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Dedicated to A. E. Ross on hiz 70ih birthday

How does the genus of a positive definite integral quadratic form
over the rationals behave when lifted to a totally real algebraic number
field? This question was raised by N. C. Ankeny over ten years ago, and
wag resurrected again at the more recent Quadratic Forms Conference
{Baton. Rouge, La.}) in 1972. The genus is partitioned into patches of
{proper) spizor genera. Inthe present paper we treat the closely related
problem of how does the spinor genus behave upon inflation to an exten-
sion field. Our fields always have characteristic different from two. We
shall approach this question from the geometric standpoint of quadratic
lattices; indeed, we consider it in a more general scope in that we study
the spinor geners associated with an arbitrary regular lattice, which
needs not be free. We will show that (modulo some vestrictions on the laitice

~and on the behaviour of the dyadic primes) the proper spinor genera in the

gonus of the given latlice do not collapse when lifted to an odd degree field
extension. The oddness of the field degree is essential as examples below
{see Appendix A) will show. More specifically, our main results are:

TaEorREM L. Let L be o regular guadratic lattice of rank r(L) > 3 and
defined over o global field F with the property thet at each Tocalization with
respect to o dyadic prime spot p on B, the Inttice Ly is modular. Then, for
any odd degree field cxtension B|F, Iy, is injective.

TeworREM II. Let L be a vegular quadratie lattice of arbitrary ronk,
and defined over an algebraic number field F. If E/F is an odd degree field
extension such that 2 i unramified in B, then I'y is injective.

The maps I'y, are defined below (in § 1). Theorem II can be strength-
ened for binary lattices in that we need only assume 2 is unramified

* This research is partially supported by a grant from The Ohio State Univer-
gity. Theorem I and a slightly weaker version of Theorem II had been announced
in Bull. Amer. Math. Soc. 81 (1875), pp. $42-943.
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in the bottom field F. (See § 5C.) The proofs rely heavily on the exact
knowledge of the spinor norms of integral rotations on L, at every dis-
crete spot p. Barlier we had also exploited this- information of 6(0*(134,))
to sharpen a theorem of M. Kneser (see [2]), ylelding the best possible
upper bounds for the exponents of the reduced discriminant of an inde-
finite Z-lattice to have class number 1. Finally, two appendices are of-
fered. In the first appendix, we furnish counter-examples to the main
theorems cited above when the oddness of the field degree is relaxed;
the second appendix makes a remark on the definition of spinor
genus.

An important specml case where Theorem I immediately applies
is- when # is a function field and so has no dyadie spots. Another iy the
case when F = @, I an integral lattice (i.e. integral with respect to scale)
with discriminant an odd integer. Notfe also that when L is indefinife,
then the familiar theorem of Eichler—Kneser says the (proper) spinor
.genus coincides with the (proper) clags, so that non-equivalent proper
clasges in a given genus remain non-equivalent when lifted to E. A Hasse
domain is a Dedekind domain with quotient field a global field # and
which ean be obtained as the interszection of almost all valuation rings
of F. Both Theorems I and IT generalize to these Hasse domains.

1. Preliminaries. Let E/F be a finite relative extension of global fields,
. Dy, oprespectively therings of integers in Band F, and L a lattice on a regular
" quadratic space Vover F with rank #(L). Set ¥ =V @pF and L = L@, 08
The map f from the group Jp of split rotations of V (i.e. the adéle group
of V) into the idéle gronp J; of F given by f(u),e0(u,) where 6 is the
spinor norm function induces a homomorphism from J; into the factor
group o F,’PDJ{;V of J5. Hers P, denotes the principal idéles with respect
to the group D =6(0T(V)) and JE = {j = (fy)edz: J,e0(0F(Ly)] at
each non-archimedean spof p}. The kernel of this homomorphism is the
subgroup P,dJpJ;, where Py consists of the principal split rotations, J
all those split rotations which at every spot p on F has the component
lying in the spinorial kernel 0'(Vy), and Jp = {# = (w,)edp: Ly = Ly

at every non-archimedean spot p}. If @, denctes the induced map from

Jy[Ppdpd z to Jp/PpJ&, then it is a familiar fact that @, is an isomor-
phism whenever r(L) = 3. In general, @, iz at least injective. See [71
“The set of all proper spinor geners in the genus gen(L) of L corresponds
bijectively to the cosets in J,/P,J;J, and thus can be endowed with
@ group structure. It should be mentioned here that while J,/Prdpd L
is always a finite elementary 2-abelian group, the group J4/PpJ5 can
bave dinfinite order when r(L) =2 (e.g., F = Q, L= {1,1)). Next,
define g: Jp>d 5 by (9(p))g = Jp and h: Jy—>J 5 by (h(w))p = 4, 5, By
whenever Pip in both instances. Then g and % induce the vertieal‘. homo-
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morphisms ¥, and Iy, respectively in the commutative diagram

