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Generalization of some theorems on sets of multiples
and primitive sequences

by
W. Krorz (Clausthal)

1. Introduction. The main results of this paper are generalizations
of a theorem of Besicovitch on primitive sequences and of a theorem of
Davenport and Erdés on sets of multiples. For these theorems and a survey
of related results we refer to the final chapter of Halberstam and Roth [3].

By a system ¢ we mean a non-empty set of finite, non-empty sets
of positive integers. The system o is called homogeneous, if for each ne N
(set of positive integers)

Seo implies S = {ns: seS}eo.

The set A = N iy gaid to be o-free, if it does not contain a subset belonging
to ¢. For a given homogeneous system o we discuss the question of the
‘oreatest possible density’ a o-free set may have. We investigate natural
densities and logarithmic densities of o-free sets. a

The author wishes to acknowledge his debt to the valuable advice
of Professor E. Wirsing.

2. Natural densities of o-free sets. First we introduce some notations.
For real numbers a, 8 we define the interval [a, f] = {n: nelN, a<<n
< ). If 4 is a finite set, then |4| denotes the number of elements in 4.
The counting function of A = N is A(n) = [An[1,n]|. The limit d(4)
= lim 4 (n)/n, if it exists, is called the natural density of 4. The lower

N~>00
and upper natural densities d(4) and d(4) are defined by the liminf
and limsup of the same expression. The system. ¢ is characterized by
7,(n) = max{d(n): A o-free},

7, = liminfz,(n)/n, %, = limsupz,(n)/n.
7—00 n—>»00

If 7, = %, let 7, = 7, = %,. Furthermore, we define
() = sup{d(4): A ofree}, (o) = sup{Z(4): A o-free}.
If d(o) and d(o) coincide, the common value is denoted by d(o).
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Every system o, generates a homogencous system o,
0 =DNoy={T: T =n8,neN, Scoy}.
The investigation of a homogeneous system is facilitated by a small
generating system.
TrEOREM 1. Suppose that the homogencous system o is generated by
09 = {81, 8a, ...}. Let ay, @, ..., a; be coprime integers greater than 1 and
U={u: u=dlag...aFr; {0}UN}.
If 8; = U for each i then v, exists and
© Te(n) = 7,m+0(ogkn).
Here =, is less than 1. There is a o-free set A with d(A) = z,.
Proof. Denote by V the sequence of positive integers which are not
a multiple of any of the numbers a;. It is well-known that

: %
1) V(n) =nd(V)+0(1), where (V) =n(1—i).

A Wy
J=1
We have
, . ‘ logm \®
2 (S S d
(2) M2 ) and  T(n) < (1+ logz)

usU

Every positive integer has a unique representation of the form m, we U,
veV. Therefore, it follows from (1) and (2)

ne Y7 (%) =nd(V) 3= 1+0(U(m),

U<n uLn
1 - U (n) log*n
@ g_{; N ( n ) O( n )’

where summation is taken over the numbers we .
If we define

72 (n) = max{4(n): 4 c U, Ao-frec},

and if B denotes the unique subset of U having the counting function
R(n) = 29 (n) then

(3= 2=03)
Thus, by (1),

Ta(@) =Z
-5 72 =nam) 32 —nam L ofmem),

7o (n)

eV
e r>n
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where summation is over reR. By R < U, it now follows from (2) and

(3) that
1
V) 2 =.

reR

(4) To(n) = 7,m+0(log*n), where 1, =

Since o and the sets §; are non-empty by definition, R is a proper subset .

of U. We have

>71< - 1 1
. T Iy
e hed U a(v)

reld
whence 7, < 1. The existence of a o-free set 4 with @ (4) = 7,18 ensured
by the following lemma.

LeMMA 1. Suppose thal the homogeneous system o is gemerated by
0o = {81, 8ay ..} If M = {2: 2 = max¥,;, S;e0,} has natural density 0,
then there is a o-free set A with. d(A) = %,.

Proof. Let ¢ (j =1,2,...) be positive numbers satisfying 0 < g <<l
and lim ¢ = 0. There is a sequenee of integers x; starting with x, = 0

J—>00

and having the following properties for j > 0.
' 1
(@) w5 >— w;_y,
&
(b) %o(m)) > (70— ;) a5y, |
(e) £ Ty ; = {mn: me M, ne[l,2;_,]} then T;_,(2;) < & ;.

