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1. Preliminary definitions and results. Let (M, %) be a differential
space ([6], p. 47). We shall denote by 7, the weakest topology for M such
that all functions in € are continuous. We set

€p)= U ¥, for pe M.

pedety

Then the set €(p) with the addition

(a4+8)(q) = a(q)+p(q) for ge AnB
and the multiplication

(af)(q) = a(q)B(q) for qe ANnB,

where a, fe €(p), ae €4 and fe ¥, is a linear algebraic ring over the
field E of real numbers. Moreover, a set T),(M, €) of all linear mappings
v: €(p) - F such that

v(af) = a(p)v(B)+B(p)v(a) for a, fe¥(p)

is a linear space isomorphic (in a natural way) to a linear space (M, %),
of all linear mappings v: ¢ — E such that ‘

v(af) = a(p)v(B)+B(p)v(a) for a,fec?.
We observe that if the topological space (M, 7y) is a T,-space, then
T(M,€)nT(M,¥) =0 for p #q (p,qe M).

In the sequel we shall identify T,(M, ¢) with (M, ¥), and we shall
denote it, simply, by M, for pe M. Thus M, is a linear space of all vectors
tangent to (M, ¥) at a point pe M ([6], p. 47).

We shall denote an n-dimensional Euclidean space by E™ The symbol
&, denotes the set of all real-valued infinitely differentiable functions
defined on E". We use D;(x) to denote a vector in (E™), (x=(z", ..., 2") ¢ E®)
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given by

Dy()(a) = g:

where da(x)/02° denotes the partial derivative of a with respect to .
A symbol df, denotes the differential of a smooth mapping f at a point p
([6], p. 48). g

Throughout this paper we assume that (M, ¥) is a differential space
of the differential dimension m ([6], p. 56); as the topological space (M, )
it is a T,-space. We assume also that M,nM, = O for p # q (p, ge M).

Let #° be an n-dimensional differential €-module of @-fields on
(M, ¥) ([6], p- 52). We shall denote by (@, %) the differential space of
the differential module % ([6], p. 67). This differential space has dif-
ferential dimension m +n [2]. We shall denote by = a projection of @
onto M ([6], p. 67). _

For every o-field W on M, we set
(1.1) W(p) =(p, W(p)) for pe M.

Then We# iff the mapping W: M —Q is smooth ([6], p. 67).
If Wy,..., W, is a vector basis of a ¥-module #" on an open set A ([6],
p. 51), then a mapping f: 4 X E™ — @, defined by

1.2) f(p, (@",...,a") = (p, s*W,(p)) for peA and (o, ..., ") e E",

() for aed,,

will be called fundamental with respect to this vector basis or, simply, funda-
mental ([6], p. 67). We shall denote a ¥-module of all smooth vector fields
tangent on (M, ¥) by IR(M), and the differential space of M(M) by
('M,7€). Let V,,...,V,, be a vector basis of a ¥-module (M) on
the set A, and let f be given by (1.2). Then the sequence Z,,...,Z,, .,
given by

(1.3) Z{f(p, ) = df(-, ), Vi(p) for (p,m)e AXE" andi =1,...,m,
(1.4) Zmis(f(p, x)) = df (p, ), D;()
for (p,x)e AXE" and j) =1,...,n

is a vector basis of an #-module M(Q) on 7~'(4) [2]. The vector basis
Zyy ooy Zpy,yn given by (1.3) and (1.4) will be called associated with the
vector bases Vy,..., V, and W,,...,W,. If Z,.,...,Z,.,, is another
vector basis of IM(Q) associated with a vector basis V., ..., V,, of M(M)
on A’ and with a vector basis Wy, ..., W,.of # on A’, then
(1.5) Z;|B = dhon-Z|B+dion-pjon-(a’|B):-Z,(fkon) Z,, .| B

' for ' =1', ..., m’,

(1.6) Z';n:_'_leB = ﬂ;:on'Zm_HIB fOI‘ j' = 1', vony n’,
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where
VilAdnAd =& V,|AnA’ for i =1',...,m’,
Wildnd =W, lAnA", W;AnA" = giW,|AnA’
for ) =1',...,n", j =1,...,n,
B =x"'(4n4') and o', ..., a"e F,-14 are given by
(1.7) w=ad(p,w)W,(p) for (p,w)ea '(4)

(see [2]).