: 2L T
Jp[Pydvdy s Jp/Ppds
lPL op l“’L i

T Prd pdz vy Je(Pndk

50 that I'y is injective if (and only if when r(L) >
our proofs below we shall show that ¥y is m]ettn'e.
Unexplained notations and terminologies are from [7].

2. Modwular ease. In this section we assume L iz W-moduolar, A
a fractional ideal. Let p be a discrete spot on F, E/F a linite extension,

¢ 18 injective. In

and P,, ..., B, all the spots on E'lying above p. For any ce B, we have
[N gm{ety H iy ngp H!clsg.;
And since =
¥ mrlo)ly . = (INp)"H¥EF  and  lelg, = (1/NP;)"%,
we have:
LEnna 2.1,

g
ord, N gple) = D F(Pidpyordy,(e).
1.%'#1

Leanis 2.2, Let D == 0{07(V)), D= B(OT(V)) cmd eeD. Ifdimy V >
then Ngple)eD whenever [E: F] is odd. If dimpV <2, then we always
have Ngple)eD.

Proof. When dim¥V =3, 101:8, [T], e};ara,cterizes the set D -(and
gimilarly for fi) as the set of all the elements of F* which are posifive
at all the real spots p on F for which T, is anisotropie. For every such
real spot p on F, there is an odd number of such real spts on Z since.
[E:F]is odd. Of conrse, every such real spet f on F comes from snch
a real spot p on F.

When dimp¥V =2, a stronger assertion is possible here becanse
(via scaling) we may suppose the quadratic space .V (hence also V) is
a Pfister space; i.e. ¥ =21, d] where d = the discriminant of V. Hence,
the eoneclugion follows immediately from either the Norm Prineiple of
Scharlan or of Knebusch (Theorems 4.3, 5.1, Chap. VII, [6] resp.). This
proves Lemma 2.2.

THEOREM 2.3. Let L be o modular laitice on a regulor quadratic space
deﬁned over o global fidld F, and having rank r(I) = 3. Then for any odd
degree field extension E[F, the map Iy, is injective. ‘
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Proof. We will show ¥, is m]ectlve instead. Tf jeKer(¥
then there exists cel} for which

L)y fedp,

e jpef{0F (L:p)] for every Plp.
It is therefore enough to show that N g (e)-7 ¢JZ by Lemma 2.2.

By 92:5, [7] and Proposition A, [4], we see that the spinor norm
groups almost always satisfy

8(0%(Ly)) = U, Fy2.

In the exceptional cases, p must be dyadic and then we get 'F:. More-
over, if p is not exceptional for I, then every P on E lying above p cannot
also be exceptional for . Hence, we need only to show that ¢-j,<Up By
for all Bip implies Nyple)-j, Les in 1, 7% By Lemma 2.1,

H

ord, Ngz(e)

Zf Pilp) ordgn() 2, T (Bilp)- ordy,(j,) (mod2)

= N f(Bilp)-e mm-ardp(jp)

i=1

= [E: F]-lord‘,(jp) = ord,(j,) (mod?2).

This completes the proof of the theorem.

3. Non-dyadic results. Consider a. fixed non-dyadiec prime spot
pon F, and Py, ..., P, all the distinct spots on F above p. Here E[F may
be any finite extension. Again, scaling will not affect the local spinor
norm groups so that we may suppose L, represents 1. By local theory, I,

has a Jordan decomposition into modular components L, =L, ... LL.

PROPOSITION 3.1. Let ¢cB* such that at each P; we have ced {07 (Ly)).
Then, N gyp(c) «8{07 (L)) :

Proof. Suppose that L, has a Jordan component of dimension 2 2.
Then 6(0*(L,)) 2 U, F;2. Should there exists an integral symmetry
on I, having an odd order for its spinor norm, then 6(0*(Ly)) = Fj
and there is nothing to prove. Thus, we assume here 8{0%(L,)) = U F;",
which iroplies all the Jordan eomponents I; has even scale But then so
do all the Jordan components of Lrﬁ , and we obtain § {0+ (L;p ) = Wy, By
i=1,..., 9. Lemma 2.1 finighes this case.