Let A; be a o-free set in [1, ;] with |4} > (%,—¢)@;. Using the
notation B0 = {¢: z¢B,2¢C} we define

Ay = AN 2 ]VT), A = U 4.
The sets 4; are disjoint and o-free. From (a), (b), (¢) we obtain
A(zy) > A;(2;) > (%,—8g;) a5,

hence d(4) > 7,. Assume now that 4 contains a set n8;. Let d = min-§;
and D = max ;. Since the sets 4; are o-free, we must have

nded,, nDed,,

From n <, <2,; and De M follows nDeT,_,, which contradicts the
definition of A Therefore, A is o-free.

k< q.'

LuvmA 2. Suppose that the homogeneous system o is generated. by

oo = {81, 8s, ...}. Let d; =minS; and D; = max§;. If lim &;/D; =0

then T, ewists. j>00

Proof. Denote by o; the homogeneous system generated by {841, 84, ...

.y 8;}. By Theorem 1, the gdensity Ty exists. -Moreover, }51; Ty, =T
B

2 - Acta Arithmefica XXXITI.1 ¢ U W



18 . W. Klotz

exists, because 7, = 75, . If for positive ¢ the integer j is chosen so large
) . :
that d,/D;, < ¢ for each k> j-then  «

N

de (47') ~— &N < ro‘('n’) < Tﬂ'j (%)7 Ta'j —& < Ia‘ '?u < Tﬂj .

For j—~oo and ¢—0 we obtain 7, = %, = 7.

We are now going to state the announced generalization of a theorem
of Besicoviteh ([3], p. 257) on primitive sequences. We denote by NG
the set of multiples {ng: neN, geG}.

THEOREM 2. Let the homogeneous system o be gemerated by oy = {8y,
8., ...}. Suppose that there is a sequence G = {1, ¢a, ...} of positive integers
satisfying

(i) §;nG =@ for each j, ,

(i) Hmd(N6;) = 0 if G5 ={g;) Gy4us -3

f—r00

Then T jewists and d(o) = v,. Furthermore, v, = 0 is equivalent to {1}ea,
and 1¢G implies d(o) > 0. :

Proof. We make use of the following lemma which is easily deduced
from an inequality of Behrend ([’3], p. 263).

Levma 3 (Erdos [2]). If 1¢G and limd(NGy) = 0 then d(NG) ewists

J—>0

and is less tham 1.
We note that ¥ TING is o-free by (i). So Lemma 3 implies d(s) > 0
it 1¢G. Now suppose 1e@ and G’ = G 7{1} then
(NTING )N (02, n]
is o-free for each neN if {1}¢o. In this case Lemma 3 implies Ty > 0.
It remains to prove the existence of 7, and d(o) = 7,. By (ii), we
may assume that G is finite, ¢ = {g,, ..., g:}- Then the existence of 7,
followsg either from Theorem 1 or Lemma 2.
Levwua 4. If m is any positive real number then

limd(N [ofm, ]) = 0.

This is an immediate consequence of a theorem of Erdos ([3], p- 268).
To construct a o-free set A with d(4)> 7,—e (0 <e < 1), we choose

7

(5) m=‘§'gt7 Ej=('g“)’§' (j=0,1,2,...).
There is a sequence of integers x; starting with &, = 0 and having the
following properties for j>0:

(a) @; > mw;_q,

(b) 1:u(w:l) > (Ta_%’s)wj) '

(¢) i B; = N[w;/m,x] then d4(B))<e and B; ,(#) <e,o for
each x> ;.

icm
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Let A4; be a o-free set in [1, 2;] with |4;] > (ts—3%e)x;. Define

(6) 4; = A;-—I(iU'B.iU[l, sexl), A =UJ4;.
<j i=1
The sets 4; are disjoint and o-free. From (a), (b), (¢) we obtain

j—1

Aw) > (@) > (r,—Fe—}e— Y'e) 2, > (r,— o),

=1
hence d(4)> 7,—e. To prove that A is o-free, assume that A contains

a set of the form 78;, S;e0q. Let d = ming; and D = max 8;. Since the
sets 4; are o-free, we must have

(7) nded,, nDed,,
By (i), §; contains a number geG. Thus ngeAd and, by (a), (5), and (7),

k<g.

