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On sufficiency of decomposable jets in J7(2,1)

by SHrH-HUNG CHANG (University Park, Pa.)

Abstract. This paper deals with the determination of the smallest integer »
go that the r.jet j()(f), from a given function f, is (%-sufficient. Formulas have
been obtained by using the orders of the branches in the decomposition of f.
The proof is based on the construction of certnin semi-algebraic set and the selec-
tion of an analytic arc in such a met. The result in this paper simplifies Kuo's
method for the determination of sufficiency in J7(2, 1).

1. Introduction. The jet space J”(1n,1) consists of all real poly-
nomials Z: R"—R of degree < »with Z(0) = 0. Let f: R*—Rbe a O"*'-func-
tion with f(0) = 0 and let j*(f) J*(n, 1) denote the Taylor expansion
of f up to and including the terms of degree < . We call f a realization
of the »-jet j7(f).

DEFINITION. An r-jet Zed"(n, 1) is called Csufficient if for any
two realizations f, g of Z, there exists a local homeomorphism i: R"—>R",
h(0) = 0, such that foh = g in a neighborhood of 0e¢R™

The following theorem (due to Kuiper [2] and Kuo [3], [4] for
(a) = (b), and Bochnak and Fojasiewicz [1] for (b)=(a)) is essential to
our discussion:

THEOREM A. Let Zed (n,1). Then the following two conditions are
equivalent:

(&) There evist ¢ >0 and 6 >0 such thal
lgrad Z (z)| > ela|"~°

in & neighborhood of 0eR";

(b) Z is C°-sufficient.

Here we consider the space J"(2, 1) and we shall refer to the notion
of (’-sufficiency simply as sufficiency from now. on.

This paper deals with the actual finding of the smallest integer #
so that j*}(f) is sufficient for a given polynomial f of two variables. Accord-
ing to Lu [8], if the initial form of f can be factored as P, Py, ... P,
where each P, is homogeneous of degree a; and P, , ""P“a are pairwise
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relatively prime, then one can always find formal power series f; with
initial form P, such that

fl,y) =fil@,¥). fq(‘nhl)

The main result in [8] asserts that if j*(f,) is sufficient for each i,
then O (f) is sufficient, where

m = 2 a; + max {I.,l —a;}.
t=1
And m is the smallest such integer if each £k, is respectively the small-
est. In this paper we shall present some simple formulas for determining
the smallest such integer %;.
For this purpose one need only consider (using a local ¢*-change
of coordinates if necessary, see [8]) the f;’s of the form

(1) Z(z,y) = o +H, (2, y) +Hy (0, 9) +.0y
where the homogeneous forms H; do not have terms involving any power
o' for i >t—1. Then by applying Puiseux’s theorem and with the help

of Newton polygons (Walker [10], p. 98-103), one can decompose Z
into factors as follows:

Z(0,y) = (0= () ... = h(y)),
where each h;(y) is a fractional power series of y with order
O(h;(y)) >1, i=1,...,1.

Then, using the ovders O(h;(%)), we shall give formulas for the smallest
integer 7 so that j®)(Z) is sufficient. The results are stated in Section 2
together with some illustrative examples, and proved in Section 3. Kuo [4]
has also established a process to determine the smallest such integer r
by using the orders of the branches from the decompositions of Z, and
Z,. 8o the main progress here is in simplifying the determination of the
sufficiency via a more direct approach. When the jets are already in
decomposed form, the determination can be made in most cases even
by inspection as this is evident from the examples. It is also hoped that
our results will be useful in the qualitative study of algebraic curves.

2. Results and examples.

THEOREM 1. Let Z = Z (2, y) be a polynomial with a decomposition of
the form
(2)  Z(@,y) =o@+ey*i+..)(@+06y2+...) ... (84 y%+...),

where 1 < 8; < §,<...< &, qeRande; # 0,1 =1,...,k Then m = s, +
+ oo 48+ 28, s the smallest integer such that j("‘)(Z) is a sufficient
m-jet.
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Remark. The author understands that Y. C. Lu has also obtained
the following result: Let Z(x, ) = 2g(x, y) and ¢(z, y) be a polynomial
of the form

9(®,y) = a+Hy(z, y)+H,(z, y) ...,
where H;(z, y) is a homogeneous form of degree i, for each i, and O(g(0, )
= s. Then 2s is the smallest integer such that j©9(Z) is sufficient.
COROLLARY. Let Z = Z(x,y) be a polynomial with a decomposition
of the form
(3)  Z(z,9) = @+ yt+..) o (B OY %+ (B Oy yFF L),
where 1 <8< ... <8, K8y GieR and ¢; #0, ¢ =1,..., k+1.
(1) When ey # ¢, y°F+1, let m = 83 +... 485 + 28,
(i) When e,y = o, 1 Y°k+1, consider that
Z(®,Y) = @+ Y1+ o (B ¥E o ) @+ R+ Ay ) X
X (@4 h(y) +ey' +...),
where h(y) is a polynomial with O(k(y)) = s, and degree < r <1, d, e<R,
and dy” #ey'. Let m = 8;+...+8,_,+2r. Also use the same m when
ey’ +... =0 in the last factor of Z.
Then m is the smallest integer such that j™(Z) is a sufficient m-jet.