Let Z,,...,Z,,, be the vector basis of IM(Q) associated with the
vector basis V,, ..., ¥V,, of M(M) on A and with the vector basis
Wiy ..., W, of # on A. It can be proved (see [2]) that

(1.8) dW,0 = 'Z,(W(p))+v(¢")Z,,.;( W(p)) forve M,, We¥# and pe A,
where

(1.9) WA =¢'W;,v = a'V,(p) and W is given by (1.1);

m+n

(110)  dryuy (D #2:(p, w)) = #Vi(p) for (p, w)en ' (4);

=

(111)  Z;(of) = 0 and Z,_.,(a’) = 8] (the Kronecker symbol)
for 1+ =1,...,m, j,k=1,...,m, and d',...,a" are
given by (1.7);

(1.12) Zi(p,w)(eoxm) = Vip)a),Z,,j(aon) = 0 for aec ¥,
(p,w)en'(4), 1 =1,...,mand j =1,...,n;

(1.13) [Z;,Z,] = yionZy, [Z)y Zpyy]l =0 for i =1,...,m,
j=1,..,nand I =1,...,m+n, where [V;, V,] = y5V,.

Since every fundamental mapping is a diffeomorphism ([7], p. 148),
the topological space (@, &) is also a T,-space. Hence

(1.14)  QupuynQeqy =9 for (p,w) #(g,2) ((p;w),(q,2)eQ).
We shall denote by =, the mapping

7yt @ —~ U P(p)
peM
given by
(1.15) ny(p, w) =w for (p,w)e@.

In the case of the linear covariant derivative on a smooth manifold
all theorems in the sequel were proved by Dombrowski in [3].

9 — Colloquium Mathematicum XXXIV.2
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As proved in [1], in a differential space (M, €) of finite differential
dimension, the topological space (M, ty) of which is locally compact
and paracompact, there is a smooth scalar product. Hence and from [5]
we infer that on each such a differential space there is a covariant deriv-
ative.

2. Determination of a horizontal vector by a covariant derivative.
Let V be a covariant derivative in an n-dimensional differential ¢-module
# of @-fields on the differential space (M, ¥) ([6], p. 68). In the sequel
we shall always denote by the same symbol V' a covariant derivative in
W, its global interpretation ([6], p. 69) and the restriction of V' to an
open set ([6], p. 71).

The elements of #7, interpreted as smooth mappings from (M, ¥)
into (@, #) given by (1.1), have the following property:

2.1. Let W, We# and p, p'e M. If ve M,, v'e M, and dW,v
=dW, v, then p =p' and v = v'.

Proof. Since dW,ve Q5 and dW,.v' ¢ Qi (,y, We infer from (1.14)
that (p, W(p)) = (p’, W (p')). Hence p = p’. It is clear from the defini-
tion of the differential of a smooth mapping that v(aomo W) = v’ (acmo W')
for ae €, that is, v(a) = v'(a) for ae ¥, which implies v = v’.

The covariant derivative V in #" has the following property:

22, If AW, v =dW,v, then V,W =V ,W' for every W,W'e¥,
ve M, and pe M. '

Proof. Let V,,..., V,, be a vector basis of MM(M) on 4, and let
Wiy ..., W, be a vector basis of #" on A. Let I'te%, (¢ =1,...,m,
and j, k¥ =1,...,n) be coordinates of I’ with respect to the vector bases
Viseeey Vo and Wy, ..., W, [8], Le.,

Ve W; =T§W, fori=1,...,mandj=1,..,n.

Then, for W|A =¢'W,, W |4 =4'W; and v =da'V;(p) (ped,
¢!, y*< €, for j, k =1, ...,n), we have
(2.1) VW = (v(¢") +a'¢’ (p) I (p)) Wi(p),

(2:1) VW' = (0(v")+ 'y’ (0) T%(p)) Wi (D).

It follows from the equality dW,» =dW,v that W(p) = W (p),

that is (p, W(p)) = (p, W’'(p)). Hence ¢’(p) =y'(p) for j=1,...,n.

Moreover, it follows from (1.8) that v(¢’) = v(¢’) for j =1, ..., n. Thus
the right-hand sides of (2.1) and (2.1°) are equal.

