VOL. XXXIV 1976 FASC. 2

## SUBDIRECT REPRESENTATIONS IN AXIOMATIC CLASSES

 $\mathbf{BY}$ 

## STANLEY BURRIS (WATERLOO, ONTARIO)

In his paper [1] Birkhoff proved that every algebra in an equationally defined class is isomorphic to a subdirect product of subdirectly irreducible algebras from that class, and hence the subdirectly irreducible algebras are key building blocks. In a recent paper of Sabidussi [3] a detailed proof of the theorem of B. Fawcett that every graph is isomorphic to a subdirect product of subdirectly irreducible graphs is given. Our purpose here\* is to give an affirmative answer to a question of Sabidussi as to whether Fawcett's theorem is a special case of a more general formulation of Birkhoff's results.

Most of our notation and definitions are taken from Grätzer [2]. A type  $\tau$  is a pair of sequences  $\langle \langle n_{\gamma} \rangle_{\gamma < a}, \langle m_{\gamma} \rangle_{\gamma < \beta} \rangle$ , and a structure  $\mathfrak A$  of type  $\tau$  is a triple  $\langle S; \mathcal{F}, \mathcal{R} \rangle$ , where S is the universe of  $\mathfrak A$ ,  $\mathcal F$  is a family of functions  $f_{\gamma}$  on S,  $\gamma < a$ , the rank of  $f_{\gamma}$  being  $n_{\gamma}$ , and  $\mathcal R$  is a family of relations  $r_{\gamma}$  on S,  $\gamma < \beta$ , the rank of  $r_{\gamma}$  being  $m_{\gamma}$ . For  $\gamma < a$  we have fundamental operation symbols  $f_{\gamma}$  and, similarly, for  $\gamma < \beta$  fundamental relation symbols  $r_{\gamma}$ , which are used to construct the first-order language  $L(\tau)$ . A substructure of  $\langle S; \mathcal{F}, \mathcal{R} \rangle$  is a structure  $\langle S'; \mathcal{F}', \mathcal{R}' \rangle$ , where S' is a subset of S closed under the operations of  $\mathcal{F}, \mathcal{F}'$  is the set of operations in  $\mathcal{F}$  relativized to S', and  $\mathcal{R}'$  is the set of relations in  $\mathcal{R}$  relativized to S'.

The direct product of the structures  $\langle S_i; \mathcal{F}_i, \mathcal{R}_i \rangle$  of type  $\tau$ ,  $i \in I$ , is the structure whose universe is  $\prod_{i \in I} S_i$ , with

$$f_{\gamma}(a_0, \ldots, a_{n_{\gamma}-1})(i) = f_{\gamma}(a_0(i), \ldots, a_{n_{\gamma}-1}(i)), \quad i \in I,$$

and  $r_{\gamma}(a_0, \ldots, a_{m_{\gamma}-1})$  holding iff  $r_{\gamma}(a_0(i), \ldots, a_{m_{\gamma}-1}(i))$  holds for all  $i \in I$ . The direct product is denoted by

$$\prod_{i \in I} \langle S_i; \mathscr{F}_i, \mathscr{R}_i \rangle$$
.

A subdirect product of  $\langle S_i; \mathcal{F}_i, \mathcal{R}_i \rangle$ ,  $i \in I$ , is a substructure  $\langle S'; \mathcal{F}', \mathcal{R}' \rangle$  of the direct product such that  $\pi_i(S') = S_i$ , where  $\pi_i$  is the projection

<sup>\*</sup> Research supported by NRC Grant A7256.

