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Now suppose that o consists of all 3-term geometric progressions
with integral ratio. We wish to show d{e’) < d{s'). Let U be the sequence
of positive integers which have no prime divisor different from 2 or 3.
Denote by o* the system of those progressions in ¢ which have ratio
in U. It ig not difficult to check bHhat

1 % }
max —: A o' -free, A a8y g,y =0, 1,2} == 2.
{; p o 1 = { 1 T 1,2}

Thus

— 1l &« 1 B8
- U _
“:EL“&ZE*(”’QZWZW*?T
and, by (11},
1 1\ 8 27 2
Q(a’)é@(a*)é(1—~—)(1——)———=_=0.791...
On the other hand the set
noown n an\ (n n *
— =Yl = Yy Y
(32 27) (24 12) (9 8) -(4 )

is o'-free in [1, n]. Hence

- 5 1 1 8 701

o) =1 > g 2 0 i1
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Some remarks on Goldbach’s problem
by
Axro Fumr (Tokyo)

In this paper we shall prove by a modification of Chen’s work ([3])
that every sufficiently large even integer # is written as a sum of a prime
and a natural number which has at most one prime factor less than 2*0%9/208°,

1. Let # be a large even integer. Let &, (x) De the number of primes
p < @ such that ® —p has at most two prime factors. Chen ([3]) has proved
that

L 0.67 ¢ p—1 1
Y T & r ’ -  ——
(1) Gylw) = Togay where () = L p—2 L1 (1 (p—l)ﬂ)‘
3
In fact, if we put Gy(w, I) — the number of primes p < @ such that & —p
is a prime or ¢ —p = PP, with primes’ 'p, and p, satisfying p,¢I and
P po, Tor a subset I of (1,2"2], he has proved that Gy(w, (1, 2"}
2 0.672C,/(logz)?. (Further Halberstam [6] or [7] has shown that 0.67

. can he replaced by 0.689.) Now we wish to maximize I = (1, #*”] such

that Gy (@, I) = A20,[(loga)?, where A is some positive absolute constant.
To study this we use the following mean value theorem which is similar
to Bombieri’s one. .

Lumma 0. Assume thot M+N < "2 For an arbitrarily lorge con-
stand 4., there ewist positive constanls B = B({A) and B = E(A) such thai
if M > (logm)%, and b(m) < (logz)” with some positive constant O for any
wmotn M < ms M+N, then

M N

\ - ' 1 Y
max max Z b(m)( Z A(n) — 0 _"-?;)i
(a,@=1 (M+¥1H0cygn| £
claé.‘:nllf-’/(logm)ﬂ 7(}':11" é!;f:]l "q;{&g{:?d)

< w/(loga)?,

where 0 48 wn  arbitrarvily given positive nwmber, n = am™d) means
n = am® (mod @), and m* satisfies mm* = 1 (d).

-
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Ag a corollary to this we get

OOROLLARY 1. Assume that M+N < @ ”r’, every prime divisor of m
is » o for arbitrarily given small positive ¢, and that real numbers b(m)
satisfy b(m) < (logx)® as before. Then

MEN MW
’ (1+s Ja0, o b{m) 4
D v 3w tEEEEE( 3 2 0l oss),
m=M+1 n=zlm M= D +1
{(w—mn, Q}=1 )
where Q = [[ p, Ais an arbitrarily large constant ond & is an arbifrarily

2t
small positive number.

We may remark (cf. Theorem 1. in [13]) here that by a slight mo-
dification. of the proof of Lemma 0, Lemma 0 and Corollary 1 can be
extended to the ease M +N < #'~° guch that it includes Chen’s estimates
(Lemms 8 of [3] and consequently (1)-in this paper). As special cases of
Corollary 1 we get

CoroLLARY 2 (cf. Theorem 2 in [13]). For ¢ > 2,

M (e) == ‘Ghe number of primes p < x such that x—p
Py and p, satisfying 0" < p, < pa < @
= ofw/(logz)?).
COROLLARY 3. For uz =2,

== P, Dy Wit Pprimoes
1/

My{d, ) = ‘the number of primes p << o such that 2—p = p,p, with
primes py and p, satisfying o't < p, < &' < py

8(1+¢) (m? )xa I(log)e.

