

ACTA ARITHMETICA XXXII (1977)

# Generalization of some theorems on sets of multiples and primitive sequences

by

W. Klotz (Clausthal)

1. Introduction. The main results of this paper are generalizations of a theorem of Besicovitch on primitive sequences and of a theorem of Davenport and Erdös on sets of multiples. For these theorems and a survey of related results we refer to the final chapter of Halberstam and Roth [3].

By a system  $\sigma$  we mean a non-empty set of finite, non-empty sets of positive integers. The system  $\sigma$  is called homogeneous, if for each  $n \in N$  (set of positive integers)

$$S \in \sigma$$
 implies  $nS = \{ns : s \in S\} \in \sigma$ .

The set  $A \subset N$  is said to be  $\sigma$ -free, if it does not contain a subset belonging to  $\sigma$ . For a given homogeneous system  $\sigma$  we discuss the question of the 'greatest possible density' a  $\sigma$ -free set may have. We investigate natural densities and logarithmic densities of  $\sigma$ -free sets.

The author wishes to acknowledge his debt to the valuable advice of Professor E. Wirsing.

2. Natural densities of  $\sigma$ -free sets. First we introduce some notations. For real numbers  $\alpha$ ,  $\beta$  we define the interval  $[\alpha, \beta] = \{n : n \in \mathbb{N}, \alpha \leq n \leq \beta\}$ . If A is a finite set, then |A| denotes the number of elements in A. The counting function of  $A \subset \mathbb{N}$  is  $A(n) = |A \cap [1, n]|$ . The limit  $d(A) = \lim_{n \to \infty} A(n)/n$ , if it exists, is called the natural density of A. The lower and upper natural densities  $\underline{d}(A)$  and  $\overline{d}(A)$  are defined by the liminf and lim sup of the same expression. The system  $\sigma$  is characterized by

$$au_{\sigma}(n) = \max \left\{ A(n) \colon A \text{ $\sigma$-free} 
ight\}, \ \underline{ au}_{\sigma} = \liminf_{n o \infty} au_{\sigma}(n)/n, \quad \overline{ au}_{\sigma} = \limsup_{n o \infty} au_{\sigma}(n)/n.$$

If  $\underline{\tau}_{\sigma} = \overline{\tau}_{\sigma}$  let  $\tau_{\sigma} = \underline{\tau}_{\sigma} = \overline{\tau}_{\sigma}$ . Furthermore, we define

$$\underline{d}(\sigma) = \sup \{\underline{d}(A) \colon A \text{ $\sigma$-free}\}, \quad \overline{d}(\sigma) = \sup \{\overline{d}(A) \colon A \text{ $\sigma$-free}\}.$$

If  $\underline{d}(\sigma)$  and  $\overline{d}(\sigma)$  coincide, the common value is denoted by  $d(\sigma)$ .

Every system  $\sigma_0$  generates a homogeneous system  $\sigma_0$ 

$$\sigma = N\sigma_0 = \{T: T = nS, n \in N, S \in \sigma_0\}.$$

The investigation of a homogeneous system is facilitated by a small generating system.

THEOREM 1. Suppose that the homogeneous system  $\sigma$  is generated by  $\sigma_0 = \{S_1, S_2, \ldots\}$ . Let  $a_1, a_2, \ldots, a_k$  be coprime integers greater than 1 and

$$U = \{u \colon u = a_1^{r_1} a_2^{r_2} \dots a_k^{r_k}, r_i \in \{0\} \cup N\}.$$

If  $S_i \subset U$  for each i then  $\tau_{\sigma}$  exists and

$$\tau_{\sigma}(n) = \tau_{\sigma} n + O(\log^k n).$$

Here  $\tau_{\sigma}$  is less than 1. There is a  $\sigma$ -free set A with  $\overline{d}(A) = \tau_{\sigma}$ .

Proof. Denote by V the sequence of positive integers which are not a multiple of any of the numbers  $a_i$ . It is well-known that

(1) 
$$V(n) = nd(V) + O(1), \quad \text{where} \quad d(V) = \prod_{j=1}^{k} \left(1 - \frac{1}{a_j}\right).$$

We have

(2) 
$$\sum_{u \in U} \frac{1}{u} = \frac{1}{d(V)} \quad \text{and} \quad U(n) \leqslant \left(1 + \frac{\log n}{\log 2}\right)^k.$$

Every positive integer has a unique representation of the form uv,  $u \in U$ ,  $v \in V$ . Therefore, it follows from (1) and (2)

(3) 
$$n = \sum_{u \leqslant n} V\left(\frac{n}{u}\right) = nd(V) \sum_{u \leqslant n} \frac{1}{u} + O\left(U(n)\right),$$
$$\sum_{u \leqslant n} \frac{1}{u} = O\left(\frac{U(n)}{n}\right) = O\left(\frac{\log^{k} n}{n}\right),$$

where summation is taken over the numbers  $u \in U$ .

If we define

$$\tau_{\sigma}^{U}(n) = \max\{A(n): A \subset U, A \sigma\text{-free}\},$$

and if R denotes the unique subset of U having the counting function  $R(n) = \tau_{\sigma}^{U}(n)$  then

$$au_{\sigma}(n) = \sum_{v \in V} au_{\sigma}^{U} \left( \frac{n}{v} \right) = \sum_{v \in V} R\left( \frac{n}{v} \right).$$

Thus, by (1),

$$\tau_{\sigma}(n) = \sum_{r \in \mathbb{R}} V\left(\frac{n}{r}\right) = nd(V) \sum_{r \geq n} \frac{1}{r} - nd(V) \sum_{r \geq n} \frac{1}{r} + O(R(n)),$$

where summation is over  $r \in \mathbb{R}$ . By  $R \subset U$ , it now follows from (2) and (3) that

(4) 
$$au_{\sigma}(n) = au_{\sigma} n + O(\log^k n), \quad \text{where} \quad au_{\sigma} = d(V) \sum_{r \in R} \frac{1}{r}.$$

Since  $\sigma$  and the sets  $S_i$  are non-empty by definition, R is a proper subset of U. We have

$$\sum_{r \in \mathbb{R}} \frac{1}{r} < \sum_{u \in U} \frac{1}{u} = \frac{1}{d(V)},$$

whence  $\tau_{\sigma} < 1$ . The existence of a  $\sigma$ -free set A with  $\overline{d}(A) = \tau_{\sigma}$  is ensured by the following lemma.