 $\underset{j \in I}{\operatorname{map}} S_j \to S_i. \text{ A mapping } \lambda \colon S_0 \to S_1 \text{ is a homomorphism from } \langle S_0; \mathscr{F}_0, \mathscr{R}_0 \rangle$  to  $\langle S_1; \mathscr{F}_1, \mathscr{R}_1 \rangle$  if

$$\lambda f_{\gamma}(a_0, \ldots, a_{n_{\gamma}-1}) = f_{\gamma}(\lambda a_0, \ldots, \lambda a_{n_{\gamma}-1}) \quad \text{for } a_0, \ldots, a_{n_{\gamma}-1} \in S_0, \ \gamma < \alpha,$$

and  $r_{\gamma}(a_0, \ldots, a_{m_{\gamma}-1})$  holds implies  $r_{\gamma}(\lambda a_0, \ldots, \lambda a_{m_{\gamma}-1})$  holds, where  $a_0, \ldots, a_{m_{\gamma}-1} \in S_0$ , and  $\gamma < \beta$ . The image of  $\langle S_0; \mathcal{F}_0, \mathcal{R}_0 \rangle$  under  $\lambda$  is  $\langle \lambda(S_0); \mathcal{F}_2, \mathcal{R}_2 \rangle$ , where  $\mathcal{F}_2$  is the set of restrictions of members of  $\mathcal{F}_1$  to  $\lambda S_0$  and, for  $b_0, \ldots, b_{m_{\gamma}-1} \in \lambda(S_0), r_{\gamma}(b_0, \ldots, b_{m_{\gamma}-1})$  holds iff  $r_{\gamma}(a_0, \ldots, a_{m_{\gamma}-1})$  holds for some  $a_i \in \lambda^{-1}(b_i)$ ,  $0 \leq i \leq m_{\gamma}-1$ , with  $\gamma < \beta$ . Note that the image need not be a substructure of  $\langle S_1; \mathcal{F}_1, \mathcal{R}_1 \rangle$ . A structure  $\langle S_1; \mathcal{F}_1, \mathcal{R}_1 \rangle$  is a homomorphic image of  $\langle S_0; \mathcal{F}_0, \mathcal{R}_0 \rangle$  if  $\langle S_1; \mathcal{F}_1, \mathcal{R}_1 \rangle$  is the image of  $\langle S_0; \mathcal{F}_0, \mathcal{R}_0 \rangle$  under some homomorphism. A congruence of  $\langle S; \mathcal{F}, \mathcal{R} \rangle$  is an equivalence relation  $\theta$  on S such that if  $\langle a_i, b_i \rangle \in \theta$ ,  $0 \leq i \leq n_{\gamma}-1$ , then

$$\langle f_{\gamma}(a_0,\ldots,a_{n_{\gamma}-1}),f_{\gamma}(b_0,\ldots,b_{n_{\gamma}-1})\rangle \in \theta.$$

If  $\theta$  is a congruence of  $\mathfrak{A} = \langle A; \mathcal{F}, \mathcal{R} \rangle$ , then  $\mathfrak{A}/\theta$  will denote the quotient whose universe is  $A/\theta$  and where

$$f_{\gamma}([a_0]_{\theta},\ldots,[a_{n_{\gamma}-1}]_{\theta})=[f_{\gamma}(a_0,\ldots,a_{n_{\gamma}-1})]_{\theta},$$

 $[a]_{\theta}$  being the equivalence class of a modulo  $\theta$ , and  $r_{\gamma}([a_0]_{\theta}, \ldots, [a_{m_{\gamma}-1}]_{\theta})$  iff  $r_{\gamma}(b_0, \ldots, b_{m_{\gamma}-1})$  for some  $b_i \in [a_i]_{\theta}$ ,  $0 \leq i < m_{\gamma}$ .

Let K be a class of structures of type  $\tau$ . We relativize our concepts to K as follows. A homomorphism  $\lambda$  from  $\mathfrak{A}_0$  to  $\mathfrak{A}_1$ , where  $\mathfrak{A}_0$ ,  $\mathfrak{A}_1 \in K$ , is a K-homomorphism if the image of  $\mathfrak{A}_0$  under  $\lambda$  is in K. If  $\lambda$  is also one-one, then we speak simply of an isomorphism. A congruence  $\theta$  of  $\mathfrak{A} \in K$  is a K-congruence if it is the kernel of a K-homomorphism.  $\Delta(\mathfrak{A})$  is the diagonal relation on S;  $\Delta(\mathfrak{A})$  is always a K-congruence.

