-DT0 N < g {kZ Fulr, a, )+ ZN(r, ao -+
i ZN.(r by, f)+ ZN(r, by N+
Jm=1

=1

+1 {mZNm(r c,,f)+2N(r c,,f)} +8r, ),

and so,

/ pk ql sm
6 =2\ T
®) (k+1 R ) (r,f)

ko
< k+1 gNk(ry a, )+ —— l+1 ZNl(ri {] ,f)+_HZNM(r e, f)+
+8(r, 1)y
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since, for ae C, we have

Nir,a, ) < 2(r55) = T 1) +0ogn).

From (4), it follows that
8(=,f) T(z,f) ,
f S = o (f Tl ).
Hence (6) yields

) {pk + ql LI (1)}f (ﬁ‘f)

E+1 141 m4l

k Nk(-’” a; f)
< k+1 Zf '+ do+

i=1 r,
l 411 ] Nl(“j’bjyf) m(w ct’f)
+ 1+1 glz'f z m+121.! o
=1 ro Py

Thus, if 2%, € ™

> 2, th 7 uld yield, by virtue
of (5),

oon’
[ Srfaa< e

fo

which would imply T(r,f) = o(r"), so that we would have o = order of f < 4,
which would be a contradiction. This completes the proof of the theorem.

CoONSEQUENCES oF THEOREM 1. Let f be a meromorphic function
(of finite or infinite order).

(i) For k> 3, (1) yields p < ; and hene it follows that there exist
at most two elements in C' which are evB for f for distinet zeros of order
< k if & > 3. This result cannot be improved, no matter what k¥ we choose,
for, 0 and oo are evB (for the whole aggregate of zeros) for ¢*..

On the other hand, for ¥ =3, p =1, |l =4 and q =1, (1) yields
8 < 2(1+1/m), so that 8 = 0 for m = 1. Thus it follows that if there exist
distinct elements a, b in C such that a is an evB for f for distinct zeros of
order < 3 and b is an evB for f for distinct zeros of order < 4, then there
exists no other element of C which is an evB for f for simple zeros.

(ii) For k =2, (1) yields 2p/3+ql/(I+1) <2, s0o that »p < 3 and if
P = 3, then ¢ = 0 for any I. Thus there exist at most three elements in
C which are evB for f for distinct simple and double zeros, and if there
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exist three such elements, then there is no other element of C which is
an evB for f for simple zeros. This fact cannot be improved since there
exists a meromorphic function ¢ of positive order for which there exist
three distinct elements a,, @,, a; in C such that ¢ — a, has no zeros of order
<2fors =1, 2,3 [1], p. 45-46, so that a,, a,, a; are evB for g for zeros
of order < 2.

Again, for k =2 and p =1, (1) ylelds g < 3(1 +1/1), so that ¢ <
for I =1 and ¢ <1 for ! = 3. Hence it follows that if there exists an ele
ment of C which is an evB for f for distinet simple and double zeros, then
there exist at most two other elements of C which are evB for ffor simple
zeros and there exists at most one other element of C which is an evB
for f for distinct zeros of order < 3.

Since oo is always an evB (for the whole aggregate of zeros) for an
entire function, it follows that if f is an entire function, then there exist
at most two elements of ¢ which are evB for f for simple zeros, which
is the result of Valiron (Theorem A, (i)) extended to entire functions
of infinite order.

On the other hand, for ¥ =2, p =1, 1 =3 and ¢ =1, (1) yields
8 < 2(L+1/m), so that s = 0 for m = 2. Hence, if there exist distinct
elements a, b in C such that @ is an evB for f for distinct zeros of order
< 2 and b is an evB for f for distinct zeros of order < 3, then there exists
no other element of C which is an evB for f for distinet zeros of order < 2.
It follows that if there exist three elements in C which are evB for f for
distinet simple and double zeros, then there can be no element in C which
is an evB for f for distinct zeros of order < 3. '

For 1 =2, p=1,1=6 and ¢ =1, (1) yields 8\2,(1+1/m), 50
that ¢ = 0 when m = 1. Hence, if there exist distinct elements a, b in C
such that a is an evB for f for distinet simple and double zeros and b
is an evB for f for distinct zeros of order < 6, then there exists no other
element of ¢ which is an evB for f for simple zeros. In particular, it follows
that if f is an entire function and if there exists an element @ in C which
is an evB for f for distinet simple and double zeros, then there exists no
other element of ¢ which is an evB for f for simple zeros, which is the
result of Valiron (Theorem A, (ii)) extended to entire functions of infinite
order.

(iii) For k = 1, (1) yields p < 4, whence it follows that there exist
at most four elements in C which are evB f for simple zeros. This conclusion
cannot- be improved, for, as observed in [6], for Weierstrass’s elliptic
function g(z), there exist four elements of C which are evB for simple
zeros.

Also, from what was observed in (ii), it follows that if there exist
four elements of C which are evB for f for simple zeros, then no element
of C'is an evB for f for distinet simple and double zeros.
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We now consider meromorphic functions f of finite order and obtain
relations between the number of elements of C which are evB for f for
distinct zeros of order < k and the deficiencies of f. We recall that if f
is meromorphic and a<C, then we call & an evN (exceptional value in
the sense of Nevanlinna) for f if &(a,f)> 0.

