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1. Preliminary considerations. Following the classical work of Rob-
bins [12], many authors (see, e.g., [1], [11], [2], [16], [9], [6], [14], [4])
have investigated the limit behaviour of the distribution of sums with
random indices.

In the present paper we establish some theorems concerning the
limit behaviour of sums of a random number of independent random
variables. Introducing in Section 2 a so-called “random Lindeberg con-
dition” we shall prove the random central limit theorem (Theorem 1)
which is an extension of Lindeberg’s result [7], and obtain some gener-
alizations or extensions of results from [12], [14], [8] and [13] (Theorems 2
and 3). The proofs take advantage of the operator method introduced
by Trotter [15].

Let {X,,n>1} be a sequence of independent random variables
with mean value EX, = a, and finite variance ¢’ X, = o}, and let

n
2 2
a/k’ sn = E O -
k=1

By N we denote a positive integer-valued random variable which
has the distribution function dependent on a parameter 2 (1> 0), i.e.,

%

(1) 8, =D Xy, A, =
k=1

k

1

P[N =n] =p,, D'p.=1, wherep, =p,().
n=1

We assume that random variables N, X,, X,,... are independent.
Let C,; be the set of all uniformly continuous and bounded real-valued
functions defined on the real number axis. These functions are three
times differentiable while their first three derivatives are also uniformly
continuous and bounded on the whole number axis. ; with the oridinary
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operations on functions and with the norm of f defined by the formula
Ifll = sup|f(=)]
z

is a normed linear space.
Let F(y) be an arbitrary distribution function. A linear operator
Ap defined by

Ap(f) = [ fl@+y)dF(y)

is called the operator associated with the distribution function F. Operators
associated with the probability distributions are commutative and are
contractions ([10], p. 516).

Now, we put

Sy—L
(2) zy= 222,

N N N
where Sy = ZX,” L = Za.,, and M = Za,"‘.
k=1 k=1

k=1

The distribution function F, of the random variable Zy is given
by the formula

(3) Fy(@) = D) puFyxFyx ... +F,(5,2),

n=1

where F, is the distribution function of the random variable X, —a,,
and * denotes the operation of convolution. Hence, taking into account
the Trotter rule [15] concerning the operator associated with the con-
volution of distribution functions for the operator A, associated with
the distribution function F;(z), we have the equality

(4) Ap,(f) = ) pa AR AR ... AR (f),

n=1
where A% denotes the operator associated with the distribution function
F,.(8,x).
2. A random version of Lindeberg condition.

Definition. A sequence {X,, n > 1} of independent random variables
is said to satisfy the random Lindeberg condition if, for every & > 0,

(5) ii_)r?oE{—;;[—j [ deFk<w_)}=o,

k=1 |zj>ey M
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where F, is the distribution function of the random variable X, — a,,
while J/ is the random variable as in (2).

It is easy to see that in the special case where the parameter A is
a positive integer (A = n) and, for every n, the random variable N takes
the value n with probability one, condition (5) reduces to the classical
Lindeberg condition, i.e., for every &> 0,

(6) ilglos—z fw’dFk —

k=1 |xi>esy,

LEMMA 1. If a sequence {X,, n =1} of independent random variables
satisfies (6) and if N L oasd>oo (P — in probability), then (5) holds.

Proof. By (6), for every 0> 0 there exists a positive integer n,
such that, for n > n,,

1 ¢ 8
;52 f.fv"dFk(w)<E.
k=1 |z|>ss,

Thus, for any given n, > n,, we have

EIIZ fmzdF,,(x)} P[N <n1]+§.

k=1 \z1>ey M

Since N 5 oo as 1 — o0, we can choose 4, such that P[N < n,] < 8/2
for every 4 > A,, and since > 0 can be chosen arbitrarily small, Lemma 1
is proved.

LevyMa 2. If (5) holds, then
N .