A subdirect product  $\langle S'; \mathcal{F}', \mathcal{R}' \rangle$  of  $\langle S_i; \mathcal{F}_i, \mathcal{R}_i \rangle$ ,  $i \in I$ , is full (1) if the image of  $\langle S'; \mathcal{F}', \mathcal{R}' \rangle$  under  $\pi_i$  is  $\langle S_i; \mathcal{F}_i, \mathcal{R}_i \rangle$  for each i. If  $\mathfrak{A} \in K$  has a non-empty universe, and, for every isomorphism

$$\varepsilon \colon \mathfrak{A} \to \prod_{i \in I} \mathfrak{A}_i, \quad \mathfrak{A}_i \in K,$$

such that the image of  $\mathfrak A$  is a full subdirect product of the  $\mathfrak A_i$ ,  $\mathfrak A_i$  is an isomorphic image of  $\mathfrak A$  under  $\pi_i \circ \varepsilon$  for some i, then  $\mathfrak A$  is said to be K-subdirectly irreducible. Note that if K is an equationally defined class of algebras, then the K-subdirectly irreducible algebras are the subdirectly irreducible algebras in K. In [3] Sabidussi gives an explicit description of all K-subdirectly irreducible structures where K is the class of graphs.

<sup>(1)</sup> Sabidussi calls a full subdirect product simply a subdirect product in the case of graphs. However, this does not agree with the conventions we have adopted, namely those of [2].

LEMMA 1.  $\mathfrak{A} = \langle S; \mathcal{F}, \mathcal{R} \rangle$  is K-subdirectly irreducible iff  $\mathfrak{A} \in K$  and either S has only one element, or, for some  $a, b \in S, a \neq b$ , the only K-congruence  $\theta$  such that  $\langle a, b \rangle \notin \theta$  is  $\Delta(\mathfrak{A})$ , or, for some  $r_{\gamma} \in \mathcal{R}$  and some  $a_0, \ldots, a_{m_{\gamma}-1} \in S$ , the only K-congruence  $\theta$  such that  $\neg r_{\gamma}([a_0]_{\theta}, \ldots, [a_{m_{\gamma}-1}]_{\theta})$  is  $\Delta(\mathfrak{A})$ .

**Proof.** First suppose  $\mathfrak{A} = \langle S; \mathcal{F}, \mathcal{R} \rangle$  is not K-subdirectly irreducible. Then, for some isomorphism

$$\varepsilon \colon \mathfrak{A} \to \prod_{i \in I} \mathfrak{A}_i,$$

where the image  $\mathfrak A$  is a full subdirect product of the  $\mathfrak A_i$ ,  $\mathfrak A_i$  is not, for any i, an isomorphic image of  $\mathfrak A$  under  $\pi_i \circ \varepsilon$ . Hence, if S is non-empty, then S has more than one element. Suppose a,  $b \in S$  and  $a \neq b$ . Then, for some i,

$$\pi_i \circ \varepsilon(a) \neq \pi_i \circ \varepsilon(b)$$
,

whence  $\langle a, b \rangle \notin \operatorname{Ker}(\pi_i \circ \varepsilon)$ . Note that, since  $\varepsilon(\mathfrak{A})$  is full,  $\operatorname{Ker}(\pi_i \circ \varepsilon)$  is a K-congruence, and it is not  $\Delta(\mathfrak{A})$ . Also, if  $r_{\gamma} \in \mathcal{R}$  and  $a_0, \ldots, a_{m_{\gamma}-1} \in S$  with  $\neg r_{\gamma}(a_0, \ldots, a_{m_{\gamma}-1})$ , then, for some i, we must have

$$eg r_{\nu} (\pi_i \circ \varepsilon(a_0), \ldots, \pi_i \circ \varepsilon(a_{m_{\nu}-1})),$$