COROLLARY 4. For a ond § sotisfying a =2 = 8 = a/(a—1), ‘the number
of primes p < ® such fhat w—p ~ P1Pa with primes p, and p, Swisfying
mhin <Py < 22 < Py < s

. . |
3(1 +s)(10g = )me/(logm)ﬂ.

Now we define the length of an interval of the form (u"* &'¥] by
a1

p—1"

If I is a finite sum of the intervals of the above type, we define

8(I) leog ;j . ’

From these corollaries and (1) with the constant 0.639, weé get

((wlla av/.h'ﬁ]) = log ——

icm

" aften p--a has at most one prime factor less than p
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COROLLARY B. For any subset I of (&M%, '] of the above fype, if 3(I)
< 0.0862, then

Gy le, (1, @*°1UI) > AxC, [(logz)?,
where A is some pogitive ebsolute constant which may depend on §(I).
Tn particular, if we take I == (2'°, 20M9Y] then we get
COROLLARY 6. Gyw, (1, 2" %) = AzC,/(loga)2
Also if we take I = ("%, 2], then we get our main
TworEM. Hoery sufficiently large even integer @ 45 wrilten as a swm

of a prime and o natural number which kas at most one prime foctor less
thafn wIUEQ,’!GﬂB.

We shall prove Lemina 0 in § 2 and corollaries in § 3. We may remark
here that the above corollaries and theorem can be gtated also for twin
prime problem. Although we omit writing these we may mention the
following

TemoREM. Let @ be an arbitrarily given even integer. Then infinitely
1085/2085

2. The proof of Lemma 0

2.1. Lemmas for the proof of Lemma 0
Lamya 1. For T2 1,

T f oozt

where we put v == [t|-+1, and aln 3% x runs over all primitive characters of
. X

ﬁ 4 (Vlog.’l’—]— )[a,('n)lg,

'D 7y 7

the modulus d.
(Cf. Gallagher’s Theorem 3 of [5].)
Iemma 2. For T2 2

\! __-—1 f T (4 +it, )@t < VT (log VT,

p(d) <=4

L (3t x)J‘

: « r ’ '
D) ??i&)—;’ J L (4 + i, 7)idi

DedaV

Proof. Since < (]ogdfl’)scj" |L(E, p)*1dE|, we have

D<dsyV
s Hesflogam? T+1
<« ¥ (logdTy’ - (V f o it, x)[*dt)da,

p5izy v (d) 1/2-{log a7}~ A |
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where € is the circle of the radiug (logdT)™ with the center 1/2 + i¢. Using

Theorem 10.1 of II. L. Montgomery [9], we get our conclusion. m
LevMMA 3. Let @ be an even infeger. If we put 1, =1 and

_al@ {ZM}% for  l<d<s,

H L<gid f(k)
(e, xd)p=1
ld
0 for  d>z,
where we put
#* (k} 1?
8 e and  f(k) =
2 T
(&,m)=1
then
L g 2g,

(1)

H

Y e
(i) 82 (logz)/(20,) +0 (1),

(i) 1Al <1 for (@) =1.

(Cf. pages 162 and 171 of [3].)
2.2, The proof of Lemma 0

2.2.1. In the following A is always an arbitrarvily large constant
and ¢ is appropriate not so large congbant. We put I =loge and

w{y, z) 2/1

nEYy

Then for (a,d) =1,(m,d) =1, and m <<y

Ay - —— L= 2 (S’Am)mi)m

St p({d) m o {d) " m
n==am*(d)
' 1 1 Ny
i %m Atw) o % %) z () (;;x)
) (n.d}>2 w -
¥ g\~ 1{logd) 1 Y
=0 log—| |+ 7 =
(m(d)m(°gm) )+l @ )W(d)%:"(“”‘(m”’(m’”)

with arbitrarily large E. If ¥ 18 mduced by the primitive character x y
then p(y/m, z) = p(y/m, 1")+0(tlogad).

icm
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Hence for (M +N)'"* <y <oy