We denote by h, for ae F a mapping from the differential space (@, ¥)
into itself given by

ho(p, w) = (p,aw) for (p,w)eQ.
It is obvious that A, is a smooth mapping.
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2.3. Let V be a covariant derivative in a €-module # . Then there s
exactly one smooth mapping K: (TQ,I5F) — (@, %), K((p, w),2) = (p, K (2))
for (p, w) € @ and 2 € Qy ), Such that

(i) K@AW,v) = V,W for We ¥, ve M, and pe M;

(i) K IQ(p,w) is a linear mapping from Q, ., onto D(p) for (p, w)eQ.

Moreover, if we set K(p,w) = K|Qyp vy Hepv =kerK(p, w) and
Vip,p = kerdmy, ), then

(ill) Qp,0) = Vip,w) DH(p,u) Jor (v, w)e @ and the distribution

H: Q - U Q(p,w)
(D, w)eQ
given by H(p,w) = H, ) for (p, w)eQ is smooth;

(iv) the mapping K(p, w)|V . 18 a linear isomorphism from the
linear space V , ., onto the linear space ®(p), and the mapping dmy, | H, )
s a linear isomorphism from the linear space H, ., onto the linear space
M, for (p, w)e@; .

(V) (dha)(p,w)H(P,W) = H(p,aw) fOf @€ E—{O} and (p’ ’M))e Q

Proof. Condition (i) is well defined by virtue of 2.2. Since in the set
{dW,v: We#', ve M,} there is a basis of the linear space @, for
(p, w)e @ (see [2]), the uniqueness of the mapping K follows from 2.2,
(i) and (ii).

We set

M= {dW,v: We# ,ve M, and pe M}.

Let a mapping K|IR: M — @ be given by

(2.2) (E1M)(dW,0) = V,W for dW,veM.
Let pe M and let A be an open neighbourhood of p in M such that
there exist a vector basis V,,..., V,, of M(M) on A and a vector basis

Wiy..., Wy, of # on A. Let Z,,...,2Z,,, be the vector basis of M(Q)
associated with the two vector bases. Then, for every We % and ve M,
we have ¢!, ...,¢"<€,, and a!,...,a™< E such that W|4 = ¢'W, and
v =a'Vyp). If al,...,a" are the functions given by (1.7), then ¢’(p)
= d(W(p)) for j =1, ..., n. Let I'f; be the coordinates of V with respect

to the vector bases V,,..., V,, and W,, ..., W,. Then we can write (2.1)
in the form
(2.1”) V,W = (v(¢*) + o' (W (p)) T ()| Wi (),

and (2.2) in the form
m+n

22) (KIW)( D 2T (p))) = ("+*+2' (W (2)) T(2)) Waip),

=1

where ' =a*for i =1,...,m, and 2™ =o(¢’) for j =1, ..., n.
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It is immediate from (2.2’) that
(2.3) I 2,2, az+a'2" € Q" WR, then (K |M)(az+a’2’)
= a(K|M)(z)+a'(K|M)(2') for a,a’«e E and (p,w)eQ.
It is easy to verify that a mapping K: TQ — Q given by

m+n
(2.4) K(Y #2,(p, w)) = (™*+2'd (p, w)-T(p)) Wi(p)
=1
for (p,w)en"1(A4), 2',...,2™" " B

is an extension of K |I, since the sets of the form =~'(A4), where A 7,
is such that there is a vector basis of M (M) and of ¥ on 4, make an open
covering of T'Q. It follows from (2.4) that K| Tn~'(A) is a smooth mapping
from the differential space (Tn~'(4), IF Y 4)) onto the differential
space (z~'(4),#F __, ( 4))‘ Thus K is smooth. '

It follows from (1.10) that Z, . ,(p, w), ..., Zy a(p, w) is a basis
of Vi, for (p,w)en™'(4). It is immediate from (1.10) and (2.4) that
Vo) Hp,) = 0 (zero vector of @, ). Moreover, it is clear from (2.4)

m+in
that a vector }'2°Z(p, w) belongs to H,,, iff

{=1
(2.5) L dd (p, w)IE(p) =0 for k=1,...,n.

Since the solutions of (2.5) form an m-dimensional linear space,
we infer that

(2.6) dimH, ., =m for (p,w)eQ.