Note that in the decomposition of Z, if any two factors are the same,
i.e. Z is divisible by (x + ¢;¥%+...)* for some ¢, then j™(Z) is not sufficient
for any finite » (Kuo [5], Theorem 7.2, p. 175). However, if in the decom-
positions (2) and (3) all factors are distinet but not all of the numbers
81y +++y 8, then these numbers need not all be integers, and the coefficients
€1y «vvy 6 Mmay be complex. In the next two theorems we shall give a
complete discussion for polynomials of the form (1) with ¢ = 3. The-
orem 2 concerns the case where all coefficients in the decomposition are
real and Theorem 3 the case with complex coefficients. Similar results
may be obtained for ¢ > 4 if needed.

THEOREM 2. Let Z = Z(®,y) be a polynomial with a decomposition
of the form
(4) Z(m,y) =z(@+e Yy +...) (B + 2y +...),
where 1 < 8, = 8, ¢;eR and ¢, 0, 1 =1, 2.
(i) When o, # 6,5, let m = [3s,], t.e. the largest integer < 3s;.
(il) When ¢, = ¢,, consider that "
Z(@w,y) = x(z+h(y)+dy +...) (2 +h(y) +ey' +...),

where h(y) is a polynomial with O(h(y)) = 8, and degree < r<1,d, <R,
and dy* # ey'. Let m = 8, +2r. Also use the same m when ey’ +... =0 in
the last factor of Z.
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Then m is the smallest integer such that j™(Z) is a sufficient m-jet.
ExAMPLE 1 (Kuo [4]). Z(#»,y) = #*—3xy* k> 3. Here we have
Z(w, y) = w(z+V3y"*) (@ —V3yH?),
and hence m = [3/2].

Remarks. 1. It is clear from (ii) of the above theorem that in general
one cannot expect to get an upper bound for m merely from s, and s,.
A similar remark can be made for the decompositions (2) and (3).

2. With simple changes of variables one can reduce all possible cases
concerning
(5) Z(@,y) = (@+o ¥y +.. ) (@+ey?+. )@+ ey™+..),
where 1< s; <8, <8, and ¢y, 05, ¢; ave real, to the previous results.
EXAMPLE 2. Z(z,Yy) = (@—¢'—9’ =) @z—y" —9* =)@ —y" —9°).
The change of variables X = @ —19*—7° and ¥ = y reduces Z to.
WX, Y) =X(X-NX-Y-T*+7%,
and hence m = 11.
If in the decomposition (4) of Z there are complex coefficients, then
Z is in general of the form
(6) Z(®,y) = o(@+h(y)+ig@®)(@+hy) —ig(),
where i(y) is a power series in y with real coefficients and O(h(y)) > 1,
and g(y) is a power series in 4* with real coefficients and Olg(y) = 1.

When %(y) =0, we use the convention O(h(y)) = +oo. The following
theorem takes care of this case.

THROREM 3. Let Z = Z (%, y) be a polynomial with a decomposition
‘of the form (6).
(i) When g(y) = y"*g,(y), where 1> 3 is an odd integer and g,(y)
is a power series in y with O(g,(y)) = 0, leb m =140 (k(y)) if O(h(y)) < 1/2
and m = [31/2] if O(h(y)) >1/2.
(ii) When g(y) is a power series in y with O(g(y)) =k, a positive
integer, let m = 2k +0(h(y)} if O(h(¥)) < k and m = 2%k+1 if O(h(y)) > k.
(iii) When O(h(y)) =k in (ii), consider that
Z(@,y) = s(m+ e +... iy +. )@+ a g +. —i(0y* 4. 0),
where @y and b, are non-zero real constants.
(A) Let m = 2k41 if al—3b < 0 and m = 3% if o} —3b3 > 0.
(B) When a} —3b] = 0, consider further that
Z(#,y) = s(@+ oy +ay"+... + (b y* + 000 +. )@+ oyt +
+ @Y+ — (B + b+ )
where a,, by, are real constanis, k< r, and I <t.
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(@) »>1t: If b and t are both even or both odd and if b,b, >0,
m = min{k+4t+1, 3k}. Otherwise, m = 3k.

(b) r<it: If kE and r are both even or both odd and if a,a,<< 0,
m = min{k 4741, 3k}. Otherwise, m = 3k.

