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SUBDIRECT REPRESENTATIONS IN AXIOMATIC CLASSES

BY

STANLEY BURRIS (WATERLOO, ONTARIO)

In his paper [1] Birkhoff proved that every algebra in an equationally
defined class is isomorphic to a subdirect product of subdirectly irreducible
algebras from that class, and hence the subdirectly irreducible algebras
are key building blocks. In a recent paper of Sabidussi [3] a detailed
proof of the theorem of B. Fawcett that every graph is isomorphic to
a subdirect product of subdirectly irreducible graphs is given. Our pur-
pose here* is to give an affirmative answer to a question of Sabidussi
as to whether Fawcett’s theorem is a special case of a more general for-
mulation of Birkhoff’s results.

Most of our notation and definitions are taken from Grétzer [2].
A type v is a pair of sequences {(m,),., (M), 5>, and a structure A of
type 7 is a triple {(8; %, #), where § is the universe of U, F is a family
of functions f, on 8, y < a, the rank of f, being n,, and £ is a family
of relations r, on 8, y < g, the rank of r, being m,. For y < a we have
Sfundamenial operation symbols f, and, similarly, for y < g fundamental
relation symbols r,, which are used to construct the first-order language
L(t). A substructure of (8;%,®) is a structure (8'; #', #'>, where 8’
is a subset of § closed under the operations of #, #’ is the set of operations
in # relativized to 8', and #’ is the set of relations in # relativized to §'.

The direct product of the structures {(8;; F;, #;> of type 7, iecl, is
the structure whose universe is [[8;, with

fel
fy(agy -, an,—l)(":) =fy(a’o(":)’ ceey “ny—l(i))y te I,

and 7,(a; ...y Gp,_1) holding iff r,(a,(%), ..., amy_l(i)) bolds for all ie I.
The direct product is denoted by
[] <8, 2.
iel
A subdirect product of (8;; F;, R;>, te I, is a substructure (8'; #', 2"
of the direct product such that =;(8) = §;, where n; is the projection

* Research supported by NRC Grant A7256.



192 S. BURRIS

map [] 8; > 8;. Amapping 1: 8y — 8, is a homomorphism from (8,; F,, #y)
JeI
to <8;; Fy, % i
AM,(agy ..., a, _1) = f,(Agq, ..., Mn,,-l) for a,, ... y By 1 € Sy, ¥< a,

and r,,(ao, . _1) holds implies »,(Aaq, ..., Aa,__,) holds, where
Boy +-+y By 1€ So, ”and y< B. The image of (So,.?i'o,.%o under 1 is
{A(Be); F oy Ry, where F, is the set of restnctlons of members of &,
to A8, and, for b,, .. _le}.(So), 7, (b, - - _1) holds iff 7., (ag, ..., @ 7_1)
holds for some a;e l (b yo<<i<m,—1, Wlth y < B. Note that the image
need not be a substructure of (Sl,.?'l,.%) A structure <{8,;%,, #,)
is a homomorphic image of {(8o;F,, B> if (8;;F,, #,) is the image of
{8¢;Fy, #y> under some homomorphism. A congruence of <{(8;F,R>
is an equivalence relation 6 on 8 such that if (a;, d)>e 0, 0 <i< n,—1,
then

Fol@oy vy 1)y fo(Boy oovy by 1)>e 6.

If 6is a congruence of A =<A4;F,%), then A/0 will denote the
quotient whose universe is 4 /60 and where

fy([a'o]h seey [a'ny—l]ﬂ = [fy(a(n seey a’ny—l)]07

[a], being the equivalence class of a modulo 6, and 7,([a¢ls, ---, [amy_l]a)
iff r,(by, ..., bmy—l) for some b;e [a;]5, 0 <P < m,,.