In what follows, f will always denote a meromorphic function of
finite order ¢ and g(r) will denote a proximate order relative to T'(r, f),
so that

(iy limo(r) = g, (ii) limrp’(r)logr = 0, \
(iii) T(r,f) < r* for all r > », and
T

(iv) limsup—::(—:)f) =1.
We first prove the following
LeMmA 1.

. N(r,0,f) '

1 1 L2-6 — d .

imsup Tof) S (o0, f) ; .(a;f)
Proof. It is well known that

. I(r,f")
(8) limsu <2—-06(o,f).
YT, ) i

Let (a;>, be an infinite sequence of distinct elements of ¢ which
includes every ae C for which é(a, f) > 0.
If ¢ is a positive integer, then we have [5], Lemma 2,

g
Dim(r, 6, )+ N(r, 0, /)T (r, f)+0(T(r, ).

t=1

Hence,
N . . o m(ryayf) . N(’;901f’)
é‘;hmmi_—.’l’(r,_f) +hmsup—T(r’f)
T ’
glimsupl,((+,ff))-< 2—=0(00,f).

Letting g—oo0, we obtain (8).

THEOREM 2. If there exists ae C and positive integers k and ¢ such that
(k+1)O(a,f)+ D 6(b,f)> 2—k(g—1), then there exist at most q ele-
ments of C — {a}b(qwh{;t);h are evB for [ for distinct zeros of order < k.

Proof. Assume, without loss of generality, that & = oo. Suppose,
contrary to the theorem, that there exist ¢+1 elements a,, a,, ..., @5,
in C which are evB for f for distinet zeros of order < k. '



Meromorphic functions 89

Then
log*N_,,(r, ay, f)

limsup Togr

<o fori=1,2,..,q+1,

whence it follows that
N.r,a;,f) =o(»™) fori=1,2,...,¢+1.

Also, since for each be C, a zero of f—b of order m > 1 is a zero of
f' of order m —1, we clearly have
g+1 g+1 1
(9) DN, a,)< Y Nilr, an f)+ 2 Nir, 0, 1)
i=1 i=1
By Nevanlinna’s second fundamental theorem, we have
g+1
aZ(r, )< Y Fr, a0, )+ (r, 0, f)+0(T(r, f)
i=1
g+1

_ 1 , -
< Z-Nk(r, a;, )+ IN(ri 0,f)+N(r, oo, f)+

i=1

+0(T(T7f)) = o(rﬂr))+%N(r’ 0,f’)+17(r, oo, f).

Hence
1 N(r,0,f) .. N(r, oo, f)
< —limsup ———— 4 limsup ———-—
IS% 7 710, 1) P T, ) ’
since
T(r,f)
limsupirT’r)f)=1 and T(r,f) <@  for all r>7,.

So, using (8), we obtain

1
¢<ple-6(, - Da,n}+1-6(,1),
beC
which yields

(k+1)0(c0, f)+ D) 8(b, ) <2—k(g—1),
beC

which contradicts the hypothesis. This proves Theorem 2.

CONSEQUENCES OF THEOREM 2. (i) Let ¥ = 1 in Theorem 2.

Taking ¢ = 3, we see that if @(a,f) > 0 for some aeC, then there
exist at most there elements in C — {4} which are evB{ or f for simple zeros.
If follows that if there exist distinct elements a,, a,, @5, a, in C which
are evB for f for simple zeros, then @(a, f) = 0 for all ae O — {a,, a,,a3, @} .
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-

Taking ¢ = 2, it follows that if 20(a,f)+ 3 &(b,f)> 1 for some
beC—(a}
a e C, then there exist at most two elements in C — ({a} which are evB for f
for simple zeros. In particular, this holds if there exists an ae C such that
O(a,f) > 4. If follows, therefore, that if there exist distinct elements
a,, a, a,, a, in C which are evB for f for simple zeros, then O(a;, f) < }
fori =1, 2, 3, 4. '

If f is an entire function, then §(o0,f) =1 and oc is an evB for f.
Hence it follows that if there exists an ae¢ C such that ©(a, f) > 0, then
there exists at most one element in C — {a} which is an evB for f for simple
zeros. Therefore, if there exist distinct elements a, b in ¢ which are evB
for f for simple zerog, then @(c,f) = 0 for all c¢ C —{a, b}.

Taking ¢ = 1, it follows that if

20(a, f)+ Z 3(b,f)>2 for some acC,

beC—(a)

then there exists at most one element in C —{a} which is an evB for f
for simple zeros. In particular, if f is an entire function, then &( oo, f) = 1,
and so it follows that if there exists be C such that (b, f) > 0, then there
exists at most one element of C which is an evB for f for simple zeros.
Thus, if f is entire and if there exist two elements of C which are evB
for f for simple zeros, then 8(b, f) = 0 for all be 0, so that f has no finite
ovN. Again, if f is entire, then d(oo,f) = 1 and oo is an evB for f, and
so it follows that if there exists an a¢ C such that &(a, f) > %, then there
exists no element of C —{a} which is an evB for f for simple zeros. Thus,
if f is an entire function and if there exist distinct elements a, b in C which
are evB for f for simple zeros, then &(a,f) < 3, O(b,f) < }, d(a,f) =0,
é(b,f) =0 and @(o,f) = 0 for all ¢ce C —{a, b}.