since  $\varepsilon(\mathfrak{A})$  is a subdirect product, whence

$$egrid{} 
egrid{} 
egrid{}$$

For the converse, suppose  $\mathfrak A$  is K-subdirectly irreducible. If S has more than one element and only one K-congruence, namely  $\Delta(\mathfrak A)$ , then the proof is trivial; so suppose  $\mathfrak A$  has at least two K-congruences and let v be the canonical homomorphism from  $\mathfrak A$  into  $\prod_{\theta \neq \Delta(\mathfrak A)} \mathfrak A/\theta$ , where each  $\theta$ 

is a K-congruence. Since  $\mathfrak A$  is subdirectly irreducible, it follows that either r is not injective or  $r(\mathfrak A)$  is not a substructure. If r is not injective, then, for some a,  $b \in S$ ,  $a \neq b$ , we have  $\langle a, b \rangle \in \theta$  for every K-congruence  $\theta$  except  $\Delta(\mathfrak A)$ , and if  $r(\mathfrak A)$  is not a substructure, then, for some  $r_r \in \mathcal R$ ,  $a_0, \ldots, a_{m_r-1} \in S$ , we have  $r_r([a_0]_\theta, \ldots, [a_{m_r-1}]_\theta)$  for every K-congruence  $\theta \neq \Delta(\mathfrak A)$ , but  $\neg r_r(a_0, \ldots, a_{m_r-1})$ .

A family of sets is inductive if it is closed under unions of chains.

LEMMA 2. Let  $\mathfrak{A} \in K$  have an inductive set of K-congruences. Then  $\mathfrak{A}$  is isomorphic to a full subdirect product of K-subdirectly irreducible structures.

Proof. Let  $\mathfrak{A} = \langle S; \mathscr{F}, \mathscr{R} \rangle$  and suppose  $a, b \in S, a \neq b$ . Then, by Zorn's Lemma, there is a maximal K-congruence  $\theta$  of  $\mathfrak{A}$  with respect to the property that  $\langle a, b \rangle \notin \theta$ . Using Lemma 1 we see that  $\mathfrak{A}/\theta$  is subdirectly irreducible. Also, for each  $r_{\gamma} \in \mathscr{R}$  and  $a_0, \ldots, a_{m_{\gamma}-1} \in S$  with  $\neg r_{\gamma}(a_0, \ldots, a_{m_{\gamma}-1})$ , there is a maximal K-congruence  $\theta$  with respect to the property

 $\exists r_{\gamma}([a_0]_{\theta}, \ldots, [a_{m_{\gamma}-1}]_{\theta}),$  and again  $\mathfrak{A}/\theta$  is subdirectly irreducible. Thus the canonical map from  $\mathfrak{A}$  to

$$\prod \{\mathfrak{A}/\theta \colon \mathfrak{A}/\theta \text{ is } \mathbf{K}\text{-subdirectly irreducible}\}$$

is such that the image of A is a full subdirect product which is isomorphic to A.

A class K of algebras of type  $\tau$  is *universal* if it is the class of models of a set of universal sentences from  $L(\tau)$ .

In general, the set of K-congruences of a structure  $\mathfrak A$  in a universal class K form neither a meet semilattice nor a join semilattice as the following example shows:

Let K be the class of structures with three unary predicates  $P_0$ ,  $P_1$  and  $P_2$  axiomatized by the universal (Horn) sentence

$$\forall x ( \neg P_0(x) \lor \neg P_1(x) \lor P_2(x)),$$

and let  $\mathfrak{A} = \langle \{0,1,2,3,4\}, P_0, P_1, P_2 \rangle$  with  $P_0(1)$ ,  $P_1(2)$ ,  $P_2(3)$ ,  $P_2(4)$ , and  $\neg P_i(x)$  otherwise. Then  $\mathfrak{A} \in K$  and the two K-congruences whose equivalence classes are given by  $\{\{0,1,2,3\},\{4\}\}$  and  $\{\{0,1,2,4\},\{3\}\}$  do not have a g.l.b. among the K-congruences although the K-congruences corresponding to the partitions  $\{\{0,1\},\{2\},\{3\},\{4\}\}\}$  and  $\{\{0,2\},\{1\},\{3\},\{4\}\}\}$  are lower bounds.