Let K be a class of structures of type z. We relativize our concepts
to K as follows. A homomorphism A from U, to %A,, where Ay, A, ¢ K,
is a K-homomorphism if the image of A, under 4 is in K. If A is also one-one,
then we speak simply of an isomorphism. A congruence 6 of e K is
a K-congruence if it is the kernel of a K-homomorphism. 4() is the di-
agonal relation on S; A(A) is always a K-congruence.

A subdirect product (8';F', #'> of {(8;;F;, B, itel, is full ()
if the image of (8'; #', #'> under =, is {8;; #;, #;> for each i. If Ae K
has a non-empty universe, and, for every isomorphism

g A ” €A, WeK,
iel
such that the image of U is a full subdirect product of the UA;, A; is an
isomorphic image of A under x,0¢ for some 4, then A is said to be K-sub-
directly irreducible. Note that if K is an equationally defined class of
algebras, then the K-subdirectly irreducible algebras are the subdirectly
irreducible algebras in K. In [3] Sabidussi gives an explicit description
of all K-subdirectly irreducible structures where K is the class of graphs.

(1) Sabidussi calls a full subdirect product simply a subdirect product in the
case of graphs. However, this does not agree with the conventions we have adopted,
namely those of [2].
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LEMMA 1. A =<8;F, ) is K-subdirectly irreducible iff We K and
either 8 has only one element, or,. for some a, be 8, a # b, the only K-con-
gruence 0 such that {a,b)¢ 6 is A(A), or, for some r,e R and some
Boy -+ 3 Oy, —1€ S, the only K-congruence 6 such that ~r,([@ols, - .-, [, —1]6)
is A(N).

Proof. First suppose A = {(§; F, #) is not K-subdirectly irreducible.
Then, for some isomorphism

e: A - ” €A,
el
where the image W is a full subdirect product of the A;, A, is not, for
any ¢, an isomorphic image of A under =;0¢. Hence, if § is non-empty,
then § has more than one element. Suppose a, be § and a s b. Then,
for some 1,
m;oe(a) # m;0¢e(b),

whence (a, b)¢ Ker(mw;0e). Note that, since ¢(A) is full, Ker(m,0¢) is

a K-congruence, and it is not A4(%A). Also, if r,¢ Z and a,,..., Oy, —1 € S
with I, (@, ..., amy_l), then, for some ¢, we must have-
“r, (7‘;0 &(@g)y ...y W0 s(a’my—l))’

since ¢(A) is a subdirect product, whence
I, ([aogles - - [a,my_l]e), where 60 = Ker(m;0¢).

For the converse, suppose W is K-subdirectly irreducible. If 8 has
more than one element and only one K-congruence, namely 4(%), then
the proof is trivial; so suppose U has at least two K-congruences and
let » be the canonical homomorphism from % into [] A/6, where each 6

0£A4(%

is a K-congruence. Since U is subdirectly irreducible, i(t )follows that either
» is not injective or »(¥) is not a substructure. If » is not injective, then,
for some a, be S, a # b, we have (a,b)e 0 for every K-congruence 0
except 4(A), and if »(A) is not a substructure, then, for some r, e %,
Gy ooy By 1€ 8, we have r,([ag]y, ..., [a,my_l]o) for every K-congruence
6 # A(A), but ~r,(ae, ..., a,my_l).

A family of sets is inductive if it is closed under unions of chains.

LemMA 2. Let e K have an inductive set of K-congruences. Then U
i8 isomorphic to a full subdirect product of K-subdirectly irreducible structures.

Proof. Let A = (8;F,Z> and suppose a, be S, a 4 b. Then, by
Zorn’s Lemma, there is a maximal K-congruence 6 of U with respect to
the property that <{a, b)¢ 6. Using Lemma 1 we see that %A/ is subdirectly
irreducible. Also, for each r, ¢ £ and a,, ..., G, —1 € S with Tr,(a,, ..., O, —1 )y
there is a maximal K-congruence 6 with respect to the property
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TIr,([aeley - -, [amy_l]e), and again A/ is subdirectly irreducible. Thus
the canonical map from U to