M+N “ ,
max | M b(m)( DY )[
(@dy=1], Ty n<Syjm pl(d)m
(m,dy=1 n=am*(d)
Y 2 xl-F
Z b{m) ¥ {m)p (wl/m,x* +0 +O0 (12 log d).
‘ m @ (d)
x#m = }«I
(M, d)==
1fence we get
sy |
Max max Z b(fm,)( y An) ~ g )‘
Gl peami e eyl S wTn pid)m
{1, d)=1 ne=am*(d)
<1 max N,+O{zl 4
. N 1<bsalf—8 b ( )
by taking sufficiently large B, where we put
.y M4N y
N, = Z Z max| > b(m)x(m)w(u,x)i.
< @(d) F) |
asellfy-B f(n"ffbﬂifjll _

Now, by Siegel-Walfizz theorvem (pp. 134 and 144 of [8]),

M+N ‘ N o
mazx| D bimhy(m)plyim, p)| < max > bimyy/(m{log(yim))”) < a1~
v T:ggfif Vo oIl

. =

for y s g, and d < I° with &rbltmnly large constants b and .. Hence
we geb

J K
Ny < D) D) Nogal~4,

J=l k=1

where we put

Noge = ‘_J d) Z lnax‘ Z b(m} y(m

Qj l<d€Qj My, 1‘;;ﬂ€Mk

,J, J satisties 272 < o1 < 271°, M,
K and K satisfies 25'M < M4-N < ZKM

"/’(y/m: A

Q, =217 for j=0,1,2,
=25 for k =0,1,2,

Now for a = 1-+1 /logm a,nd T = o7 with sufficiently large ¢,

X Yy 1 Ty U (2, 1) | fols) ds +0{a™)

b (m) X% (’i’ﬂ) W ;;‘, X1 = -———-27_”: . P T 1 & ’

Mkm1<ms;Mk a—iT -
(o, b)=1
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where we put fi.(s) = X z{m)b(m)/m® and ¢ is an arbitrarily small
My, _j<m=My,
{12, b)=1
positive number. In each interval @; , <4< ,;, we exprew
moo
I 1 ,
i% =Lr(jj_ _S)—I—LS, where § = SH? = S“,u () x n)m
R ]
Then

max| 3 bm)y(m)yim, )
/g ﬂjfc_1<nmz€ﬂfk

(m,I)=1
T T
, 1 dt , dt
< l? f}?mswmwﬂ N A AR
- i
(o==a) ' {o=1/2)

' [y T
where v = f{|+1 and [ fdt means [ fla—+7t)dt
-7 —r

(a=a)

2.2.2. We assume first that Q; << M. Tor simplicity we denote

|

1 ~1* dr\ e
T2 fu”* 2 vy 208,00,
Qj..r:d@@

(ﬂmﬁ)
Then by Schwartz’s inequality, we get
1 .
Nope < ol? I(J;‘la -8, 1) (§yayfol

I, 4, Fo DI, &, T 2T, 1, 8, 2).

Sincei —8 = 2 win)g{n)/n®y by Lemma 1 we geb o
: L -y
2 ’ i 1
I(j,a,i—s,n) 412(c3j+i’;) I ta(nllow)<p(Q + )
L . m>Hy Qj . Q"
Similarly, we get
&, ) ' . Jlf:c)
=+ — [(§, %, oy 102 € 19 —_
iy e fi < (G ] a2, 10000 <00+

Hj
Binee 82 = 3 j(n)y(n)/n’ with |j(n)| < v(n) = X 1, we get

=1 in

. 2 )
(7,3, 8,2) <P (Q;,——# %).
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By Lemma 2, we get I(j, 4, I, 2)* < @,1° We choose H; = @Q;1°. Then
we get Ny, < ml"“i by taking .suffml.ently large B and D

2.2.3. Second. we assume thaf @ > M;,. Then from 2.2.2

Ny <€ -’l/‘lo(Qj -+ ) (Qj -+ )m—[—
' Hy * g, M, Oy

UL, 8, 8, DI, 4, s 20T, 4, L5 2).

By Lemma 1,

: oV o 1¢ “-ZEE . AN 72(n)
I(J;é‘;f?cr’a) <1 (Q}+ Q;“) s ,{T— <IU(Q1—|~

M?c_lmr,gﬁz?c

M;)
Q1

Wo get also I(j, 4, 8, 1)* < 12(Q;+(H,/Q,)). We choose H; = Q,1"P/M,.
Then we get Ny, <€ ol by taking snfficiently large B, D andE inM » 1%

2.2.4. Combining 2.2.1, 2.2.2 and 2.2.3, we get N, < 2l~4 Hence

“we gef our conclusion. m

‘3. Proofs of corollaries. In this paragraph s, & and &' are always
ambitr&rily small positive numbers.