LEMMA 3. Let K be a universal class of structures of type  $\tau$ . Then, for  $\mathfrak{A} \in K$ , the set of K-congruences of  $\mathfrak{A}$  is inductive.

Proof. Let  $\theta_i$ ,  $i \in I$ , be a chain of K-congruences of  $\mathfrak{A} = \langle S; \mathcal{F}, \mathcal{R} \rangle$ , and let  $\Gamma$  be a set of universal sentences defining K. By a well-known reduction we can assume that every sentence in  $\Gamma$  is of the form

$$\forall x_0 \ldots \forall x_n \bigvee_{i=0}^k \sigma_i,$$

where each  $\sigma_i$  is either an atomic formula or the negation of an atomic formula in  $L(\tau)$ . Let

$$\theta = \bigvee_{i \in I} \theta_i$$
.

Then  $\theta$  is a congruence of  $\mathfrak{A}$ ; we will show that  $\mathfrak{A}/\theta \in K$ , whence  $\theta$  is a K-congruence. So let

$$\sigma = \forall x_0 \dots \forall x_n \bigvee_{i=0}^k \sigma_i,$$

a member of  $\Gamma$  in prenex form with each  $\sigma_i$  either an atomic formula or the negation of an atomic formula in  $L(\tau)$ . If this sentence fails to be true in  $\mathfrak{A}/\theta$ , then, for some  $a_0, \ldots, a_n \in S$ ,

$$\bigvee_{i=0}^k \sigma_i([a_0]_0, \ldots, [a_n]_\theta)$$

is false in  $\mathfrak{A}/\theta$ , whence  $\sigma_i([a_0]_{\theta}, \ldots, [a_n]_{\theta})$  is false in  $\mathfrak{A}/\theta$  for all *i*. If  $\sigma_i$  is atomic for a given *i*, this would imply  $\sigma_i([a_0]_{\theta_k}, \ldots, [a_n]_{\theta_k})$  is false in  $\mathfrak{A}/\theta_k$  for all  $k \in I$ , and if  $\sigma_i$  is the negation of an atomic formula, then  $\sigma_i([a_0]_{\theta_k}, \ldots, [a_n]_{\theta_k})$  would be false for some  $k \in I$ . Among the latter cases only finitely many *i* are involved, and hence there is a  $k_0 \in I$  such that

$$\sigma_i([a_0]_{\theta_{k_0}},\ldots,[a_n]_{\theta_{k_0}})$$

is false in  $\mathfrak{A}/\theta_{k_0}$  for all *i*; but then  $\sigma$  fails to hold in  $\mathfrak{A}/\theta_{k_0}$ , a contradiction. Combining the lemmas we have proved the following

THEOREM 1. Let **K** be a universal class of structures. Then every structure in **K** is isomorphic to a full subdirect product of **K**-subdirectly irreducible structures.

Of course, if we want a universal class K to be closed under subdirect products, then we need a universal Horn class (for example, the class of graphs). To indicate that we have a nearly best possible result for axiomatic theories we will consider two examples, the first being the class  $K_D$  of dense linear orders without end points  $\langle S, \langle \rangle$  axiomatized by

$$\forall x \forall y (x < y \text{ or } y < x \text{ or } x = y), \quad \forall x \forall y \forall z (x < y \& y < z \rightarrow x < z),$$

$$\forall x \forall y (x < y \rightarrow \neg y < x \& \neg x = y),$$

$$\forall x \forall y \exists z [x \neq y \rightarrow (x < z < y \text{ or } y < z < x)],$$