: g .
ng = ndﬁg B9y < “’k+1'§-
Now (6) implies nged;. So we have

&

wkg

‘ @
< NG < T, 7n£< n X @,

Therefore, nDeB,, which contradicts the definition of .

3. Logarithmic densities of o-free sets. Tor a homogeneous system o
the natural density d(o) need not exist. Example 2 below shows that
even for a finitely generated system d(0) may be less than d(s). More
uniform results are obtained by considering logarithmic densities. We
introduce the following logarithmic notions in analogy to the correspond-
ing terms on natural density.

The logarithmic counting function of 4 = ¥ is A*(n) = Y 1/a (sum-
asn
mation over aed). The limit 6(4) = lim A*(n)/logn, if it exists, is called
00

o>
the logarithmic density of 4. The lower and upper logarithmic densities

d(4) and 8(A) are defined by the liminf and lim sup of the same expres-
sion. Let

As(n) = max{4*(n): A o-free},
4, = liminf M, 1, = limsup —]—"i'-g—@-)-

N~+00 Nn—00
If 4, =17, put A, = 4, = 4,. Define
4(0) =rsup{d(4): 4 o-free}, 8(o) = sup{3(4): 4 o-free}.
If 4(0) = §(o) denote the common value by 6(o).
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We believe that on very general conditions for a homogeneous system
6(c) and A, exist and coincide.
THEEOREM 3. Suppose that the homogeneous system o is generated by

oo = {81, 8a, ...} Let ag, s, ..., ay be coprime integers greater than 1 and
U= {u: u=ajlag... ik, Tie{O}UN}.
If S; = U for each i then A, ewists and
As(n) = A,logn 40 (loglogn).
Furthermore, d(c) exists and d(o) = d(o) = /la._If k =1 theve is a o-free
set A satisfying
A*(n) = 2,(n) and A(n) = A,n+0(logn).

Proof. This proof is similar to that of Theorem 1. If we denote by
V the sequence of positive integers which are not a multiple of any of
the numbers a; then -
k
1
8)  V*(n) = d(V)logn+0(1), +where d(V) -—:H(l—;—).
. ‘ =1 g
Define
AV (n) = max{4*(n): 4 = U, A o-free}.

By (8), the limit lim i¥(n) = a exists and

N0

k
(9) AV(n) =‘a+o(loi”).

Now we have, by (8) and (9),

i = 2 a7(%),

veV v

2 = ad( Voo 1 (log(n /o))"

(10) Al = ad(s )lobnﬁ_—o(g;_gw ),
log*y

where veV. Let m =log*n and f(y) =

. Agsuming that f(y) is
strictly decreasing for 4 >m, we obtain, by (8),

( 2 = Z )%f(%) = O(f(m)logn—l*logm).

v<njm nim<v<n

Hence, by (10), -
(11) Az(m) = A, Jogn+0 (loglogn), = where A, = ad(V).

Theorems on sets of multiples and primitive sequences 21

To prove d(o) = d(c) = 4,, we construct a o-free set 4 with natural densi-
ty greater than A, — e (0<<e<A,). Let U’ be a finite o-free subset of U satisfying

1 1
—_—>>a—g.
uell’ '
If A = U'V then 4 is o-free and
’ o n -7 1
A = Vi i—|=ad(V —_ .
= 27 (%) = nair) - +oq)

uelU’ ueU’
Therefore, d(4) exists and d(4)> (a—e)d(V) > A, —e.

Itk =1leta =a, and U; = {a% a', ..., a’}, U_, =@. Define § =« U
by the following property: .

a’e§.if and only it (SNT;_,)u{a'} is o-free (j =0,1,...).

Let 8; = 8nU;. We prove by induction that S; is the only o-free set
in U; with 85 (a?) = AU (af). This is certainly true for j = 0. Let it be
true for j—1 (j> 1). Suppose now that M is a o-free subset of Uj,
MnU;_, # 8;_,, then

. o 1 1
M* (o) < A7 (a7 — g e S5 (d).