Hence
Q(p,w) = V(p,w)('DH(p,w) for (pr w)GQ-
Next, by (2.5), it is clear that the sequence

(2.7) A,(p,w) =Z1(p,w)_aj(p’w)rb(p)zm+k(P7w)7 cevy
Ap(p, w) = Zp(p, w)—a (p, ) [ys(0) Zp (P, w) for (p, w)en'(4)

is a basis of H,,) for (p,w)en™'(4). It is obvious that vector fields
4,,..., A, are smooth, i.e. they belong to M(Q), Thus the distri-
bution H is smooth.

From (1.10) and (2.7) it is clear that the mapping dm, )| H v
is a linear isomorphism from the linear space H,, ) onto the linear space
M, for (p, w) e Q. Next, it follows from (2.4) that the mapping K (p, w) | V (y,u)
is a linear isomorphism from the linear space ¥, onto the linear space
@(p) for (p, w)e Q. This proves (iv).

—14)°
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In order to prove (v) it is sufficient to show that

(2.8) (dhg)p,um)4i(P, w) = A;(p, aw)
for i =1,...,m, ae E—{0} and (p, w)e n~1(4).

From (1.7) it is obvious that
(2.9) &/(h(p, w)) = ad’(p, w) forj =1, ...,.n, ac E and (p, w)en~'(4).
Next, it follows from (1.2) that
f(p,am) = hy(f(p,®)) for (p,o)e AXE" and acE.
Therefore, by (1.3) we have

(dhg) 10,5 Z4(f (25 @) (¥) = Zy(f(p, @))(yohs) = V(p)(yoheof(-, )
= Vi(p)(vof(-, aw)) = Z,(f(p, am))(y)
= Z(hdf(p, @) ()
for ¢ =1,...,m, ae E—{0}, (p,®)e A XE" and ye#.

Thus we proved
(2.10) (dha)(p,w)zi(p7 w) = Zi(ha(py w))
for i =1,...,m, ae E—{0} and (p, w)en"'(4).
Using the chain rule and (1.4), we have

(dha)f(p,z)zm+j(f(p7 a’)) () = Zpyy (f(P, w))(YOha) = Dy() (‘}’o hao f(p, ))
= Dy(a)(yof(p, a-)) = aDy(aw)(yof(p, *))
= 0Z s (half (2, @))) ()
for j =1,...,n, ae E—{0}, (p,®)e AXE" and y<#.

This implies
(2.11) (4P6) (0,00 Zm +5(Py W) = 0Zyy 1 4(ha(p, w))
for j =1,...,n, ae E—{0} and (p, w)en~'(4).

By (2.9)-(2.11) we have (2.8) which proves (v). Thus the proof
of 2.3 is completed.

The only K satisfying 2.3 will be called the mapping of the covariant
derivative V and the vectors belonging to the distribution H given in 2.3
will be called horizonial with respect to the covariant derivative V.

3. Determination of the covariant derivative by the smooth distribu-
tion. Recall that = is the projection of @ onto M and Vi, ,) = kerdsy,,

for (p,w)e@.
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3.1. Let {HQp uw)}p,u)c@ b€ @ 8mooth distribution on the differential
space (Q,F) such that

(@) Q) = Vip,uy@HQp, ) Jor (p, w)eQ;

(b) (dha)(p,w)HQ(p,w) = HQ(p,aw) fOT (.p7 w)GQ and a’eE_{O}‘

Then there is exactly one covariant derivative V in a €-module #~ such
that the horizontal vectors with respect to V belong to {HQp, w)}(p,u<@-

Proof. First we determine K: (TQ,7%) — (Q,%) which is the
mapping of the covariant derivative V. In order to define K it is sufficient
to determine K in the vector bases. Let (p’, w')e Q. Then there exist
an open neighbourhood B’ of (p’,w’) in (@,%#) and the vector fields
Ay ..y ApeM(Q)p such that a sequence A,(p,w),..., A, (p,w) is
a basis of HQ, ., for (p, w)e B’. Let A be an open neighbourhood of p’
in (M, 74) such that there exist a vector basis V,,..., V,, of (M) on 4
and a vector basis W,, ..., W, of # on A. Let Z,, ..., Z,,, be the vector
basis of M(Q) associated with those two vector bases. Then it is clear
from (1.10) and (a) that the vector fields A,,..., 4y, Zy 19 .y Zmin
form a vector basis of M(Q) on B = B’ nn~'(A). Hence there is the unique
sequence of functions afeFy (i =1,...,m, j =1,..., m+n) such that