$$\forall x \exists y \exists z (x < y \& z < x).$$

The only countable model (up to isomorphism) is the rationals  $\mathfrak{Q} = \langle Q, < \rangle$ , and it is easy to check that, given  $q_0, q_1 \in Q$  with  $q_0 \neq q_1$ , there is a  $K_D$ -congruence  $\theta \neq \Delta(\mathfrak{Q})$  such that  $\langle q_0, q_1 \rangle \notin \theta$  and, for  $q_0, q_1 \in Q$  with  $(q_0 < q_1)$ , there is a  $K_D$ -congruence  $\theta \neq \Delta(\mathfrak{Q})$  with  $([q_0]_{\theta} < [q_1]_{\theta})$ . Hence  $\mathfrak{Q}$  is not  $K_D$ -subdirectly irreducible, and so we do not have a generalization of Birkhoff's theorem for  $K_D$ . Note that this is a finitely axiomatized  $\mathsf{Y}$ 3-theory of relational structures.

Second consider the class  $K_P$  of structures  $\langle S, P \rangle$ , where P is a unary predicate satisfying  $\{x \in S \colon P(x)\}$  is infinite and  $\{x \in S \colon \neg P(x)\}$  is also infinite. Again we can argue that there is only one countable model and it is not  $K_P$ -subdirectly irreducible. This example is an infinitely axiomatized  $\exists$ -theory of relational structures.

We remark that for any class K the finite structures in K are isomorphic to full subdirect products of K-subdirectly irreducible structures by Lemma 2.

A class K of structures of type  $\tau$  is existential if it is the class of models of some set of existential sentences in  $L(\tau)$ .

THEOREM 2. If K is a finitely axiomatizable existential class of relational structures, then every  $\mathfrak{A} \in K$  is isomorphic to a full subdirect product of K-subdirectly irreducible structures.

Proof. Let  $\mathfrak{A} = \langle S, \mathscr{R} \rangle \epsilon K$  and suppose  $a, b \epsilon S, a \neq b$ . Then, since only finitely many existential sentences are needed to axiomatize K, it follows that there is a K-congruence  $\theta$  of finite index such that  $[a]_{\theta} \neq [b]_{\theta}$ , and hence there is a maximal K-congruence  $\theta$  of  $\mathfrak{A}$  such that  $[a]_{\theta} \neq [b]_{\theta}$ . Likewise, for  $r_{\gamma} \epsilon \mathscr{R}$  and  $a_0, \ldots, a_{m_{\gamma}-1} \epsilon S$  with  $\neg r_{\gamma}(a_0, \ldots, a_{m_{\gamma}-1})$ , there is a maximal K-congruence  $\theta$  with respect to the property  $\neg r_{\gamma}([a_0]_{\theta}, \ldots, [a_{m_{\gamma}-1}]_{\theta})$ . Hence the canonical map  $\nu$  from  $\mathfrak{A}$  to

$$\prod \{\mathfrak{A}/\theta \colon \mathfrak{A}/\theta \text{ is } K\text{-subdirectly irreducible}\}$$

suffices to prove the theorem.

Theorem 2 cannot be extended to cover finitely axiomatizable existential classes of algebras as the following example shows:

Let K be the class of algebras  $\langle A, \vee, \wedge, \pi, \sigma, f \rangle$  axiomatized by  $\exists x (\pi(x) \neq x)$  and  $\exists x (\sigma(x) \neq x)$ , and consider the algebra

$$\mathfrak{A} = \langle (Z - \{0\}) \cup \{-\infty, +\infty\}, \vee, \wedge, \pi, \sigma, f \rangle,$$

where  $\vee$  and  $\wedge$  are just the usual lattice-theoretic join and meet, respectively, on the extended integers without zero,  $\pi(x) = x - 1$  if  $1 < x < + \infty$ ,  $\pi(x) = x$  otherwise,  $\sigma(x) = x + 1$  if  $-\infty < x < -1$ ,  $\sigma(x) = x$  otherwise,  $f(x) = +\infty$  if  $x \ge 1$ , and  $f(x) = -\infty$  if  $x \le -1$ . Then  $\mathfrak A$  is in K, and the only K-congruences of  $\mathfrak A$  are of the form  $\theta_{m,n}$ ,  $1 \le m$ ,  $n < +\infty$ , where  $\langle x, y \rangle \in \theta_{m,n}$  iff x = y or  $1 \le x$ ,  $y \le m$  or  $-n \le x$ ,  $y \le -1$ . Note that  $\mathfrak A$  is not K-subdirectly irreducible, and  $\mathfrak A/\theta_{m,n} \cong \mathfrak A$  for all  $\theta_{m,n}$ . Thus  $\mathfrak A$  cannot be expressed as a full subdirect product of K-subdirectly irreducibles.