Hence S*(af) = A¥(a’) for j =0,1,... If A = 8V then 4 iy o-free,
A*(n) = Ay(n), and : '

A(n) = 2 14 (—:“—) = J,n+0(logn), where 1, =d(V) Z—-.
seS seS
LemMMA 5. Let the homogeneous system o be generated by oy = {81, 8,, ...}
Let G = {gy, ga, ---} be a sequence of positive integers, Gy = {g;, Giz1, -}
and o; the homogeneous system generated by {8: Seo,, SNNG; = O}. Suppose
(i) lim §(NG;) = 0,
J—r00

(ii) 0(oy) and Zaj exist and 6(o;) = A,,]. for each jeN.
Then 6(o) and A, ewist and 6(o) = A, = lim 8(oy). If, in addition to

- 5 J—0
(i) and (i), lim d(NG;)= 0 and d(o;) = 0(oy) = z,j for each jeN then
J—o0
d(0) = 6(a) = A,.
Proof. Since oy = 0y = ... « o, the limit lim Ao
J-ro0

Z,<4 Let ¢ >0 and lime; = 0 (jeN). By (ii), there is a o;-free set A4,
J-r00

with 8(dy) > 4, —¢;. The set 4; = A;7ING; is o-free and 8(4;) > 4, —
—&;— 0(NGy). For j—oo follows d(c) > A. Hence (o) and A, exist and
8(0) = A, = A. ,
It d(oy) = 8(oy) = 4,, and lim d(NG)) =0 then we may demand
=00 ) _
A(4)) > Ay —¢;. Now we have d(4;)> A, —e—d(NG;), and for j—oo

follows the final part of Lemma 5.

= 2 exigts and
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If A ={a,,a,,...} is a sequence of positive integers let 4; =
{a;, @4y, ...} and A; = A7]4;. It has been proved by Davenport and
Erdds ([3], p. 258) that the logarithmic density 6(NA) exists and

A(NA) = §(NA) =limd(N4;).
Note that e )
(12) lim6(NA,;TIN4) = 0.

j-)-OO
Luzvma 6. Suppose that the homogeneous system o is Jmma,tod by

={8:,8,,...,8,}. Then for any homogeneous subsystem o = o the
densz%es d(o) and A, exist and coincide.

Proof. Any homogeneous subsystem ¢ of ¢’ is of the form

0 ={8: 8 =048; 1<i<yg, 1<k < oo},
Let

Ay = {a;, Gy, ...}, -Aij = {@yy Bygiqy -2}, Zﬁ = A4,714,.

According to (12), for £> 0 the number j can be chosen so large that

(13) S(NA,;TINAy) < ¢lq

Denote by o; the homogeneous system generated by

8: 8 =ay8;, 1<i<q, 1<k<j}.

By Theorem 3, d(o;) and 4, o exist and 6(o;) = /'L Hence there is a o;-free
set H with 6( J)>A ~e& If teSi the set

H) = H,;™ Ut (NA,; TINAy)

is o-free and, by (13),
(14)

Since ¢; < 0, =

a/.ikEN, a":l < a,iz L ha s

for each ¢ =1, ..., q.

8(0) = 8(Hy) > Ay ;—2e.
.. @ o the limit lim4,
J—>00
letting j—oco and e— 0 in (14), we see that d(c) and A, exist and
(o) =2, = A
Finally, we are going to extend Lemma 6 by ILemma 5. Let

=1 exists and 2, <A Now, on

= {1, ¢3, ...} and Gj {gj, Gix1s ---3- We shall say that ¢ has prop-
erty P if lim §(NG,;) =
Jrc0

TueoREM 4. Suppose that the homogencous system o’ is generated by
= {8, Sg, ..} Let @G be a sequence with property P and M; =
U{S Seay, SNNG; = @}. If each set M; has property P, then for any hom-
ogeneous subsystem o < o’ the densities (o) and i, ewist and coincide.
Proof. If we denote by o; and o the homogeneous systems generated
by
{8: Seo, SNNG; = B}

then o; < . Suppose

cand  {8: Se T, SNNG; = @}

icm
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(a) 6(0y) and l exist and d(o;) = 1,, for each jeN, then the exist-
ence of d(c) and l,,, and d(c) = A, follow from Lemma 5. If each set
M; is finite, then (a) is true by Lemma 6.

(b) Theorem 4 is true, if each set M; is finite. In the general case
(a) follows from (b) applied to of.