n {A/6: A/6 is K-subdirectly irreducible}

is such that the image of U is a full subdirect product which is isomorphic

to A.
A class K of algebras of type v is universal if it is the class of models

of a set of universal sentences from L(7).
In general, the set of K-congruences of a structure % in a universal
class K form neither a meet semilattice nor a join semilattice as the fol-

lowing example shows:
Let K be the class of structures with three unary predicates Py, P,

and P, axiomatized by the universal (Horn) sentence
Va(TPy(x) v TIP,(2) v Py(x)),

and let A = <{0,1,2, 3, 4}, Py, Py, P,) with Po(1), P,(2), P,(3), P,(4),
and T|P;(») otherwise. Then e K and the two K-congruences whose
equivalence classes are given by {{0, 1, 2, 3}, {4}} and {{0, 1, 2, 4}, {3}}
do not have a g.l.b. among the K-congruences although the K-con-
gruences corresponding to the partitions {{0,1}, {2}, {3}, {4}} and
{{0, 2}, {1}, {8}, {4}} are lower bounds.

LEMMA 3. Let K be a universal class of structures of type v. Then, for
e K, the set of K-congruences of W is inductive.

Proof. Let 6;, ie I, be a chain of K-congruences of A = (8; F, &),
and let I" be a set of universal sentences defining K. By a well-known re-
duction we can assume that every sentence in I" is of the form

K
Vz,... V2,V o
i=0

where each o; is either an atomic formula or the negation of an atomic
formula in L(7). Let
0 =S V 6,‘.

tel
Then 0 is a congruence of A; we will show that U/0¢ K, whence 6

is a K-congruence. So let

k

o =Vz,...Vz, Vo,

=0
a member of I’ in prenex form with each o; either an atomic formula or
the negation of an atomic formula in L(7). If this sentence fails to be
true in %/6, then, for some ay, ..., a,¢ 8,

k
V o;([aoles -- -5 [an]e)

1=0
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is false in A/6, whence o;([@glg, ---5 [@,]e) is false in A/O for all i. If o
is atomic for a given ¢, this would imply o([@els,, ---) [an]e,) is false
in A/6, for all ke I, and if o; is the negation of an atomic formula, then
o¢([@olo,s - -5 [8,]s,) Would be false for some ke I. Among the latter cases
only finitely many ¢ are involved, and hence there is a k,e I such that

O'i([a'o]o,,o’ ceey [an]oko) '
is false in A /6, for all 4; but then o fails to hold in A/, , a contradiction.
0 0

Combining the lemmas we have proved the following

THEOREM 1. Let K be a universal class of structures. Then every structure
in K i3 isomorphic to a full subdirect product of K-subdirectly irreducible
structures.

Of course, if we want a universal class K to be closed under subdirect
products, then we need a universal Horn class (for example, the class
of graphs). To indicate that we have a nearly best possible result for
axiomatic theories we will consider two examples, the first being the
class Kj, of dense linear orders without end points {8, <) axiomatized by

VeVy(x<yory<xorx =y), VeVyVz(e<y&y<z->x<z2),
VeVy(x<y > Ty<ax & e =1y),
VeVydz[xz #y - (x<z2<y or y< z< x)],
Vedydz(zx <y &2 < x).

The only countable model (up to isomorphism) is the rationals
Q =4(Q,<), and it is easy to check that, given ¢, ¢,¢ @ with ¢, # ¢,,
there is a Kj-congruence 6 # 4(Q) such that {g,, ¢,> ¢ 0 and, for g, ¢, @
with T](g, < ¢1), there is a Kj-congruence 0 = 4(Q) with ~[([go]e < [qls)-
Hence L is not Kj-subdirectly irreducible, and so we do not have
a generalization of Birkhoff’s theorem for K;. Note that this is a finitely
axiomatized V3-theory of relational structures.