1 x
lim E{ — 2dd | —|} =
}.l—lb?o { M Z v (O'k)} o

where

D (x) =l/71— fexp(—u?z)du.
™ — 00

Proof. First we show that
(7) limE(max “’2‘) —0
v icken M .
Indeed, it suffices to note that, for any given ¢ > 0, we have
N 2
1 Ok
E{—Z f mzdFk(m)}>E(ma,x -——) —¢?
M _ 1<ksy M
k=1 |z
and to apply (5).
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Now let 6 > 0 be given. Putting

= {n: max o} > 0s2} and B2 = ¢ /(max d}),

1<k<sn 1<k<n
we get '
2|53 [ wan(Z)< S S [ waotn
k=1 p>ey/ M %k ned nedC  |xI=eBy,

where A° denotes the set complementary to A.
Now, let  be any positive number. We can choose 6 > 0 such that

P> fmqua(m)g fm2d¢(x)<_;7_.

ned®  |xl=eB, | >eV/3

Furthermore, by (7), there exists 4, such that A > 1, implies

ypn = P[ max o} > 6M]<E

n EA 1<k<N

Since n > 0 can be chosen arbitrarily small, the last two inequalities
prove our assertion.

THEOREM 1. Let {X,, n > 1} be a sequence of independent random
variables, and N a positive integer-valued random variable independent
of each X,, n =1,2,... If condition (3) holds, then the random variable

Zy =(SN—L)/I/JI—I is asymptotically mormal (0, 1).
Proof. Let Ay, be the operator associated with the distribution
function F,(x) of the random variable Z,. From (4) we have

(8) Ap () = D) P AP AR ... AR (f),

n=1

where A{) denotes the operator associated with the distribution function
Fy(s,).

Now let {Y,, » > 1} be a sequence of independent normally distri-
buted random variables with expectation 0 and variance ¢2. If @ (2) is
the normal distribution function with mean 0 and variance 1, then D(x]0,)
is one of the random variables Y,, » = 1,2, ... Furthermore, putting

Y, +Y,+...+ Yy,
VM
we get P[V,y < x] = @(x). Thus, for all 4, the random variable V is

normally distributed with expectation 0 and variance 1. Hence, the
operator A, associated with the distribution function @(x) can be written

(9) Vy =



in the form
(10) Ao(f) = D P APAP ... AD(f),
n=1

where A{™ is the operator associated with @(s,x/o;).
From (8), (10) and Lemma 4 of [10], p. 517, it follows that, for every

feCa,
(11) 1 p, (f) —Ao( I < 2 ZuA‘"’ — AP ()1l

Since feC,, f(x+vy) can be expanded into a finite Taylor series up
to the second and third term, that is,

1
(12) flz+y) =f(w)+yf'(w)+5 ¥ f" (x4 0,y)

and

217

1 1
13 fla+y) = @) +uf W)+ 5 VL @)+ 5 v @+ 0),

where 0 < 6, <1 and 0 < 6, <1 depend on = and y.
Now let ¢ > 0 be given. It is obvious that

(14) AR (f ffw+y>dFk< s.9)+ [ fl@+y)aF(s,y).

lvl>e

Using in the first integral on the right-hand side of (14), equality (13)
and in the second integral of equality (12), we obtain

baip@ g [ e o)~ @) B +

fyl>e

AR (f) =f(=

1
+3 f P17 @+ 0,9)aBy(s,9).-

Hence, putting
M, =sup|f’(z)] and M, =supl|f’ (@),

we have
o2 M eM,a}
1) |40 S - @] < [ pamw+ R
n no|y|=es, Sn

Analogously one can prove the following inequality:

2 M Y eM,o}
16’ AV (f)—f(@) — 2 (@) < =2 f 2ddp |- 2k
(16) v (f)—f(@) 28&1‘ (@) immny o)t ex
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Now, putting (15) and (16) into (11), we get

.
1
1) M —dei< MBI S [ yram) +

k=1 1y)>e/ M

el L3 [ graa(L)) 4o

k=1 |y|>ey M1

In view of our assumption and Lemma 2 we have

}im 14 F, (f) —Ao(H)ll = 0.

Thus we have proved that if fe(C,;, then, for any value of « (and
even uniformly in z),

lim [ flo+y)dFyy) = [ fl@+y)dP(y).

The last equality and Criterion 1 of [5], p. 251, prove the assertion
of Theorem 1.

From Theorem 1 and Lemma 1 one can deduce the following exten-
sion of Theorem 1 (cf. [10], p. 472):

CoroLLARY 1. If a sequence {X,, n>1} of independent random
variables satisfies (6) and if N L4 oo, then the random variable (SN—L)/VE
18 asymplotically normal (0, 1).