LEMMA 1. Suppose that the homogeneous system  $\sigma$  is generated by  $\sigma_0 = \{S_1, S_2, \ldots\}$ . If  $M = \{z \colon z = \max S_i, S_i \in \sigma_0\}$  has natural density 0, then there is a  $\sigma$ -free set A with,  $\overline{d}(A) = \overline{\tau}_{\sigma}$ .

Proof. Let  $\varepsilon_j$  (j=1,2,...) be positive numbers satisfying  $0 < \varepsilon_j < 1$  and  $\lim_{j\to\infty} \varepsilon_j = 0$ . There is a sequence of integers  $x_j$  starting with  $x_0 = 0$  and having the following properties for j > 0.

(a) 
$$x_j > \frac{1}{\varepsilon_i} x_{j-1}$$
,

(b)  $\tau_{\sigma}(x_j) > (\overline{\tau}_{\sigma} - \varepsilon_j) x_j$ ,

(c) if  $T_{j-1} = \{mn: m \in M, n \in [1, x_{j-1}]\}$  then  $T_{j-1}(x_j) < \varepsilon_j x_j$ .

Let  $A'_j$  be a  $\sigma$ -free set in  $[1, x_j]$  with  $|A'_j| > (\bar{\tau}_{\sigma} - \varepsilon_j)x_j$ . Using the notation  $B \sqcap C = \{z \colon z \in B, z \notin C\}$  we define

$$A_j = A_j' \cap ([1, x_{j-1}] \cup T_{j-1}), \quad A = \bigcup_{j=1}^{\infty} A_j.$$

The sets  $A_j$  are disjoint and  $\sigma$ -free. From (a), (b), (c) we obtain

$$A(x_i) \geqslant A_i(x_i) > (\overline{\tau}_a - 3\varepsilon_i)x_i$$

hence  $\overline{d}(A) \geqslant \overline{\tau}_{\sigma}$ . Assume now that A contains a set  $nS_i$ . Let  $d = \min S_i$  and  $D = \max S_i$ . Since the sets  $A_i$  are  $\sigma$ -free, we must have

$$nd \, \epsilon A_k, \quad nD \, \epsilon A_q, \quad k < q.$$

From  $n \leq x_k \leq x_{q-1}$  and  $D \in M$  follows  $nD \in T_{q-1}$ , which contradicts the definition of  $A_q$ . Therefore, A is  $\sigma$ -free.

LEMMA 2. Suppose that the homogeneous system  $\sigma$  is generated by  $\sigma_0 = \{S_1, S_2, \ldots\}$ . Let  $d_j = \min S_j$  and  $D_j = \max S_j$ . If  $\lim_{j \to \infty} d_j/D_j = 0$  then  $\tau_{\sigma}$  exists.

Proof. Denote by  $\sigma_j$  the homogeneous system generated by  $\{S_1, S_2, \ldots, S_j\}$ . By Theorem 1, the density  $\tau_{\sigma_j}$  exists. Moreover,  $\lim_{j\to\infty} \tau_{\sigma_j} = \tau$ 

2 - Acta Arithmetica XXXII.1

exists, because  $\tau_{\sigma_j} \geqslant \tau_{\sigma_{j+1}}$ . If for positive  $\varepsilon$  the integer j is chosen so large that  $d_k/D_k < \varepsilon$  for each k > j then

$$\tau_{\sigma_j}(n) - \varepsilon n \leqslant \tau_{\sigma}(n) \leqslant \tau_{\sigma_j}(n), \qquad \tau_{\sigma_j} - \varepsilon \leqslant \underline{\tau}_{\sigma} \leqslant \overline{\tau}_{\sigma} \leqslant \tau_{\sigma_j}.$$

For  $j \to \infty$  and  $\varepsilon \to 0$  we obtain  $\underline{\tau}_{\sigma} = \overline{\tau}_{\sigma} = \tau$ .

We are now going to state the announced generalization of a theorem of Besicovitch ([3], p. 257) on primitive sequences. We denote by NG the set of multiples  $\{ng: n \in N, g \in G\}$ .

THEOREM 2. Let the homogeneous system  $\sigma$  be generated by  $\sigma_0 = \{S_1, S_2, \ldots\}$ . Suppose that there is a sequence  $G = \{g_1, g_2, \ldots\}$  of positive integers satisfying

(i)  $S_i \cap G \neq \emptyset$  for each j,

(ii)  $\lim_{i \to \infty} \overline{d}(NG_i) = 0$  if  $G_i = \{g_i, g_{j+1}, \ldots\}$ .

Then  $\tau_{\sigma}$  exists and  $\bar{d}(\sigma) = \tau_{\sigma}$ . Furthermore,  $\tau_{\sigma} = 0$  is equivalent to  $\{1\} \in \sigma$ , and  $1 \notin G$  implies  $\underline{d}(\sigma) > 0$ .

Proof. We make use of the following lemma which is easily deduced from an inequality of Behrend ([3], p. 263).