Second consider the class Ky of structures (S, P), where P is a unary
predicate satisfying {we S: P(#)} is infinite and {we8: TJP(x)} is also
infinite. Again we can argue that there is only one countable model and
it is not Kp-subdirectly irreducible. This example is an infinitely axioma-
tized 3-theory of relational structures.

We remark that for any class K the finite structures in K are isomor-
phic to full subdirect products of K-subdirectly irreducible structures
by Lemma 2.

A class K of structures of type t is existential if it is the class of models
of some set of existential sentences in L(7).

THEOREM 2. If K is a finitely aziomatizable existential class of relational
structures, then every e K is isomorphic to a full subdirect product of
K-subdirectly irreducible structures.
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Proof. Let A = {8, #>e K and suppose a, be 8, a # b. Then, since
only finitely many existential sentences are needed to axiomatize K,
it follows that there is a K-congruence 0 of finite index such that [a],
# [b]s, and hence there is a maximal K-congruence 6 of U such that
[a]s # [b]s. Likewise, for r, e # and ay, ..., &, _, < S with "I (a,,..., a,,,r_l),
there is a maximal K-eongruence 0 Witil respect to the property
I, ([aoley - --» [amy_l]o). Hence the canonical map » from U to

[ ] /6: %6 is K-subdirectly irreducible}

suffices to prove the theorem.

Theorem 2 cannot be extended to cover finitely axiomatizable existen-
tial classes of algebras as the following example shows:

Let K be the class of algebras (4, v, A, =, 0,f> axiomatized by
e (n(x) # x) and Jx(c(x) #~ ), and consider the algebra

A =<{(Z—-{0})U{—o00, +0}, V, A, m, 0,),

where v and A are just the usual lattice-theoretic join and meet, respecti-
vely, on the extended integers without zero, n(#) = o —-1if 1< o< + o,
n(#) = & otherwise, o(#) =@+1 if —c0c< @< —1, g(w) = & otherwise,
f®) = +o0 if #>1, and f(#) = —oo if @< —1. Then ¥ is in K, and
the only K-congruences of U are of the form 6,,,,, 1 < m, n < + oo, where
@, yebp,,iff e =yorl<a,y<mor —n<z,y< —1. Note that A
is not K-subdirectly irreducible, and %/6,, , =~ U for all ,, ,. Thus A cannot
be expressed as a full subdirect product of K-subdirectly irreducibles.
With this we can also show that we cannot generalize Theorem 2 to
finitely axiomatizable (Vu3)-theories of relational structures, for if we
replace each of the operation symbols v, A, =, ¢, f by a relation symbol
r,(®,y,2),..., r(x,y) and consider the class K axiomatized by

aw(—lru(w7 w));
aw(_lra(w’ .’B)), !
VaVyVzVw|(r, (x, y, 2) & ry (2, y, w)) > 2 = w),

VeV yVz|(r/(x, y) & ry(x, 2)) >y = 2|,

where the universal axioms assert that the relations are functions, then
we can use the same example above.

In [4] Taylor defined the concept of ‘‘pure-irreducible’. There is
a striking similarity between Lemma 1 of this paper and his Lemma 3.4.
Furthermore, as Taylor points out, let us expand the language of a

structure % to include predicate symbols s(y) for each (3, A)-formula
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J@p(x, y). Then in the universal class K axiomatized by

(Vy(Fzo(x, y) - s(y)))

the expansion of U is K-subdirectly irreducible iff %« is pure-irreducible,
and Taylor’s Theorem 3.6 is a consequence of our Theorem 1.

The author would like to thank G. Sabidussi for making his preprint
available, and W. Taylor for his comments on a preliminary draft.

Added in proof. Mal’cev has some generalizations of Birkhotf’s
Theorem to arbitrary structures in The metamathematics of algebraic
systems, North Holland, 1971. He uses subdirect products, whereas we
use full subdirect products, so in many cases our results are stronger
(see, for example, his Theorem 4 in Subdirect products of models).
On the other hand, he obtains results for V3-classes (see the remark
to his $heorem 3).
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