(3.1) A;|B = d{Z;|B+d] +kZm+k|B for i =1,...,m.
It follows‘ from (a) that
det[a(p, w): i,j =1,...,m] #0 for (p,w)e B.
We set
[ei(p, w): 4,§ =1,...,m]™" = [Bl(p,w): i,j =1,...,m].
Now it is easy to verify that

m+n
(3.2) if 2 = )'#Z(p,w), then 2 = b*4,(p, w) + ™2, (p, w)

de=1

for (p,w)e B,
where
(3.3) b = Bi(p, w)2’ for ¢ =1,...,m,
(8.4) ™HE =g _ R (p w)-Bl(p, w)e* for kK =1,...,n
We set
m+n
(3.8)  Kg( D #Zp, w)) = (™ —a**(p, w)fi(p, w) &) Wi(p)
i=1

for (p,w)e B
or, by virtue of (3.3) and (3.4),

(3.5') Kp (b 4:(p, w) + 0™ "2, 4 (p, w)) = bW, (p)
for (p,w)e B, b, ..., " " E.
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Let Ay ...y Apey Zoeyrey oy Zmrine De another vector basis of M(Q)
on B’ given in the analogical way as 4,,...,4,,,Z,.,1y ..y Zp,, above
and let K5 be an analogon to Kz above. Then we infer from (1.5) and
(1.6) by a simple verification that ’

(3.6) Kz|BAB = Kz |BnB'.

Let # be a class of all open sets Bin (@, &) on which there is a vector
basis Ay, ..., Apy Zyi1y oooy Lpypn of PM(Q) such that a sequence 4,(p, w),
veis Ap(p,w) is a basis of HQ,, and a sequence Z,,,(p,w),...
ooy Zpya(P,w) is a basis of V) for (p, w)e B. Then & is an open
covering of @, and a mapping K: TQ — @ given by

(3.7) K|B =Ky for Be%#

is well defined by virtue of (3.6). It follows directly from (3.5) that K
is a smooth mapping. As in 2.3, we denote by K(p,w) the mapping
K |Qp,v)- Then it is obvious that

(3.8) K(p,w): Qp,uw —~ P(p) is a linear mapping for (p, w)e @,
(3.9) kerK(p,w) = HQ,, for (p, w)e@.

We set
(3.10) V.W = K(dW,v) for We# ,ve M, and pe M.

From (3.8) and (3.10) it is obvious that
(3.11) VoroW =V, W4V, W for We#, v,v'¢e M), and pe M,
(3.12) VappW = a(p)V,W for We# ,ae€,ve M, and pe M,
(313) V,(W4+W)=V,W+V,W for W, We# ,ve M, and pe M.

By virtue of (3.2)-(3.5) we can write (3.10) in the vector basis 4,,
vy Ay Zpiry ooy Zyypn a8

(3.14) V,W = (v(¢") —a'- Bi( W (p)): o **(W(p))|Wi(p) for ve My, We#,

where v = a'V,;(p), W|4A = ¢'W,, W(p)eB, and Z,,...,Z,,, is the
vector basis of I (Q) associated with the vector basis V,, ..., V, of M(M)
on A and with the vector basis W,,..., W, of # on A. Next, it fol-
lows from (2.10) and (2.11) that

m+n

(3.15)  (ho)p( Y #Z(p, w)) = #Zi(p, W)+ 0™ *Z (P, aw)

=
for (p, w)exn"'(4) and 2!, ..., 7" " B.



280 ' K. CEGIELKA

By (3.5’) and (3.4) we get

m-+n
(3.16)  D'#Zy(p, w)e HQy,u iff 2™*—2'-Bl(p, w)-a]**(p, w) = 0
=]

for k =1,...,n and (p, w)e B.
Therefore, by (b) and (3.15), we have

m+n

(3.17) it D' #*Z(p, w)e HQp,u);

i=1
then az™**—2*-pl(p, aw)-a"**(p,aw) =0 .
for k=1,...,n and aeFE —{0}.
On the other hand, by (3.16) we have

m+n
(3.18) if 2 ZZ(p, w)e HQy, ), then az™* —az'- Bi(p, w)- a+*(p, w) = 0
==l

for k =1,...,n and ae E—{0}.