3.1. Proof of Corollary 1. Let Ad be given as in Lemma 3, where we
take & = ¢M*~*%. Then,

M-N M+ N

2 B(m) Z An) < Z b(m) Ezl(n)( Z zd)z_

=M -3 n<zfin mes M 41 nsw/m dl{z--mn, Q)
. {d,2)=1

(x~mn, Q=1
Rl \

-3 Sha Soum 3 aw

e N .

(m,d1d2)=1 ﬂmm'([dl.dz])

@1 (et
ﬂ( 3y MM_)(ZM)%
(@ eel (Gl ¢ ([dy, da]) o M
- _ 4. A
1 Q dy ity oY )
v U __.H_._,{_
2 Tm

)([d.l? dg o

(@1 el T (o, )1

- - 1 1 N
+ D D ey D) b(m)( 2 4(”)“¢(£d1,dgj)'"or?)’

iy ;o)== (dy, o)== L m =zl
{,2)=1 _)H {m,dydg)=1 nem*([d;,dg})

where we put [dy, @] = d:dy/(d,, dy). The second. term ‘of the last equa-

3 — Acta. Arlihmetlon XXEILL
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lity is .
e I—e"
< mlﬂlzj/d Z B El‘hnz Z 1jd < o' ™c,
d

wn M »|a
(m, @)1 2 genlle—s
!

The third term iz

74
< 3”%(@)1‘ > b(m)( PRI )

dym
m nmfm (P( )
(i, ) =1 e A{d)

H

gmlfi—e
{(dz)=1

where »(d) is the number of prime factors of d. By a standard argument
(p. 20 of [11]) from Lemma 0, the third term boecomes

< z/{loga)™.
Hence by Lemma 3 we geb owr conclusion. &
3.2. Proof of Corellary 2

Moy ) 1+0@"h

ae<n <ny el
(z—pyp3,Q)=1
-
< ¥ Y 3y 3o 3o 3
m”"<p1£m]-’zp2gp}_‘ ‘Pl="(‘c”2)m}_e<ﬁﬁ;1’1 x1!2<p1='.-:a*,1,"2 y}."s<pzﬁﬁ’l
(2—p309,0) =1
1 ]
<< ofz/(logm)?) -+ 2 T 2 A(n)
1—s 12 1a logp n<elp
Mo epsy (g, ()=1 }
1 . 2
_ 8t +e)al, ( E -)+O(m/(]ogm)a) = o[w/(loga)?).
o
logz. mllzgpsmliﬂp 8P/

3.3, Proof of Corollaries 3 and 4- .
My(a, )= 1+ ) 2 1

afecm<alPapyiamt=t oo <all® @il A<pysain,
1 : —a
g.i}__ 2 oo Z‘ A(m) -0 (@)
LY vy “O8\D/P .
atespeal/ (@ &ﬁ?&;ml f

a
< 8(1L ¢ (wam/(loga:)ﬂ) log 7
Similarly we get Corollary 4.
3.4. Proof of Corollaxry 5
0.6892C,/(logx)* < Gyfm, (1, #'0)

. 1/2
= Gy(o, (1, 41IUI) + D1+ > 1400
T DD
2—D=p10y E-pe=Piiy
med,p1Sppsat par, <l

1
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By Corollaries 2 and 3,

al,
(logz)®
Tence if 0.689 > 8(1+-2)6(I), then we get our conelusion.

4. Coneluding remarks

Gafe, (1, 210T) 2 (0.689 —8 (1 -+ &) (1))

4.1. In the preparution of this paper the author was informed by
Professor P. X. Gallagher and Professor H. Halberstam that at the Bor-
deanx Conference on Number Theory in 1974 Professor H. Halborstam [6]
gave a talk about a simplification (which iz due to P. M. Ross [12]) of
Chen’s proof [3] and an improvement (which is due to H. Halberstam [6]
or [T]) of the numerical constant which we have mentioned in the intro-
duction.

4.2. We may remark here that we can also get our Corollary 1 from
the argument-in [6].
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