LEMMA 3 (Erdös [2]). If  $1 \notin G$  and  $\lim_{j \to \infty} \overline{d}(NG_j) = 0$  then d(NG) exists and is less than 1.

We note that  $N \sqcap NG$  is  $\sigma$ -free by (i). So Lemma 3 implies  $\underline{d}(\sigma) > 0$  if  $1 \notin G$ . Now suppose  $1 \in G$  and  $G' = G \cap \{1\}$  then

$$(N \sqcap NG') \cap (n/2, n]$$

is  $\sigma$ -free for each  $n \in N$  if  $\{1\} \notin \sigma$ . In this case Lemma 3 implies  $\tau_{\sigma} > 0$ .

It remains to prove the existence of  $\tau_{\sigma}$  and  $\overline{d}(\sigma) = \tau_{\sigma}$ . By (ii), we may assume that G is finite,  $G = \{g_1, \ldots, g_t\}$ . Then the existence of  $\tau_{\sigma}$  follows either from Theorem 1 or Lemma 2.

LEMMA 4. If m is any positive real number then

$$\lim_{x\to\infty} d(N[x/m, x]) = 0.$$

This is an immediate consequence of a theorem of Erdös ([3], p. 268). To construct a  $\sigma$ -free set A with  $\overline{d}(A) \geqslant \tau_{\sigma} - \varepsilon$  (0  $< \varepsilon < 1$ ), we choose

(5) 
$$m = \frac{3}{\varepsilon} g_i, \quad \varepsilon_j = \left(\frac{1}{2}\right)^j \frac{\varepsilon}{3} \quad (j = 0, 1, 2, \ldots).$$

There is a sequence of integers  $x_j$  starting with  $x_0 = 0$  and having the following properties for j > 0:

- (a)  $x_j > mx_{j-1}$ ,
- (b)  $\tau_{\sigma}(x_j) > (\tau_{\sigma} \frac{1}{3}\varepsilon)x_j$ ,
- (c) if  $B_j = N[x_j/m, x_j]$  then  $d(B_j) < \varepsilon_j$  and  $B_{j-1}(x) < \varepsilon_{j-1}x$  for each  $x \ge x_j$ .



Let  $A'_j$  be a  $\sigma$ -free set in  $[1, x_j]$  with  $|A'_j| > (\tau_{\sigma} - \frac{1}{3}\varepsilon)x_j$ . Define

(6) 
$$A_j = A_j' \cap (\bigcup_{i < j} B_i \cup [1, \frac{1}{3} \varepsilon x_j]), \quad A = \bigcup_{j=1}^{\infty} A_j.$$

The sets  $A_j$  are disjoint and  $\sigma$ -free. From (a), (b), (c) we obtain

$$A\left(x_{j}\right)\geqslant A_{j}\left(x_{j}\right)>\left(\tau_{\sigma}-\tfrac{1}{3}\,\varepsilon-\tfrac{1}{3}\,\varepsilon-\sum_{i=1}^{j-1}\varepsilon_{i}\right)x_{j}>\left(\tau_{\sigma}-\varepsilon\right)x_{j},$$

hence  $\bar{d}(A) \ge \tau_{\sigma} - \varepsilon$ . To prove that A is  $\sigma$ -free, assume that A contains a set of the form  $nS_i$ ,  $S_i \in \sigma_0$ . Let  $d = \min S_i$  and  $D = \max S_i$ . Since the sets  $A_j$  are  $\sigma$ -free, we must have

(7) 
$$nd \, \epsilon A_k, \quad nD \, \epsilon A_q, \quad k < q.$$

By (i),  $S_i$  contains a number  $g \in G$ . Thus  $ng \in A$  and, by (a), (5), and (7),

$$ng = n d \frac{g}{d} \leqslant x_k g_t < x_{k+1} \frac{\varepsilon}{3}.$$

Now (6) implies  $ng \in A_k$ . So we have

$$x_k \frac{\varepsilon}{3} < ng \leqslant x_k, \quad \frac{x_k}{m} < n \leqslant x_k.$$

Therefore,  $nD \in B_k$ , which contradicts the definition of  $A_a$ .

3. Logarithmic densities of  $\sigma$ -free sets. For a homogeneous system  $\sigma$  the natural density  $d(\sigma)$  need not exist. Example 2 below shows that even for a finitely generated system  $\underline{d}(\sigma)$  may be less than  $\overline{d}(\sigma)$ . More uniform results are obtained by considering logarithmic densities. We introduce the following logarithmic notions in analogy to the corresponding terms on natural density.

The logarithmic counting function of  $A \subset N$  is  $A^*(n) = \sum_{\alpha \leqslant n} 1/a$  (summation over  $a \in A$ ). The limit  $\delta(A) = \lim_{n \to \infty} A^*(n)/\log n$ , if it exists, is called the logarithmic density of A. The lower and upper logarithmic densities  $\underline{\delta}(A)$  and  $\overline{\delta}(A)$  are defined by the liminf and limsup of the same expression. Let

$$\lambda_{\sigma}(n) = \max\{A^*(n) \colon A \text{ $\sigma$-free}\},$$
  $\underline{\lambda}_{\sigma} = \liminf_{n \to \infty} rac{\lambda_{\sigma}(n)}{n}, \quad \overline{\lambda}_{\sigma} = \limsup_{n \to \infty} rac{\lambda_{\sigma}(n)}{n}.$ 

If  $\underline{\lambda}_{\sigma} = \overline{\lambda}_{\sigma}$  put  $\underline{\lambda}_{\sigma} = \overline{\lambda}_{\sigma} = \lambda_{\sigma}$ . Define

$$\underline{\delta}(\sigma) = \sup\{\underline{\delta}(A) \colon A \text{ } \sigma\text{-free}\}, \quad \overline{\delta}(\sigma) = \sup\{\overline{\delta}(A) \colon A \text{ } \sigma\text{-free}\}.$$

If  $\underline{\delta}(\sigma) = \overline{\delta}(\sigma)$  denote the common value by  $\delta(\sigma)$ .