(¢) » = t: If k and r are both even or both odd and if a,a,—3b,b, << 0,
m = min{k+7+1, 3k}. Otherwise, m = 3k except possibly when r < 28 —1
and &, ay—3b;b, =0 with a, # 0 and by, # 0. In the latter case, k+1r+
+1< m << 3k (more higher order terms in the decomposition of Z needed
Jor a precise decision).

Then m is the smallest integer such that ;™ (Z) is a sufficient m-jet.

Exavpre 3 (Kuo [4]). Z(w,y) = &*+32y**, where kL >1 is an in-
teger. Here we have

Z(w,y) = o(@+iV3y")(@—iV3yH),.
and hence m = 2k +1.
Remark. If in the decomposition (5) of Z there are complex coeffi-
cients, then Z is in general of the form

Z(m,y) = (&+1(y)+igy){@+h(y) —ig(y) e+ g(y),

where R(y), g(y) are power series in y with real coefficients and orders
> 1, and g(y) is a power series in y'* with real coefficients and order
> 1. Then the change of variables X = 2+¢q(y) and Y = y reduces it
to Theorem 3.

3. The proofs.
Proof of Theorem 1. We have
(7) Z(@,y) = 2 ooy +. )+ oy T L) e .
+ @R (00 e Gy TR L w00y L 0y TR L.

Let

A = {(u,v)eR? | |grad Z(u,v)} = min |grad Z(z, y)[}.
(@) = [ (0]

Then by Seidenberg—Tarski theorem ([6], p. 17), 4 is a semi-algebraic
set. Hence, by the Bruhat-Oartan—Wallace curve selection lemma ([7],
p. 103; [9], § 3, p- 26), there exists in 4 an analytic arc a(t) = (#(1), ¥(?)),
0 <i< n for some 5 >0, with a(0) = (0, 0) and «(?) # (0,0) for ¢ > 0.
Such a construction has been previously used in [1], and we call such
an analytic arc in 4 a Fojastewicz arc for Z. Let

B(t) = gt + oyt ..,
y(t) = byt 0,87 .,
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where both x(f) and y () are convergent power series for 0 <?< », and
&;, b,y © =1,2,..., are all real coefficients.
Now, for all (z,y) with |(z, y)] = |(#(2), y(4))|, we have

lgrad Z (@, y)| > [grad Z(w(t), y(¥))|
since a(t) = (#(¢), ¥ (#))ed. From (7) we have

(8) %(w(t), y(1) = (B+1) (@7 +. .+ E(a ™ 4. ) e (b, ™ +

Fo ) E-D (™ 4 E e (Bt )T )

+ 20" ) (0,00 oo Gy (Bt )RR )
(0,00 e (Bt TR L),
and
0Z ny. k b 5-1
(9) W(m(t),y(t)) = (@, 4 (s (Bt )T )
+(a'1tnl +.. -)k_l(('s'l “I“-‘3’2)(’1("2(1’1'5”1l +.. -)sﬁ.sz—l +.. ) +oo
SR U S o (S ST N 01 (0,1 EEN SR e B )+
(@t ) (8 850 0 G (Bt L )T ).
Note that
it w < my,
(10) fw(®), y(@))] ~ ™ it om <,

where #(i) ~ F(f) means that there exist two numbers e and &, such
that

E()
F (1)

for all sufficiently small ¢ > 0. And clearly, H(}) ~ (1) and F(3) ~ G(1)
imply that E (1) ~ G(t).

Now we consider the following possibilities:

1. n, < m,. From (8) and (9) we see that

lerad Z (o (1), y (4))| ~ ™.
Hence, by (10) we have
lerad Z(z(2), y(0))] ~ 2@, y )

0< g <

< &

and then
(11) lgrad Z(a(2), y ()| = e|(@®), yO)|*
for some ¢ >0 and for all sufficiently small ¢> 0.
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2. 0 = m,.
(1) 8; > 1. Similar to case 1 and we get (11) again.

(ii) s, = 1. At least one of the coefficients of the leading terms in
(8) and (9) is non-zero. Hence, we still have

|grad Z (e (1), y (1)) ~ ™
and inequality (11).
3. my < ny < 8ym, (8, >1). Here we get
|lerad Z (= (1), 'y(t))l ~
and hence
lgrad Z(a(t), ()| ~ |[=(2), y(&)fF™i™
by (10). Thus '
lgrad Z(z(2), y ()] > ¢|(w(), y (@)™ > s|(w(2), y (@)

for some & >0 and for all sufficiently small &> 0.