THEOREM 2. Let {X,,n > 1} be a sequence of independent random

variables, and N a positive integer-valued random variable independent of
each X,, n =1,2,... If (5) 18 satisfied and

M—-EM p
——— —

o

(18) 0 a8 A —> oo,

then the random variable (Sy — L)[o is asymptotically normal (0, Vi —d?),
where d = Afo.
Proof. We have
Sx—L Sy—L_/M
T A

On the other hand, in view of Theorem 1, the random variable
(8y — L)WEM|Ms? is asymptotically normal (0, V1 —d*), where d = 4/o.
Hence, taking into account Lemma 2 of [5], p: 247, it suffices to show
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that

19) (SN_L)(VM—VEJTI) p

-0 as A — oo.
VM

Since the random variable (Sy — L) /l/ M is asymptotically normal
(0,1) and, for every ¢ > 0,

P[VM —VEM| > s0] < P[|M —EM| > e20?],

condition (19) follows by Lemma 2 of [11], which implies the statement
of Theorem 2.

g

3. Generalization of the central limit theorem of H. Robbins. Theorems
and corollaries of this section are generalizations and extensions of the
results given in [12], [14], [8] and [13].

Observing that if 4 = EL, and A4* = ¢’L, then ESy = 4 and
& = o’Sy = EM + A%, we have the following

THEOREM 3. Let {X,,n >1} be a sequence of independent random
variables, and N a positive integer-valued random variable independent of
each X,, n =1,2,... If (5) and (18) hold, then the random wvariable
(8y —A)[o has the limiting distribution function H l(w/d)*di(w/l/l——dz),
where d = Ao and H,(z) = P[L—A < z4].

Proof. Let us consider the decomposition

Sy—A
(20) p = Wyx+ Uy,
where B
Sy—L M—VE Sy—L —— L—-A
WN=( T )('/ 4 M) and Uy=—""—"Vi—-d+ .
VM o VM o

It follows from (19) that W, £ 0as 1 — oo. Thus, taking into account
the Lemma of Cramér (see [3], p. 252), it suffices to prove that U, has
the limiting distribution function H,(x/d)*®(x/V1—d?). Therefore, the
proof will be completed.if we show (cf. Criterion 1 of [5], p. 251) that,
for every element f of C,,

lim |45 (f)—4:())I =0,
A—>o0

where A, is the operator associated with the distribution function Uy,
and A, is the operator associated with the distribution function
H,(x/d)xD(z/V1 — &)
Since the random variables N, X,, X,, ... are independent, we have
8, 8,(4,—4) )
?

P[Uy < 2] =2p,,F1*F3*...*F,,(I/1 — -2
— o' —

n=1
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where, as in Section 2, F,(x) is the distribution function of the random
variable X, —a,. Hence, by Trotter’s rule [15], we obtain

(21) An(f) = D paARAG) ... AP (f),
n=1

where Af) is the operator associated with the distribution function

xs,, o3 (4, — A))
Vi-@& s,oV1-—a/

|

On the other hand, we have

x & > x8y, sn(A'n_A))
H|=)d|——) = ¥ p,050,% ... 50, [—2_ 20" 20)
‘(d)* (l/l—dz) ,;p LT (l/l—dz V1—&

where @,(x) = P(x/o,). Hence

{22) A(f) = Y pa AP AP .. AD(F),

n=1

where A is the operator associated with the distribution function

( s, ak(An—A))
') i n_ 7).
oxVli—a¢ 08,V1—d?

Therefore, it follows from (21), (22) and Lemma 4 of [10], p. 517,
that, for any feC,,

00

(23) My () —4aNI< D) pa D) 1AL — AP

n=1 k=1

It is obvious that

[e o]

ag @ = [ florEoB% ST iy s,

Thus we can apply (12) and (13) to #+ 0, (4, —A)/os: and zV1—d?
instead of # and y, respectively. The same calculations as those in the
proof of Theorem 1 permit to prove that, for feC, and any &> 0,

. (A, —A)o oi(l—d) (4, —A)o
24) AR () @) —f (m+ o ") — g (w+ —s—o—"—)
M,(1-—a) - eM,of(1 —d*)*"”
< —T f 22dF,(2) + 652 ,

121 =8y,
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where
M, =sup|f'(x)] and M, =supl|f'’' (2).
x x

Similarly, we obtain the inequality

$ 2s;, 8,,0

n

eM,oi(1 — d2)3/2

< My(1—d) f zzdcp(i)Jr
Ok

6s>
121 =esp, n
From (23), (24) and (25) we get
N
An ()~ A< 0 - VB | Z AaB (o) +
k=1 151>/ M
X 2
2 /
+M1(1—d)E{ ‘; (7)} + 2 M, — @)

VM
By (5) and Lemma 2,
lm Ay (f)—A;(f)ll =0  for every feCy,

A—>00

which was to be proved.