We believe that on very general conditions for a homogeneous system  $\delta(\sigma)$  and  $\lambda_{\sigma}$  exist and coincide.

THEOREM 3. Suppose that the homogeneous system  $\sigma$  is generated by  $\sigma_0 = \{S_1, S_2, \ldots\}$ . Let  $a_1, a_2, \ldots, a_k$  be coprime integers greater than 1 and

$$U = \{u \colon u = a_1^{r_1} a_2^{r_2} \dots a_k^{r_k}, r_i \in \{0\} \cup N\}.$$

If  $S_i \subset U$  for each i then  $\lambda_{\sigma}$  exists and

$$\lambda_{\sigma}(n) = \lambda_{\sigma} \log n + O(\log \log n)$$
.

Furthermore,  $\delta(\sigma)$  exists and  $\underline{d}(\sigma) = \delta(\sigma) = \lambda_{\sigma}$ . If k = 1 there is a  $\sigma$ -free set A satisfying

$$A^*(n) = \lambda_{\sigma}(n)$$
 and  $A(n) = \lambda_{\sigma}n + O(\log n)$ .

Proof. This proof is similar to that of Theorem 1. If we denote by V the sequence of positive integers which are not a multiple of any of the numbers  $a_i$  then

(8) 
$$V^*(n) = d(V)\log n + O(1)$$
, where  $d(V) = \prod_{j=1}^k \left(1 - \frac{1}{a_j}\right)$ .

Define

$$\lambda_{\sigma}^{U}(n) = \max\{A^{*}(n): A \subset U, A \text{ $\sigma$-free}\}.$$

By (3), the limit  $\lim_{n\to\infty}\lambda_{\sigma}^{U}(n)=\alpha$  exists and

(9) 
$$\lambda_{\sigma}^{U}(n) = \alpha + O\left(\frac{\log^{k} n}{n}\right).$$

Now we have, by (8) and (9),

$$\lambda_{\sigma}(n) = \sum_{v \in V} \frac{1}{v} \lambda_{\sigma}^{U} \left(\frac{n}{v}\right),$$

(10) 
$$\lambda_{\sigma}(n) = ad(V)\log n + O\left(\sum_{v \leq n} \frac{1}{v} \frac{\left(\log(n/v)\right)^k}{n/v}\right),$$

where  $v \in V$ . Let  $m = \log^2 n$  and  $f(y) = \frac{\log^k y}{y}$ . Assuming that f(y) is strictly decreasing for  $y \ge m$ , we obtain, by (8),

$$\left(\sum_{n\geq n} + \sum_{n\geq n}\right) \frac{1}{v} f\left(\frac{n}{v}\right) = O\left(f(m)\log n + \log m\right).$$

Hence, by (10),

(11) 
$$\lambda_{\sigma}(n) = \lambda_{\sigma} \log n + O(\log \log n), \quad \text{where} \quad \lambda_{\sigma} = \alpha d(V).$$

To prove  $\underline{d}(\sigma) = \delta(\sigma) = \lambda_{\sigma}$ , we construct a  $\sigma$ -free set A with natural density greater than  $\lambda_{\sigma} - \varepsilon$  ( $0 < \varepsilon < \lambda_{\sigma}$ ). Let U' be a finite  $\sigma$ -free subset of U satisfying

$$\sum_{u \in U'} \frac{1}{u} > \alpha - \varepsilon.$$

If A = U'V then A is  $\sigma$ -free and

$$A(n) = \sum_{u \in U'} V\left(\frac{n}{u}\right) = nd(V) \sum_{u \in U'} \frac{1}{u} + O(1).$$

Therefore, d(A) exists and  $d(A) > (\alpha - \varepsilon)d(V) > \lambda_{\sigma} - \varepsilon$ .

If k = 1 let  $a = a_1$  and  $U_j = \{a^0, a^1, ..., a^j\}$ ,  $U_{-1} = \emptyset$ . Define  $S \subset U$  by the following property:

 $a^j \in S$  if and only if  $(S \cap U_{j-1}) \cup \{a^j\}$  is  $\sigma$ -free (j = 0, 1, ...).

Let  $S_j = S \cap U_j$ . We prove by induction that  $S_j$  is the only  $\sigma$ -free set in  $U_j$  with  $S_j^*(a^j) = \lambda_\sigma^U(a^j)$ . This is certainly true for j = 0. Let it be true for j-1  $(j \ge 1)$ . Suppose now that M is a  $\sigma$ -free subset of  $U_j$ ,  $M \cap U_{j-1} \ne S_{j-1}$ , then

$$M^*(a^j) \leqslant \lambda_{\sigma}^U(a^{j-1}) - \frac{1}{a^{j-1}} + \frac{1}{a^j} < S_j^*(a^j).$$

Hence  $S^*(a^j) = \lambda_{\sigma}^U(a^j)$  for j = 0, 1, ... If A = SV then A is  $\sigma$ -free,  $A^*(n) = \lambda_{\sigma}(n)$ , and

$$A(n) = \sum_{s \in S} V\left(\frac{n}{s}\right) = \lambda_{\sigma} n + O(\log n), \quad \text{where} \quad \lambda_{\sigma} = d(V) \sum_{s \in S} \frac{1}{s}.$$

LEMMA 5. Let the homogeneous system  $\sigma$  be generated by  $\sigma_0 = \{S_1, S_2, \ldots\}$ . Let  $G = \{g_1, g_2, \ldots\}$  be a sequence of positive integers,  $G_j = \{g_j, g_{j+1}, \ldots\}$ , and  $\sigma_j$  the homogeneous system generated by  $\{S: S \in \sigma_0, S \cap NG_j = \emptyset\}$ . Suppose

(i)  $\lim \delta(NG_j) = 0$ ,

(ii)  $\delta(\sigma_j)$  and  $\lambda_{\sigma_i}$  exist and  $\delta(\sigma_j) = \lambda_{\sigma_i}$  for each  $j \in \mathbb{N}$ .