With this we can also show that we cannot generalize Theorem 2 to finitely axiomatizable  $(\forall \cup \exists)$ -theories of relational structures, for if we replace each of the operation symbols  $\vee$ ,  $\wedge$ ,  $\pi$ ,  $\sigma$ , f by a relation symbol  $r_{\vee}(x, y, z), \ldots, r_{f}(x, y)$  and consider the class K axiomatized by

$$\exists oldsymbol{x}ig( 
eg oldsymbol{r}_{oldsymbol{x}}(oldsymbol{x},oldsymbol{x}), \ \exists oldsymbol{x}ig( 
eg oldsymbol{r}_{oldsymbol{\sigma}}(oldsymbol{x},oldsymbol{x}), \ egin{array}{c} \forall oldsymbol{x}orall oldsymbol{y}oldsymbol{z}oldsymbol{w}[ig(oldsymbol{r}_{oldsymbol{v}}(oldsymbol{x},oldsymbol{y},oldsymbol{x}), \ egin{array}{c} \forall oldsymbol{x}orall oldsymbol{y}oldsymbol{z}ig[ig(oldsymbol{r}_{oldsymbol{r}}(oldsymbol{x},oldsymbol{y}), \ egin{array}{c} \langle oldsymbol{x}, oldsymbol{y}, \ oldsymbol{w}, oldsymbol{v}, \ oldsymbol{w}, oldsymbol{v}, \ old$$

where the universal axioms assert that the relations are functions, then we can use the same example above.

In [4] Taylor defined the concept of "pure-irreducible". There is a striking similarity between Lemma 1 of this paper and his Lemma 3.4. Furthermore, as Taylor points out, let us expand the language of a structure  $\mathfrak{A}$  to include predicate symbols  $\mathbf{s}(\vec{y})$  for each  $(\exists, \land)$ -formula

 $\exists \vec{x} \varphi(\vec{x}, \vec{y})$ . Then in the universal class K axiomatized by

$$\big\{ \forall \overrightarrow{\boldsymbol{y}} \big( \exists \overrightarrow{\boldsymbol{x}} \varphi(\overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{y}}) \rightarrow \boldsymbol{s}(\overrightarrow{\boldsymbol{y}}) \big) \big\}$$

the expansion of  $\mathfrak A$  is K-subdirectly irreducible iff  $\mathfrak A$  is pure-irreducible, and Taylor's Theorem 3.6 is a consequence of our Theorem 1.

The author would like to thank G. Sabidussi for making his preprint available, and W. Taylor for his comments on a preliminary draft.

Added in proof. Mal'cev has some generalizations of Birkhoff's Theorem to arbitrary structures in *The metamathematics of algebraic systems*, North Holland, 1971. He uses subdirect products, whereas we use full subdirect products, so in many cases our results are stronger (see, for example, his Theorem 4 in *Subdirect products of models*). On the other hand, he obtains results for  $\forall \exists$ -classes (see the remark to his Theorem 3).

## REFERENCES

- [1] G. Birkhoff, Subdirect unions in universal algebra, Bulletin of the American Mathematical Society 50 (1944), p. 764-768.
- [2] G. Grätzer, Universal algebra, van Nostrand, 1968.
- [3] G. Sabidussi, Subdirect representations of graphs, Centre de Recherches Mathématiques, Université de Montreal, 1973.
- [4] W. Taylor, Residually small varieties, Algebra Universalis 2 (1972), p. 33-53.

Reçu par la Rédaction le 3. 4. 1974