4. Examples

ExamPrLE 1. Let o consist of the solutions in positive integers of the
equation
(15) Byt oo+ Do = 2(Y1F+YoF oo FYa)

Clearly, the interval (n/2,n] is o-free. Therefore, 7,> . We prove
d(o) =1]Jr, r = min{e: zeN, 21 2k}.

Obviously, the congruence class 1 modulo 7 is o-free. Hence d(c) > 1/r.
Let A = N be o-free. By equating some of the variables in (15) it follows

where

~that the equation

(16) Dy X+ oo F2 =21+ Y2+ oY)

has no solution in A4, if j divides 2k, thus especially for j =1, ...
For wy =¥y, B3 = Yy, ..., ¥ = y;_, the last equation becomes

anmn Ty =Y+ . FYa+2y (5 =2,3,...,r=1).

By (16), @+ 2, = 2(y,+¥,) has no solution in A. For x, = @, this means
that :

(18)

, r—1.

%y =Y1+Ys

is also unsolvable in A. Let aeAd. Substituting y, =¥y; = ...
in (17) and %, = @ in (18) we see that none of the equations

. =y+ja  (j=1,2,...,7r—1)

has a solution in A. Hence d(A4) << 1/r.

It would be interesting to know whether the logarithmic density
d (o) exists for every ]mmogeneous system defined by a linear equation.

Examerr 2. We construct a flmtely generated homogeneous system
o with d(o) < d(o). Suppose that a is a positive integer not equal to 1.
Let o consist of all 3-term geometric progressions of ratio @, o, a® or a'.
This system is generated by

{1,a,a%}, {1,d, a'}, {1,d’ a’}, {1,d", a'}.

We determine d(o) = 7, and d(o) = 1, according to the considerations
to Theorem 1 and Theorem 3. By (4) and (11), we have

(V) M1fr,  &(o) = ad(V),

reR

=yj=a’

(19)
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where R is the set satisfying R(n) = ¥ (n) and a = LimAY (n). We deter-
N—>00

mine 1Y (n) = §*(n) as indicated in the final part of the proof of Theorem 3.
Thus we obtain, by (19),

- 1
d(o) = ( ——(;)(1+ +——+——+——+ --),

1 IV 1 -
(o) = (1——;)(1+ +B?+F)ZW<¢(")‘

ExAampLE 3. Denote by ¢ = {¢q, ¢, ..
greater than 1, which are a product of at most & primes (multiple factors
counted multiply). Define §; = {1, ¢;}, and let o be the homogeneous
system generated by oy = {8, S,,...}.

By Lemma 1 and Lemma 2, 7, exists, and there is a o-free set A

with d(4) = z,. Since ¢; = 2 for each jeN, we have 7,> . Let us prove
20) 6(o) =2 -

o) =4, = .
( ) k1

Suppose that 4 is a o-free set in [1,n] satisfying A*(n) = 1,(n). We
sketchily follow the words of Halberstam and Roth ([3], pp. 246-249)
for a proof of Behrend’s theorem on primitive sequences.

w-t S

uKn

(21) A*(m) = 2(

where 7 (%) is the number of divisors of % belonging to A. Let % be a prod-
uct of s(w) primes. According to de Bruijn, Tenghbergen, and Kruyswijk

[1], the set of divisors of # can be completely divided into( 8(u) ) 1

[s(w)/2]
disjoint symmetrical chains. A symmetrical chain of m divisors cannot

contain more than kq-?—l +1 numbers of A. Therefore, if d(u) is the

number of divisors of u,

r(u) < d(u) +’( 8 {u) )

S 1 [s(u)/2]
and, by (21),
d(w)
( k+1 Zd +0( 2( )1/9)7
logn logn
22 n) < .
(22) Ao(m) < k41 +0((log10g%)1/2)

On the other hand, if 4 = {a: a> 1, s(a) =1 mod (k+1)} then A iy

.} the sequence of integers

icm
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o-free, and it follows as before that
logn logn

23 A*n)z —=— 40 |——="_]|.

(23) () k-1 i ((1oglogn)1’2)

By (22) and (23), we obtain (20). Note that the constants involved in

the O-estimates of (22) and (23) can be chosen independent of k.
EXAMPLE 4. Let o consist of all n-term geometric progressions (n = 3

rational ratio). Systems of this kind have been investigated by Rankin [4]
and by Riddell [5]. The system o is generated by

={8: §={a""%a 50", a< b, (a,b) =1},
= {1*"1 2n=t 3%l ). Since Zl/j”‘l converges,

n—zbl an~3b2
3 o

Let @

limE(NG) = 0. By Theorem 2, 7, ex1sts, and from Lemma 1 follows

Zuhe existence of a o-free set 4 with d(4) = 7,. Lemma 5 and Theorem 3
ensure the existence of d(o) and A,. Moreover, d(o) = 6(0) = 2,.