Then  $\delta(\sigma)$  and  $\lambda_{\sigma}$  exist and  $\delta(\sigma) = \lambda_{\sigma} = \lim_{j \to \infty} \delta(\sigma_j)$ . If, in addition to

(i) and (ii),  $\lim_{\substack{j\to\infty\\j\to\infty}} \overline{d}(NG_j) = 0$  and  $\underline{d}(\sigma_j) = \delta(\sigma_j) = \lambda_{\sigma_j}$  for each  $j \in \mathbb{N}$  then  $\underline{d}(\sigma) = \delta(\sigma) = \lambda_{\sigma}$ .

Proof. Since  $\sigma_1 \subset \sigma_2 \subset \ldots \subset \sigma$ , the limit  $\lim_{j \to \infty} \lambda_{\sigma_j} = \lambda$  exists and  $\overline{\lambda}_{\sigma} \leqslant \lambda$ . Let  $\varepsilon_j > 0$  and  $\lim_{j \to \infty} \varepsilon_j = 0$   $(j \in N)$ . By (ii), there is a  $\sigma_j$ -free set  $A_j$  with  $\underline{\delta}(A_j) > \lambda_{\sigma_j} - \varepsilon_j$ . The set  $A'_j = A_j \cap NG_j$  is  $\sigma$ -free and  $\underline{\delta}(A'_j) > \lambda_{\sigma_j} - \varepsilon_j - \delta(NG_j)$ . For  $j \to \infty$  follows  $\underline{\delta}(\sigma) \geqslant \lambda$ . Hence  $\delta(\sigma)$  and  $\lambda_{\sigma}$  exist and  $\delta(\sigma) = \lambda_{\sigma} = \lambda$ .

If  $\underline{d}(\sigma_j) = \delta(\sigma_j) = \lambda_{\sigma_j}$  and  $\lim_{\substack{j \to \infty \\ \text{follows the final part of Lemma 5.}}} \overline{d}(NG_j) = 0$  then we may demand  $\underline{d}(A_j) > \lambda_{\sigma_j} - \varepsilon_j$ . Now we have  $\underline{d}(A_j') > \lambda_{\sigma_j} - \varepsilon_j - \overline{d}(NG_j)$ , and for  $j \to \infty$ 

If  $A = \{a_1, a_2, \ldots\}$  is a sequence of positive integers let  $A_j = \{a_j, a_{j+1}, \ldots\}$  and  $\overline{A}_j = A \, \neg A_j$ . It has been proved by Davenport and Erdös ([3], p. 258) that the logarithmic density  $\delta(NA)$  exists and

$$\underline{d}(NA) = \delta(NA) = \lim_{j \to \infty} d(N\overline{A}_j).$$

Note that

(12) 
$$\lim_{j \to \infty} \delta(NA_j \, \overline{\ } \, N\overline{A}_j) = 0.$$

LEMMA 6. Suppose that the homogeneous system  $\sigma'$  is generated by  $\sigma'_0 = \{S_1, S_2, \ldots, S_q\}$ . Then for any homogeneous subsystem  $\sigma \subset \sigma'$  the densities  $\delta(\sigma)$  and  $\lambda_{\sigma}$  exist and coincide.

Proof. Any homogeneous subsystem  $\sigma$  of  $\sigma'$  is of the form

$$\sigma = \{S\colon S = a_{ik}S_i,\ 1\leqslant i\leqslant q,\ 1\leqslant k<\infty\}, \quad \ a_{ik}\epsilon N,\ a_{i1}< a_{i2}<\dots$$
 Let

$$A_i = \{a_{i1}, a_{i2}, \ldots\}, \quad A_{ij} = \{a_{ij}, a_{i,j+1}, \ldots\}, \quad \overline{A}_{ij} = A_i \neg A_{ij}.$$

According to (12), for  $\varepsilon > 0$  the number j can be chosen so large that

(13) 
$$\delta(NA_{ij} \cap N\overline{A}_{ij}) < \varepsilon/q \quad \text{for each } i = 1, \dots, q.$$

Denote by  $\sigma_j$  the homogeneous system generated by

$${S: S = a_{ik}S_i, 1 \leqslant i \leqslant q, 1 \leqslant k < j}.$$

By Theorem 3,  $\delta(\sigma_j)$  and  $\lambda_{\sigma_j}$  exist and  $\delta(\sigma_j) = \lambda_{\sigma_j}$ . Hence there is a  $\sigma_j$ -free set  $H_j$  with  $\underline{\delta}(H_j) > \lambda_{\sigma_i} - \varepsilon$ . If  $t_i \in S_i$  the set

$$H'_j = H_j \sqcap \bigcup_{i=1}^q t_i (NA_{ij} \sqcap N\overline{A}_{ij})$$

is  $\sigma$ -free and, by (13),

(14) 
$$\underline{\delta}(\sigma) \geqslant \underline{\delta}(H'_j) > \lambda_{\sigma_j} - 2\varepsilon.$$

Since  $\sigma_1 \subset \sigma_2 \subset \ldots \subset \sigma$  the limit  $\lim_{j \to \infty} \lambda_{\sigma_j} = \lambda$  exists and  $\bar{\lambda}_{\sigma} \leqslant \lambda$ . Now, on letting  $j \to \infty$  and  $\varepsilon \to 0$  in (14), we see that  $\delta(\sigma)$  and  $\lambda_{\sigma}$  exist and  $\delta(\sigma) = \lambda_{\sigma} = \lambda$ .