Next, we consider the ease where all the Jordan components of I,
are l-dimensional; say,

Loy = <15 -L@fzuz) Ao Ao '

where 0 =7y, <7, < .., <7, are intégers and the u;’s are units. The key

to this case is Kneser’s computation for the spinor norm group. (See Satz 3,
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[5].) His theorem states that if

Wy = {a%uge?: celly}, j=1,...,n,

and M(L,) denotes the set of all elements of F* which ean be expressed

28 & product. of even number of factors from U 9%;. Then
F=1

6(07 (L)) = MLy 73,

Clearly, the Jordan decomposition of L, also gives a Jordan decompo-
sition for Lsp for every 1. Thus, puttmg Sﬂ! as ;. above exeept having ¢
ranging over Mg, and deﬁmng EB%(IAB ) in a similaz fashion, we have:

6{0" (Lg,))

M?ﬁi(f )-ER.  for every i.
Py By

25;

&= ( M!;II n’imujm) 7

) *
where 9 cBiy,,

" then

NE/F H n (ﬂ J'mu )h},d

{=1 m=1

where 'yelf"; and the exponents k; is either 1 or 0 according to the local
degree n(P;lp) is 0dd or even respectively. Hence, Nyp(e) will always
lie in 6{0F(L,), and this eﬁmpletes the proof.

4. Dyadic results, This gection iz cemtral to the proofs of our main
results. We assume throughout this section that p is an uwnramified dy-
adic spot on F (Le. the element 2 is a prime in ¥,). #/F may still be any
finite extension. Qur aim is to prove: :

ProrostrioN 4.1. Let ceB* such that ce8(0%(Ly)), VYBlp. Assime
further that e(Bip) = 1 for every Pip. Then Ngp(e)ef{OT (L))

To accomplish this, heavy reliance is placed on the exact knowledge of
local spinor norm gronps as was for the non-dyadic case in § 3. The compu-
tations for the spinor norm groups needed here can be found in [2]. Our .
proof is divided into various cases depending upon the form of a Jordan
splitting for L,. By scaling, we may suppose L, has scale s(L,) = 0p,- '

Case I. The Jordan components of L, are all 1-dimensional; say,

Ty o (U5 L) Lo L),
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where 0 =7, < 7, < ... < #,, are integers and the ;'8 are units. It is con-
venient to introduce the following notations: for j =1,...,n—1 seb

K1 = Ty LT 0,0,

5,
Dy = Py 0057
(K j0a) = T —Tis

| Ligir = [F;/-E';z‘ 3(0+ (E:v',Hl})]'

Denote by P(M ) to be the set of all primitive vectors in the lattice M
which give rise to integral symmetry on M. Since the rank of K, ;. is
always 2, there will be no cenfusion for the notation r(I; ;).

The next two results can be found in Theorems 2.2, 2.7, [2] resp.:

TLmmMa 4.2, In the setting here for Ly, assume there is ab least one §
for which v (ij-u) =1o0r3 Thenifro—r, =2o0r dforanys, t =1,...,1,
we have 0 (07 (L)) = Fs.

Lewnas 4.8, In the setting here for Lm assume that L, does not satisfy
the hypotheses of Lemma 4.2 above. Then we have:

even

6(0* (L, {” Qo) veP (K ), 1 < < u~1},

We alzo need the binary computations (see 1.9, [27).

TEda 4.4 Suppose Ly — (1> 142 w), ¥ = 1, ucll,. Then
' [ecF:: (e, —2w), = +1}  if r=1 or 3,

| s(o+('Lp)) _ {ciuppﬁi; (¢ -:n)p - -*1;1} 1_f y =2,

FROulF AR UudF, if =4,

ll’f‘:zu?fulf’;”- if r=b5.

Should 6({0* (L,)} = Fy, Proposition 4.1 follows trivially. So, we shall
suppose below that this is not the situation. Three subcases present them-
selves: _

(i) There exists an index j for which r{K,;,,) =1 or 3.

" (ii) There exists an index j for which #{I;;,,) = 2 or 4.

(i) r(K;;.) =5 for all j=1,...,n—1

Proof of Subease {i). I‘mm Lemma 4.4, I;;,, = 2. Hence,

(OT( )) = 6(0 (K.'i',.'i-'rl ) '— {6€rp- 7 -_—‘Dj):p == —rl}.
It suffices to show that '
(Fpple), — D), = +1  for each Plp.
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By Lemma 4.3, ¢ can be expressed as

CmeEz}

where
eneQ (P(E,

emc1))  Tor each m.