Suppose that ¥ < {0}UN is a set which does not contain an n-term
arithmetic progression. Let A consist of those positive integers which
have in their unique prime factorization only exponents belonging to .
Then A is o-free, d(4) exists, and

(24) at)> a4 - [1{+-3) >+
»

rell

we have

where the product is taken over all primes. As in the proof of Theorem 3,

it Iollowq by induction that > 1/p" is maximal if and only if & is 1dentma,1
relf

with the set EH, defined by the following property:.

rel, if and only if (B,n[0,r —1])u{r} does not contain an n-term
arithmetic progression (re{0}UXN).
The estimates of Rankin and Riddell obtained by (24) can be improved
for n > 4, because they use a set F # B,. If n is a prime, then it follows
from a paper of Scheid [6] that Z, consists of the nonnegative integers,
which have no digit » —1, when they are expressed in the scale of n. In
this case we have

/]Y{(l——”‘)”( ra | 1k +...‘+§<?»1%E»7)}’

1

g T« >
o= [N 125w ] e
¥
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Now suppose that o' consists of all 3-term geometric progressions
with integral ratio. We wish to show d(o’) < d(¢’). Let U be the sequence
of positive integers which have no prime divisor different from 2 or 3.
Denote by o* the system of those progressions in ¢’ which have ratio
in U. It is not difficult to check that

1 :
ma,x{ .2_4; A o*-free, A = {2"13™: 7y, 7, =0, 1, 2}} =2

ued
Thus
— 1 v 1 8 27
P P

and, by (11),

1 1\8 27 72
Q(o")ggl(a*)<(1——2—)(1—3-)—~————=——= 791...

On the other hand the set

Ui n wj w n U’)’b W U% ]
g e —y — —— — N
327 27 247 12 9’8 4’

is o'-free in [1, n]. Hence

3 701
—Tp > fe b = ——_ = 0.811...
a(c') =7o + -l- s T T = 36t 0.8
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Some remarks on Goldbach’s problem
by
Axro Furx (Tokyo)

In this paper we shall prove by a modification of Chen’s work ([3])
that every sufficiently large even integer # is written as a sum of a prime
and a natural number which has at most one prime factor less than o'08%/2089,

1. Let # be a large even integer. Let G,(x) be the number of primes
p < @ such that  —p has at most two prime factors. Chen ([3]) has proved
that

1) G, () > 0.672C, p—1 (1_ : 1 )

) -
Toga) ’ where (, = 7 1)

In fact, if we put Gy(%, I) — the number of primes p < « such that ¥ —p
is a prime or —p = p,p, with primes p, and p, satisfying p,¢I and
1< Py, for a subset I of (1,2"%], he has proved that G,(z, (1, 2*'"])
> 0.6720,/(logz)?. (Further Halberstam [6] or [7] has shown that 0.67

. can be replaced by 0.689.) Now we wish to maximize I < (1, #**] such

that Gy (z, I) > A2C,/(logz)?, where A is some positive absolute constant.
To study this we use the following mean value theorem which is similar
to Bombieri’s one.

LeMMA 0. Assume that M +N < o2 For an arbitrarily large conm-
stant A, there emist positive constanis B = B(A) and B = L (A) such thai
if M > (logw)®, and b(m) < (log@)® with some positive constant C for any
min M<m< M-+DN, then

Mo N : i y
max ni% Z b(m)( S A(n)_m.—'l;)
a,d)=1 (M-+N)}+0<y<e

acstbipann = wE S,

< W/(].Og w)A:

where 0 is an  arbitrarily given positive nwmber, n = am™(d) means
n = am* (mod d), and m* satisfies mm* = 1 ().
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