Finally, we are going to extend Lemma 6 by Lemma 5. Let  $G = \{g_1, g_2, \ldots\}$  and  $G_j = \{g_j, g_{j+1}, \ldots\}$ . We shall say that G has property P if  $\delta(NG_j) = 0$ .

THEOREM 4. Suppose that the homogeneous system  $\sigma'$  is generated by  $\sigma'_0 = \{S_1, S_2, \ldots\}$ . Let G be a sequence with property P and  $M_j = \bigcup \{S: S \in \sigma'_0, S \cap NG_j = \emptyset\}$ . If each set  $M_j$  has property P, then for any homogeneous subsystem  $\sigma \subset \sigma'$  the densities  $\delta(\sigma)$  and  $\lambda_{\sigma}$  exist and coincide.

**Proof.** If we denote by  $\sigma_j$  and  $\sigma'_j$  the homogeneous systems generated by

$$\{S\colon S\epsilon\sigma,\,S\cap NG_j=\emptyset\} \quad \text{ and } \quad \{S\colon S\epsilon\sigma_0',\,S\cap NG_j=\emptyset\}$$

then  $\sigma_j \subset \sigma'_j$ . Suppose



(b) Theorem 4 is true, if each set  $M_j$  is finite. In the general case (a) follows from (b) applied to  $\sigma'_i$ .

### 4. Examples

Example 1. Let  $\sigma$  consist of the solutions in positive integers of the equation

$$(15) x_1 + x_2 + \ldots + x_{2k} = 2(y_1 + y_2 + \ldots + y_{2k}).$$

Clearly, the interval (n/2, n] is  $\sigma$ -free. Therefore,  $\tau_{\sigma} \ge \frac{1}{2}$ . We prove

$$d(\sigma) = 1/r$$
, where  $r = \min\{z: z \in \mathbb{N}, z \nmid 2k\}$ .

Obviously, the congruence class 1 modulo r is  $\sigma$ -free. Hence  $\underline{d}(\sigma) \ge 1/r$ . Let  $A \subset N$  be  $\sigma$ -free. By equating some of the variables in (15) it follows that the equation

$$(16) x_1 + x_2 + \dots + x_i = 2(y_1 + y_2 + \dots + y_i)$$

has no solution in A, if j divides 2k, thus especially for j = 1, ..., r-1. For  $x_2 = y_1, x_3 = y_2, ..., x_j = y_{j-1}$  the last equation becomes

$$(17) x_1 = y_1 + \dots + y_{i-1} + 2y_i (j = 2, 3, \dots, r-1).$$

By (16),  $x_1 + x_2 = 2(y_1 + y_2)$  has no solution in A. For  $x_1 = x_2$  this means that

$$(18) x_1 = y_1 + y_2$$

is also unsolvable in A. Let  $a \in A$ . Substituting  $y_2 = y_3 = \dots = y_j = a$  in (17) and  $y_2 = a$  in (18) we see that none of the equations

$$x_1 = y_1 + ja$$
  $(j = 1, 2, ..., r-1)$ 

has a solution in A. Hence  $\overline{d}(A) \leq 1/r$ .

It would be interesting to know whether the logarithmic density  $\delta(\sigma)$  exists for every homogeneous system defined by a linear equation.

EXAMPLE 2. We construct a finitely generated homogeneous system  $\sigma$  with  $\underline{d}(\sigma) < \overline{d}(\sigma)$ . Suppose that a is a positive integer not equal to 1. Let  $\sigma$  consist of all 3-term geometric progressions of ratio a,  $a^2$ ,  $a^3$  or  $a^4$ . This system is generated by

$$\{1, a, a^2\}, \{1, a^2, a^4\}, \{1, a^3, a^6\}, \{1, a^4, a^8\}.$$

We determine  $\overline{d}(\sigma) = \tau_{\sigma}$  and  $\underline{d}(\sigma) = \lambda_{\sigma}$  according to the considerations to Theorem 1 and Theorem 3. By (4) and (11), we have

(19) 
$$\overline{d}(\sigma) = d(V) \sum_{r \in \mathbb{R}} 1/r, \quad \underline{d}(\sigma) = ad(V),$$

where R is the set satisfying  $R(n) = \tau_{\sigma}^{U}(n)$  and  $\alpha = \lim_{n \to \infty} \lambda_{\sigma}^{U}(n)$ . We determine  $\lambda_{\sigma}^{U}(n) = S^{*}(n)$  as indicated in the final part of the proof of Theorem 3. Thus we obtain, by (19),

$$\overline{d}(\sigma) = \left(1 - \frac{1}{a}\right) \left(1 + \frac{1}{a} + \frac{1}{a^3} + \frac{1}{a^4} + \frac{1}{a^8} + \ldots\right),$$

$$\underline{d}(\sigma) = \left(1 - \frac{1}{a}\right) \left(1 + \frac{1}{a} + \frac{1}{a^3} + \frac{1}{a^4}\right) \sum_{i=0}^{\infty} \frac{1}{a^{9i}} < \overline{d}(\sigma).$$

EXAMPLE 3. Denote by  $C = \{c_1, c_2, ...\}$  the sequence of integers greater than 1, which are a product of at most k primes (multiple factors counted multiply). Define  $S_j = \{1, c_j\}$ , and let  $\sigma$  be the homogeneous system generated by  $\sigma_0 = \{S_1, S_2, ...\}$ .