Therefore, by (3.17) and (3.18) we have

(3.19) Bl(p, aw)-af***(p, aw) = a-Bi(p, w)-af'**(p, w)
for i =1,...,m, k=1,...,m, (p,w)e B and ae F—{0}.

From the continuity of af (¢ =1,...,m, j =1, ..., m+n) it follows
that (3.19) is true also for a = 0. Hence, for ve M,, We# and ae ¥, if
v = a'Vy(p) and W|A = ¢’W;, then
VoaW =(v(¢*a) —a*-Bi(p, a(p) W (p))- " *¥(p, a(p) W (p))) Wi(p)

= 0(a)¢* (D) Wi(p) + a(p)(0(¢") — a*- Bi(p, W (D)) o***(p, W (p))) Wi (p)

= v(a)W(p)+a(p)V,W.
Thus
(3.20) VeaW = v(a)W(p)+a(p) V,W
for ae €, We ¥ ,ve M, and pe M.
Setting

(3.21) (VyW)(p) = VypyW for VeM(M), We# and pe M,

by (3.14) we obtain VyWe# for Ve M(M) and We ¥

Therefore, it follows from (3.11)-(3.13) and (3.20) that V given by
(3.21) is a covariant derivative in #". The mapping of this covariant
derivative is K given by (3.7) in virtue of (3.9) and (3.10). Therefore,
the covariant derivative I satisfies 3.1. Moreover, by virtue of (3.8)-(3.10)
and 2.3, there is exactly one covariant derivative which satisfies 3.1.
This completes the proof of 3.1.

As a corollary to 2.3 and 3.1 we obtain



DIFFERENTIAL MODULE 281

3.2, There is a one-to-ome correspondence hetween the covariant deriv-
atives in a differential module and the smooth distributions H on the dif-
ferential space of W satisfying conditions (a) and (b).

4. Vertical and horizontal lifts. An almost complex structure. In this
section, let ¥ be a covariant derivative on the differential space (M, ¥).
We shall denote by K the mapping of the covariant derivative from the
differential space (T7TM,797¥¢) onto the differential space (TM,7 ¥)
given in 2.3. By = we denote the projection of TM onto M. We define
Hp vy Vipwy and K(p, w) as in 2.3. As a corollary to 2.3 we obtain

4.1. For any vectors v, u, we M, (pe M) there is emactly one vector
ze (T M)y, such that
(4.1) drp e =0 and K(p,w)(z) = u.

Proof. If we set

T = (d”(p,w)lH(p.w))—l(?’) and 2’ =(K(p,w) IV(p,w))—l(u')7

then the vector z = 2~ 42" satisfies 4.1.

It follows from 4.1 that if X is a tangent vector field on (M, ¥),
then there is exactly one tangent vector field X® on (TM,7 %) and there
is exactly one tangent vector field X' on (TM,7¥) such that

(42) dmpuX'(p,w) =X(p) and K(p,w)(X*(p,w)) =0

for (p,w)e TM,
(43) dmgyXT(p,w) =0 and K(p,w)(X(p,w)) = X(p)

for (p,w)eTM,
where 0 denotes zero vector of M,. The tangent vector fields X® and X”
satisfying 4.2 and 4.3 will be called the horizontal and vertical lifts of the
vector field X, respectively.

If Z,, ..., Zy, is the vector basis of M (T M) associated with a vector
basis V,, ..., V, of M(M) on A, then by (1.10) and (2.4) we obtain the
local expressions of X® and X7, i.e.,

(4.4) X7} (A) = g'on-Z; = gom o’ Thon-Zpyyu,
(4.5) X' |nH(4) = g'on-Zpyis

where X |4 = ¢'¥; and d', ..., a™ eI €,—1., are given by (1.7). There-
I i (4)
fore, by (4.4) and (4.5), we have

(4.6) X, XTeM(TM) for XeM(M).
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Moreover, by (1.10), (2.7), (4.4) and (4.5), we obtain

(4.7)  vectors (Vy)"(p,w), ..., (V,)"(p, w) form a basis of H,,,
for (p, w)e n~'(4),

(4.8) vectors (V)"(p,w), ..., (V)" (p,w) form a basis of V,,,
for (p, w)en~'(4).