(ii) If @(a,f) > 0 for some aeC, then, taking ¢ = 1 in Theorem 2,
we see that there exists at most one element in C— {a} which is an evB

for f for distinet zeros of order < k, where k = [ ~1] +1 (where,

2
O(a, f)
as usual, for any real number z, [x#] denotes the greatest integer < ).
Thus, if there exist distinct elements a, b in C which are evB for f for
distinct zeros,.it follows that @(c,f) = 0 for all ¢ce C —{a, b}.

We now extend Theorems 1 and 2 to other types of exceptional values.
If ae C and f is meromorphie, then Shah calls a an evE [4] for f if

, " i : e . [ dw
there exists a positive nondecreasing function ¢(z) satisfying f 29 (@)
4 '2

< oo (where A > 0) such that

limsup n(r, &, f)e(r) < oo.

T(r,f)
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In this case, logr = o(p (7)) and since

n(r, a, f)logr  ¢(r)
< o0,
T(r,f) logr

it follows that n(r, a, f)logr = o(T(r, f)). Therefore N (r, a, f) = o(T'(, f)),
since N(r, a,f) < n(r, a, f)logr. '

If a<C and f is meromorphic, we call ¢ an evE, for f for distinct
zeros of order < k if Ny(r, a,f) = o(T(r, f)).

Then, under the hypothesis of Theorem 1 with ‘evB’ replaced by
‘evE,’, we obtain, from (6),

limsup

ok ql sm :
an P e s T vl T < 80, ),

whence it follows that (1) holds, since otherwise, for 4 > 0, (10) would
imply that

r r r
T(x,f) S(z, f) T(z,f)
[ == da:=0(f—wlll do| = o| [ =75 da),
fo To To
which is impossible.
Thus, Theorem 1 and the consequences deduced therefrom hold if

‘evB’ is replaced everywhere by ‘evE,’.

If f is a meromorphic function of finite order and if a is an evE,
for f for distinct zeros of order < %, where ae C, then

Nk(r) a,f) = o(T(r,f)) = 0(79(’))7

where, as before, o(r) is a proximate order relative to T'(r, f), and so it
follows that Theorem 2 and the consequences derived therefrom remain
valid if ‘evB’ is replaced everywhere by ‘evE,’.

Again, if f is meromorphic and ae C, we call @ an evE, for f for distinct
zeros of order < k if W(r, a,f) = o(T(r,f)) (see also [2]).

Suppose that f is meromorphic of finite order p > 0 and that aeC
is an evE, for f for distinct zeros of order < k. If £ > 0, then

B(ry a,f) < eT(r,f) < er®®  for all r>r,,

where o(r) is, as before, a proximate order for T'(r, f).
So, for r > r,,

ro _ r
Ny(r, a,f) =f nk(—m;w doe+ fﬂ_(w;’a’f) dz
0 7o

<0(1)+efm°(’)‘1dm,

To

o)
e

~ £
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Thus N,(r, a,f) = o(r*").
Now, under the hypothesis of Theorem 1 with 0 < p < oo and with
‘evB’ replaced everywhere by ‘evE,’, we obtain, from (6),

(11)

pk ql sm _ "

(k+1 + 41 + p— ——2)T(r,f) = o(r’"),
since ¢ < oo, so that S(r,f) = o(T(r,f)). Hence (1) holds, since otherwise
(11) would imply that T(r,f) = o(r**)), which would be a contradiction.
' Thus Theorem 1 and the conséquences deduced therefrom remain
valid if ‘evB’ is replaced everywhere by ‘evE,’ provided 0 < g < oc.
The same is true of Theorem 2 and its consequences.

Let 2 denote the class of all meromorphic functions f of finite order
for which

T
f (rf) 4 oo, where g is the order of f.
1

rl+¢

If fe 2 and ae C, Valiron calls [7] ¢ an evG for f if.

frOan g o

rl+0

where ¢ is the order of f.
We call a an evQG for f for distinct zeros of order < ¥ if

f Ny(r,a,f)

mET dr < oo,

If fe 2, then, under the hypothesis of Theorem 1 with ‘evB’ replaced
every where by ‘evG’, we obtain from

o0
ok ql am f T(r,f)
{k+1 R —— 2}1 e 9T < @,

‘whence it follows that (1) holds, since otherwise we would have

fT(ryf)

rl-HP

dr < oo,

which would contradict the fact that fe 2.

Thus Theorem 1 and its consequences hold if ‘evB’ is replaced every-
where by ‘evG’ provided fe 2. A similar remark applies to Theorem 2
and its consequences.
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