4. n, = 8$;,m; (8, >1). Since at least one of the coefficients of the
leading terms in (8) and (9) is non-zero, we have either

lerad Z(z(2), y (1)) ~ ™

or
|grad Z(z(t), y(@))| ~ t*Frrter—im,
Therefore we have at least
lgrad Z{a(t), y @))] = (@), y(0)FHn
5. 8,m, <y, < 8,m,. Here we have
lgrad Z{z (1), y(0))]| = &|(@(@), y ()1t
6. n, = s,m,. We have either
lerad Z(z(2), y(3))] ~ tE-Dhaterm
or

lgrad Z(o(1), y(8))| ~ FrrtEr=Dm,
and hence at least
levad Z(n(t), y ()| > ¢|(w (), y @),
2k +1. s ymy < g < §;my. We have
lgrad Z (= (2), y(8)] > ¢|(z (), y (@)1
9k+2. n, = s,m,. Here we have either
|grad Z(w(t), y(3))| ~ tort-+owm
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or
lgrad Z (z(2), y(1))| ~ 01ttt m,
and hence at least
[grad Z(a(2), y ()] > el(w(®), y ()t For-rtiont
2k +3. smy < ;. We have
. lgrad Z (= (3), y(1))] = ¢|(z(2), y @)1+
Therefore, taking account of all possibilities, we have at least (case
2k+2) that
lgrad Z(x(t), y (1)| = €(w(), y @)+ +or-1t2%1

for some £ >0 and for all sufficiently small ¢ > 0. Hence, for all (o, y)
with |(z,y)| = |(=(®), y(t))|, we have

lgrad Z (2, y)| > |grad Z(w(t), ()| > el(@, y) |1+ +oh-1t0,

By Theorem A, j™(Z) is sufficient with m = 8;+... + 8_, +28;.

To show that m is the smallest such integer, we compute Z, and
decompose it (using Puiseux’s theorem with the help of Newton poly-
gons [10], p. 98-105) as follows:

k41

k
Zo(@, 9) = (k+1) [0+ cly'1+...)(w+. .

k
cdw o ¥4 ) (B oyt L)
Let p,(y) = —4¢,y%—..., ie. z—p,(y) is the last factor in the
above decomposition of Z,. Then we express Z as

Z(w,y) = Z(p1, y) + (88— 21) Z2(D1, ¥) + (@ —21)*B (2 — Py, ¥)-
or
Z(zyy) = Z(p1, Y) +(2—2,)R(0—Dy, ¥)

since Z,(p1, y) = 0. Now O(Z(ps,y)) = m, and hence Z(w,y)—Z(py,¥)
= (£ —p.)2R(@ —p,, %) is a realization of j™~Y(Z). Therefore 0eR? is
not an isolated critical point of j™~Y(Z), and by Theorem A ((b)=(a)),
j™=1(Z) is not Cv-sufficient. '

Proof of Corollary. The change of variables X = o+ ¢, ,y%+1 +...
and Y =y reduces (i) to Theorem 1 when s,,, is an integer. Otherwise,
a method similar to the proof of Theorem 1 can be used to establish the
result. (ii) is an immediate consequence of (i) above and Theorem .1 after
using the change of variables X =2+ h(y) and ¥ = 4.
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Proof of Theorem 2. For (i) we use a similar argument to Theorem 1
to establish that

lgrad Z(, y)| > el(, Y)FrT = e, y) -
for some 6, 0 < 0 < 1. To show that m = [3s,;] is the smallest such in-
teger, we again decompose Z; and obtain
_ Zp(@,y) =3 —aqy1—.) (T = a1 —...),
where
— (614 ¢o) - (6] + 65 — ¢,6,)" —(6y4 ¢) — (67 + 6; — "1‘32)”2

a, = and a, =
3 ¢ 3

Let py(y) = auy® +..., le. #—p,(y) is the last factor in Z,. Then
sinee O(Z (py, y)) = 381, Z(®,4) —Z(p1,y) = (@ —D,)*R (9 —p,, y) is a realiz-
ation of j111=1(Z), (Note that a realization of an r-jet is a O™+ -function.)
Hence, jP11-Y(Z) is not C’-sufficient.

The case (ii) becomes special cases of Theorem 1 and its corollary
following the change of wvariables X =ao+%(y) and ¥ =y.

Proof of Theorem 3, The case (i) follows from Theorem 2 after
one uses the change of variables (z, y¥)—>(z, —y). Indeed,

Z(w, —y) = oo +hy) —y"5 @)@+ hy) +975,3),

where fz(y) = h(—vy) and g;(¥) = ¢:(—¥), and Theorem 2 then implies
the result.

For the cases (ii) and (iii), one may decompose Z, and Z, and then
apply Theorem A. The computations are laborious but essentially elemen-
tary. We omit such computations here. (In some cases one may use an
initial change of variables to simplify the computation.)

The author wishes to thank Y. C. Lu for many helpful discussions
and communications, the department of mathematics of the Ohio State
University for their support during 1972-1973, and the referee for correc-
tions and suggestions.
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