Thus we have

4.2. Let V be a covariant derivative on (M, €). Then

(i) horizontal and vertical lifts of a smooth tangent vecior field are also
smooth;

(ii) of Vi, ..., Vi i8 a vector basis of M(M) on A, then the vector fields
(VOB ooy (V)2 (V)7 oo ey (V)Y form a vector basis of M(TM) on =~ (A)
satisfying (4.7) and (4.8).

Next, it follows immediately from 4.1 that if (p, w)e TM, then for
every ze (T M), there is exactly one element Jze (T M)y, such that
(4.9) drp 2z = —K(p, w)(z) and K(Jz) =dmy,,=2.

For any vector field Z e (T M), let J(Z) denote a tangent vector
field on (T'M,J¥) given by
(4.10) (J(Z))(py'w) =dJZ(p,w) for (p,w)eTM,
where the vector JZ(p,w) satisfies (4.9). It is obvious from (4.9)
and (4.10) that

(4.11) J2 = —idM(TM).

Let Z,, ..., Z., be the vector basis of M(TM) on n~1(A) associated
with a vector basis V4, ..., V,, of M(M) on A. Let 4,, ..., A,, be defined
by (2.7). Then, by (1.10), (2.4) and (4.9), we have the local expression

of J(Z), ie.,

(4.12) J(Z) |2~ (A) = ¥ Zpyi— Y™ 4y,

where

(4.13) Z\n N (A) = Y A+ Y™ 2
Thus

(4.14) J(Z)eM(TM) for ZeM(TM).

Moreover, if ¥, eI € and Z,Z ¢ M (T M), then by the linearity of
mappings dx, ., and K(p,w) we have
(T (yZ+y'Z"))(p, w) =T (y(p, w)Z(p, w)+y'(p, w)Z (p, w))
= y(p, w)JZ(p, w)+y'(p, w)IZ (p, w)
= (yd(2)+y'J(Z))(p,w) for (p,w)eTM.
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Thus the mapping J: M(T M) — M(T M) given by (4.10) is J €-linear.
Since J satisfies (4.11), it is an almost complex structure of (TM,7¥).
Next, it follows from (4.4), (4.5) and (4.12) that

(415) J(X®) =X and J(X') = —X* for XeM(M).

Thus we have

4.3. Any covariant derivative V on the differential space (M, €) deter-
mines an almost complew structure J of the differential space (TM,T€)
satisfying (4.9), where K is the mapping of V.

Let N(W,Z) be a tangent vector field on the differential space
(T'M,T€) given by

(4.16) N(W,Z) =[W,Z]1+J([W,J(2)])—I((J(W), Z])—
—[J(W),J(Z)] for W,ZeM(THM),

where J is the almost complex structure defined by (4.10). By a straight-
forward calculation, we see that

N: M(THM) xXM(TH) ~M(TH)

is a skew-symmetric tensor on (TM,J¥). This tensor will be called the
torsion of J (cf. [4]).
4.4. Let T and R be the torsion and curvature tensors of the covariamt

derivative V on (M, €), respectively. Let J be the almost complex structure
of (TM,T €) defined in 4.3, and let N be the torsion tensor of J. Then

(4.17) dn, (N (X7, X7))(p,2) = T(X, Y)(p)
Jor X, YeM(M) and (p,2)e TM,
(4.18) K(p, z)(N(X", Yv))(P’ ) = RX(p),Y(p)z

for X, YeM(M) and (p,2)e TM.

We first prove
4.5. Under the hypothesis and notation of 4.4, for any X, Y ¢ M(M)
and (p,w)e TM, we have

(4.19) [X¥, Y] =0,
(4.20) [X®, Y] = (VxY),
(4.21) dry, ) ([ X", YP)) (P, w) = [X, X](p),

(4.22) K(p, w)([X", Y*])(p, w) = — Rx(y, pn®-
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Proof. Let Z,,...,Z,., be a vector basis of M(TM) on n~'(4)
associated with a vector basis V,,..., V,, of M(M) on 4. Let