By Lemma 1 and Lemma 2,  $\tau_{\sigma}$  exists, and there is a  $\sigma$ -free set A with  $\overline{d}(A) = \tau_{\sigma}$ . Since  $c_j \ge 2$  for each  $j \in N$ , we have  $\tau_{\sigma} \ge \frac{1}{2}$ . Let us prove

(20) 
$$\delta(\sigma) = \lambda_{\sigma} = \frac{1}{k+1}.$$

Suppose that A is a  $\sigma$ -free set in [1, n] satisfying  $A^*(n) = \lambda_{\sigma}(n)$ . We sketchily follow the words of Halberstam and Roth ([3], pp. 246–249) for a proof of Behrend's theorem on primitive sequences.

(21) 
$$A^*(n) = \lambda_{\sigma}(n) = \frac{1}{n} \sum_{u \le n} r(u) + O(1),$$

where r(u) is the number of divisors of u belonging to A. Let u be a product of s(u) primes. According to de Bruijn, Tengbergen, and Kruyswijk [1], the set of divisors of u can be completely divided into  $\binom{s(u)}{\lfloor s(u)/2\rfloor}$  disjoint symmetrical chains. A symmetrical chain of m divisors cannot contain more than  $\frac{m}{k+1}$  +1 numbers of A. Therefore, if d(u) is the number of divisors of u,

$$r(u) \leqslant \frac{d(u)}{k+1} + \binom{s(u)}{\lfloor s(u)/2 \rfloor}$$

and, by (21),

(22) 
$$\lambda_{\sigma}(n) \leqslant \frac{1}{n(k+1)} \sum_{u \leqslant n} d(u) + O\left(\frac{1}{n} \sum_{u \leqslant n} \frac{d(u)}{(s(u))^{1/2}}\right),$$

$$\lambda_{\sigma}(n) \leqslant \frac{\log n}{k+1} + O\left(\frac{\log n}{(\log \log n)^{1/2}}\right).$$

On the other hand, if  $A = \{a: a > 1, s(a) \equiv 1 \mod (k+1)\}$  then A is

 $\sigma$ -free, and it follows as before that

(23) 
$$A^*(n) \geqslant \frac{\log n}{k+1} + O\left(\frac{\log n}{(\log \log n)^{1/2}}\right).$$

By (22) and (23), we obtain (20). Note that the constants involved in the O-estimates of (22) and (23) can be chosen independent of k.

EXAMPLE 4. Let  $\sigma$  consist of all n-term geometric progressions ( $n \ge 3$ , rational ratio). Systems of this kind have been investigated by Rankin [4] and by Riddell [5]. The system  $\sigma$  is generated by

$$\sigma_0 = \{S \colon S = \{a^{n-1}, a^{n-2}b^1, a^{n-3}b^2, \dots, b^{n-1}\}, a < b, (a, b) = 1\}.$$

Let  $G = \{1^{n-1}, 2^{n-1}, 3^{n-1}, \ldots\}$ . Since  $\sum_j 1/j^{n-1}$  converges, we have  $\lim_{j \to \infty} \overline{d}(NG_j) = 0$ . By Theorem 2,  $\tau_{\sigma}$  exists, and from Lemma 1 follows the existence of a  $\dot{\sigma}$ -free set A with  $\overline{d}(A) = \tau_{\sigma}$ . Lemma 5 and Theorem 3 ensure the existence of  $\delta(\sigma)$  and  $\lambda_{\sigma}$ . Moreover,  $d(\sigma) = \delta(\sigma) = \lambda_{\sigma}$ .

Suppose that  $E \subset \{0\} \cup N$  is a set which does not contain an *n*-term arithmetic progression. Let A consist of those positive integers which have in their unique prime factorization only exponents belonging to E. Then A is  $\sigma$ -free, d(A) exists, and

$$\underline{d}(\sigma) \geqslant d(A) = \prod_{p} \left\{ \left( 1 - \frac{1}{p} \right) \sum_{r \in \underline{\mathbb{Z}}} \frac{1}{p^r} \right\},$$

where the product is taken over all primes. As in the proof of Theorem 3, it follows by induction that  $\sum_{r \in E} 1/p^r$  is maximal if and only if E is identical with the set  $E_n$  defined by the following property:

 $r \in E_n$  if and only if  $(E_n \cap [0, r-1]) \cup \{r\}$  does not contain an *n*-term arithmetic progression  $(r \in \{0\} \cup N)$ .

The estimates of Rankin and Riddell obtained by (24) can be improved for  $n \ge 4$ , because they use a set  $E \ne E_n$ . If n is a prime, then it follows from a paper of Scheid [6] that  $E_n$  consists of the nonnegative integers, which have no digit n-1, when they are expressed in the scale of n. In this case we have

$$\begin{split} \underline{d}\left(\sigma\right) \geqslant \prod_{p} \left\{ \left(1 - \frac{1}{p}\right) \prod_{k=0}^{\infty} \left(1 + \frac{1}{p^{n^{k}}} + \frac{1}{p^{2n^{k}}} + \ldots + \frac{1}{p^{(n-2)n^{k}}}\right) \right\}, \\ \underline{d}\left(\sigma\right) \geqslant \prod_{p} \left\{ \left(1 - \frac{1}{p}\right) \prod_{k=0}^{\infty} \frac{1 - \frac{1}{p^{(n-1)n^{k}}}}{1 - \frac{1}{n^{n^{k}}}} \right\} = \frac{1}{\zeta(n-1)} \prod_{k=1}^{\infty} \frac{\zeta(n^{k})}{\zeta\left((n-1)n^{k}\right)}. \end{split}$$