COROLLARY 2. If the assumptions of Theorem 3 are satisfied and,
moreover, the random variable L is asymptotically normal (A, o), then the
random variable Sy is asympiotically normal (A, o).

COROLLARY 3. If the assumptions of Theorem 3 are satisfied, the random
variable (L — A)[A has the asymplotic distribution function G(x), and there
exists

. EM
hmT— =8, 0<s< oo,
A—»>00
then
1 1/2
G(w<1+s>‘“)*¢(””( js) )

18 the asymptotic distribution function of the random variable (Sy—A)/o.
Now we are going to prove the following

. LEMMA 3. If the random variable (M —EM)[cM has a limiting distri-
bution function G(x) such that G(x) > 0 for every finite x, then

M—-EM »

-0 as A— oo.

o2
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Proof. First we shall show that oM = o(EM) as 1 — oo. Suppose
it is not true. Then there exists a constant » > 0 such that, for every 2,,
there exists a A > A, such that
26 BM <

Obviously, we can assume that —» is a continuity point of G(x).

Now choose 1, such that, for every 4> 1,,

G(—n) >

2 0.

(27) P[M—EM < —noM]> G(—y) —

Thus, for some 4 > 4, (4, > 4,), we have both (26) and (27), whence

M—-EM EM
[M < 0] [ oM < oM

]> PIM-EM< —noM] >0,

a contradiction. It follows that ¢M = o(EM) and oM = o(o?), since
o = EM+ A% Now Lemma 3 follows by Chebyshev’s inequality.

From Theorem 3 and Lemma 3 one can deduce the following corol-
laries.

COROLLARY 4. Let {X,, n > 1} be a sequence of independent random
variables, and N a positive integer-valued random variable independent of
each X,, n =1,2,... If (b) is satisfied and if the random variables L
and M are asymptotically normal (A, A) and (EM, o M), respectively, then
the random variable Sy is asympiotically normal (A4, o).

COROLLARY 5. If the assumptions of Theorem 1 are satisfied, and the
random variable M is asymptotically normal (EM, o M), then the conclusion
of Theorem 3 holds true.

LEMMA 4. Let {X,, n > 1} be a sequence of independent random variables
such that o} > o5 > 0 (o7 = const). If the random variable (M —EM)[c M
has the limiting distribution function G(x) such that G(x) > 0 for -every
finite x, then
-M—EM p
— >0, o62>00, as$ i-—>o0.
0-2
Proof. According to Lemma 3, (M —EM)/q? £ 0as 41— co. Hence
it suffices to prove that ¢2— co as 4 — oo.
First we shall show that EM - co as 4 — oo. If not, then, in view
of oM = o(EM) (see the proof of Lemma 3), ¢ M —0. Thus, by Chebyshev’s
inequality, for every & > 0 we obtain

PIIM-EM|<e]—>1 as A->o0.



CENTRAL LIMIT THEOREM 157

Without loss of generality we can take 0 < ¢ < 0z/2. Then there is
at most one integer k satistying |s; —EM| < e. Denoting this integer
by k;, we have P[M = s ]—>1.

Let us put _

I = limi.n_f{(sil—EM)/oM}.
A->00

First we assume that I > — oo and let # < I be a continuity point
of G(x). Hence, for sufficiently large 4,

&, —EM>zoM and G(2) =limP[M—EM < zoM].

A—+o00
Thus
P[M—-EM <2oM]<1-P[M =5 ],

which means that G(m‘)‘ = 0; a contradiction. On the other hand, if
I = — oo, then s —EM < zoM for every « and sufficiently large .
This gives

PIM—EM<xcM]=P[M = sil],

whence G(z) = 1 for every x, which is a contradiction as well. Thus
EM - o0 a8 A— oo, and hence ¢2 — co as ¢2 = EM + 4>

From Lemma 4 and Theorem 1 of [13] we get immediately the
following

COROLLARY 6. Let {X,, n > 1} be a sequence of independent random
variables such that oi>o; >0, k =1,2,... If the sequence {X,,n > 1}
satisfies the Lindeberg condition and the random variable (M —EM)/ocM
18 asymplotically mormal, then the random wvariable (8y— A)[oc has the

limiting distribution function H,(x|d)*®(x[V1 —d?).
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