X|A=¢'V, and Y|A=¢V, (¢ ...,0™ %, ...,9¥"¥,).
Then, by (1.12), (1.13) and (4.5), we obtain
[x7, ,YV:HV‘—I(A) = [¢'onZp s 'I’jO“'ZmH]
= glom-ylon: [Zps 4] + @ o Zy 4(y'o %) L5 —
—V’jo“'zm+j(‘pio7‘)zm+i =0,

which proves (4.19).
Next, from (1.11)-(1.13), (4.4) and (4.5) we get

[X®, Y ]in (4) = [¢on-Z;—¢'om-a’ ThomZ, .y, vor-Zp 4]
= ¢tom-yiom [Z;, Zp, ] +90n Zi(Yonm)Zp, ;—
—w"on-Zm+‘(q)jon)Zm+j+
+yom - Zpy,(¢om-dThom) 2y, 1 —
—gom-dd-I'omvom [Zpiry Zmii]l—
—(p"ou-aj-I",-';oa°Zm+k(1plou)Zm+,
= (plom V(y*)om+oon-yon-Tion) Z, .,
and, on the other hand,
(PxX)7 |27 (4) = ((¢* Vi(v") + o' ¢/ -TE) V)"
= (¢'om-V(v*)om+g'om-yon-T'fon) Z,, 4,
which proves (4.20).
We assume that [V, V;] =v5V: (yhe®, for i,j,k =1,...,m).
Then, by (1.11)-(1.13) and (4.4), we have
[X*, Y*]|%7"(4)
= [¢'om-Z;,—g*on-o - ThonZy 4, Yom-Z;—yom-a’ ThonZp 1]
= (¢"- ' i+ o' Vily") —v* Vi(¢") om- 2, +
+(¢p‘on-1p'on-a’-V,(P,’;)on+1p’oaz-a’°[’,’§ou-V,(cp")ov:——
—glom-Tiom-o - Vi(y)om+gon-yom o (I I¥)on)—
—:p‘on-tp'on-a’-V,.(I’,’,‘-)on—zp'ou-q;"on'a‘-((ﬂi-Fz)on))Zm+k.

Hence and from (1.10) we have

Ay ([ X7, YR1(p, w)) = (@' ¢/ v+ 9" Vi(v*) — ' Vi(¢") Vi(p)
= [X, Y](p) for (p, w)e-“—l(A)y
which proves (4.21).
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Next, by (2.4) we have

K(p, w)([X®, Y*1(p, w)) = Th(p)T5(p) — T (p) T (p) +
+ V() (Th) — Vi(p)(Th) + T (p) vy (0) - ' () ¥ (p) - o (2, w) V(D)
= — Rz rmyw for (p, w)en™'(4),

which proves (4.22).
Proof of 4.4. By virtue of (4.15) and (4.16), we observe that

(423) N(X',Y") =[X", Y"]-J([ X7, YP]+[X®, X)) —[XP, Y1)
for X, YeM(M).
Hence, using (1.10) and 4.5, we have
7y, 0N (X7, X)(p, w))
= driy, ) (T (P2 X)7 (D, 0) (P X)"(p, ) — [X®, ¥*](p, w))
= d“(p,w)(( Vx Y)h(Pa w)) —d“(p,w)(( VYX)h(Pa w))‘—d“(p,w)([xh: Yh](Pa 'w))
=(VxY—-VyX—-[X, Y])(p) =T(X, Y)(p)
and by (2.4) and 4.5 we obtain
K(p, w)(N(X", Y")(p, w))
= E(p, w)(VxY)*(p, w)) —K(p, w)((Vr X)*(p, w)) -

—K(p, w)([xh’ Yh] (p, w))
= Bxp),vnp®w for X, YeM(M) and (p,w)eTM.

As a corollary to 4.4 we obtain

4.6. Under the hypothesis and notation of 4.4, N =0 i¢ff T =0 and
R =0.

Proof. If N = 0, then (4.17) and (4.18) imply 7 =0 and R = 0.
If T =0 and R = 0, then from condition (iv) of 2.3, (4.17) and (4.18)
it follows that N(X", ¥') = 0 for X, YeM(M). We observe that

N(W,2) =J(N(I(W),2)) = I(N(W, T (2))) = —N(J (W), I (2))
for W,ZeM(TH).
Hence, by virtue of (4.15),
NX,Y)=NX",Y") =N(X"Y)=N(XY")=0
for X, YeM(M).
Thus, by 4.2 and 4.4, N = 0.
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