Now suppose that  $\sigma'$  consists of all 3-term geometric progressions with integral ratio. We wish to show  $\underline{d}(\sigma') < \overline{d}(\sigma')$ . Let U be the sequence of positive integers which have no prime divisor different from 2 or 3. Denote by  $\sigma^*$  the system of those progressions in  $\sigma'$  which have ratio in U. It is not difficult to check that

$$\max \left\{ \sum_{u \in A} \frac{1}{u} : A \ \sigma^*\text{-free}, \ A \subset \{2^{r_1}3^{r_2}: r_1, r_2 = 0, 1, 2\} \right\} = 2.$$

Thus

$$\alpha = \lim_{n \to \infty} \lambda_{\sigma^*}^{U}(n) \leqslant 2 \sum_{j=0}^{\infty} \frac{1}{2^{3j}} \sum_{k=0}^{\infty} \frac{1}{3^{3k}} = \frac{8}{7} \frac{27}{13}$$

and, by (11),

$$\underline{d}(\sigma') \leqslant \underline{d}(\sigma^*) \leqslant \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \frac{8}{7} \frac{27}{13} = \frac{72}{91} = 0.791 \dots$$

On the other hand the set

$$\left(\frac{n}{32}, \frac{n}{27}\right) \cup \left(\frac{n}{24}, \frac{n}{12}\right) \cup \left(\frac{n}{9}, \frac{n}{8}\right) \cup \left(\frac{n}{4}, n\right)$$

is  $\sigma'$ -free in [1, n]. Hence

$$\overline{d}(\sigma') = \tau_{\sigma'} \geqslant \frac{5}{864} + \frac{1}{24} + \frac{1}{72} + \frac{3}{4} = \frac{701}{864} = 0.811\dots$$

#### References

- [1] N. G. de Bruijn, C. E. Tengbergen and D. Kruyswijk, On the set of divisors of a number, Nieuw Arch. Wisk. II, 23 (1949-51), pp. 191-193.
- [2] P. Erdös, Some extremal problems in combinatorial number theory, Mathematical essays dedicated to A. J. Macintyre, pp. 123-133, Ohio University Press, Athens 1970.
- [3] H. Halberstam and K. F. Roth, Sequences, Oxford University Press, 1966.
- [4] R. A. Rankin, Sets of integers containing not more than a given number of terms in arithmetical progression, Proc. Royal Soc. Edinburgh Sect. A 65 (1962), pp. 332-344.
- [5] J. Riddell, Sets of integers containing no n terms in geometric progression, Glasgow Math. J. 10 (2) (1969), pp. 137-146.
- [6] H. Scheid, Über arithmetische Progressionen der Länge p, J. Reine Augew. Math. 232 (1968), pp. 118-121.

INSTITUT FÜR MATHEMATIK TECHNISCHE UNIVERSITÄT Clausthal, G. F. R.

Received on 1, 2, 1975 (670)



## ACTA ARITHMETICA XXXII (1977)

# Some remarks on Goldbach's problem

by

AKIO FUJII (Tokyo)

In this paper we shall prove by a modification of Chen's work ([3]) that every sufficiently large even integer x is written as a sum of a prime and a natural number which has at most one prime factor less than  $x^{1089/2089}$ .

1. Let x be a large even integer. Let  $G_2(x)$  be the number of primes  $p \leq x$  such that x-p has at most two prime factors. Chen ([3]) has proved that

$$(1) \qquad G_2(x) \geqslant \frac{0.67 \, x C_x}{(\log x)^2}, \quad \text{where} \quad C_x = \prod_{\substack{p \mid x \\ p > 2}} \frac{p-1}{p-2} \prod_{p > 2} \left(1 - \frac{1}{(p-1)^2}\right).$$

In fact, if we put  $G_2(x, I)$  — the number of primes  $p \leq x$  such that x - p is a prime or  $x - p = p_1 p_2$  with primes  $p_1$  and  $p_2$  satisfying  $p_1 \notin I$  and  $p_1 \leq p_2$ , for a subset I of  $(1, x^{1/2}]$ , he has proved that  $G_2(x, (1, x^{1/10}]) \geq 0.67xC_x/(\log x)^2$ . (Further Halberstam [6] or [7] has shown that 0.67 can be replaced by 0.689.) Now we wish to maximize  $I \subset (1, x^{1/2}]$  such that  $G_2(x, I) \geq AxC_x/(\log x)^2$ , where A is some positive absolute constant. To study this we use the following mean value theorem which is similar to Bombieri's one.

LEMMA 0. Assume that  $M+N \leqslant x^{1/2}$ . For an arbitrarily large constant A, there exist positive constants B=B(A) and E=E(A) such that if  $M \geqslant (\log x)^E$ , and  $b(m) \leqslant (\log x)^C$  with some positive constant C for any m in  $M < m \leqslant M+N$ , then

$$\sum_{\substack{d \leqslant x^{1/2}/(\log x)^B}} \max_{(a,d)=1} \max_{\substack{(M+N)^{1+\theta} < y \leqslant x}} \left| \sum_{\substack{m=M+1 \\ (m,d)=1}}^{M+N} b(m) \left( \sum_{\substack{n \leqslant y/m \\ n \equiv am^*(d)}} A(n) - \frac{1}{\varphi(d)} \cdot \frac{y}{m} \right) \right|$$

$$\ll x/(\log x)^A,$$

where  $\theta$  is an arbitrarily given positive number,  $n \equiv am^*(d)$  means  $n \equiv am^* \pmod{d}$ , and  $m^*$  satisfies  $mm^* \equiv 1$  (d).