This is because the Jordan splitting for L, provides also a Jordan sphttmg-

for Lm: and since Bp is unramified, Lemma 4.3 is applicable to L‘p as well..
Thus, it is enough to show that for each Pip,

(N?Gin(cm)f

Suppose 1(I~{a smt1) =1 or 3. Then, Lemma 4.5 below implies that
(ens —Dylg = 1 Heuce, (Ngplen), —D;), = +1. On the other hang,
should r{&, , +1) be even, and hence > 6 by Lemma 4.2, then one sees
1mmed1ate1y from Leroma 4.4 that we also have (Nap(en); —Dj-)p = +1.
Therefore, Subease (1) will be finished once we prove:

"LEMMA 4.5. In the selting at hand for L, with index j satisfying
7( u+1) =1 or 3, if tis any index also with (K, ;) =1 or 3, then for
each Plp, we have beQ(P(K, ) implies (b, —Dy)g = 1.

Prooi. We use {,...,» to denote lattices and [,...,] for spaces.
We make two assertions:

(A)if the binary F-space [1, I),] represents 2™, then be@ {P (K: i+1))‘
implies ’

_Di)p = +1.

(b, —Dg = -+1  for all Pp;

(B) if it does not represént 2%u,, then beQ(P(K,,,,)) implies

(by —Dy)g = (—1)""

for all Pip.

We sha,ll just do case (A). Here, we have (2", —Dy), =1, and
an igometry between Hy-spaces [2’tu1,2f+1u,+1] = [b,bD;]. When 7.
is even, (&, —Dy)g = {1y, 2upp1)p and (u, 2wy, ,), = 1, Tegardless of the
parity of the local degree. When 7, is odd, (b, — Dy = (20, w1}y,
which is always 1. Computations for Hilbert symbols are aided by Cor-
ollary 1, [1]. A similar (slightly longer} caleulation applies to case (B).

We have, therefore, in ease {A) 1 = (b, --M_Dt)._]3 = (Ngp(®), —D)p- .
Since I; ;51 = 2, the latter must be (Np,(b}, —Dy),, which equals
(b, —Dj)g.- Fortunately, case {B) really cannot oceur in the present set-
ting for L,. Indeed, if 2™y, is not represented by the binary F,-space
{1, D}, then 2%w, does not belong to 6(0"(K,,.,)), which must also
equal to 6(0F(L,)} since I,,.; = 2 by Lemma 4.4. As L, represents 1,
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there is a rotation (a produet of two infegral symmetries) with spinor
norm 2%u,. Thus, & contradietion (!) is achieved and finishes Lemma 4.5

Proof of Subcase (ii). We break into two parts still: (a) when
r(H;;0q) = 2, and (b) when r{K;.,) =4

(a) Here I;;,, may have the value either 2 or 4, depending upon
whether —.I); is one of the two units 1 and 4 (modulo squares) or nof.
If I;;,, = 2, then surely 7, must be even for all 5. Lemma 4.4 then gives
0{0* (Ly)} = UpFy for all Plp. Clearly, Npp(e)eUp By = 0(0% (L)),
So, let I;;., = 4. Moreover, we may suppose that I, ..y # 2 for any s.
Xt follows from Lemmas 4.3 and 4.4 that [F5/F5*: 8(07 (L)) = I, = 4
if and only if ]

i) allrgare even,

(ii) (b, —D;), = (b, —Dy), whenever bell, and r(K,,.,) =2,

(iii} (Dgy, — D)y =1 whenever »{K,, ) =4

In this situation, 6{0F(L,)) = {e<W,Fy*: {¢, —Dy), = +1}. As all
the 7, are even, N gz{c} e, F. Using a similar calculation as in Subcase (i},
it can be shown that (Ny,(c,), —D;), = 1, for each m and Plp (using
the same motation as before).

Whereas if either condition (ii) or (iii) is violated, then 6{0% (L))
can only be I, ¥’ (since it is excluded from being equal to Fy), and.so
the conclusion follows. Finally, suppose just condition (i) is not satistied,
consider a binary sublattice K, o .y with 7(K, . 1) =2 (note by Sub-
case (i), it cannot be 1 nor 3). Let

—_—

CneQ (P, , 1) =27 u, @ (P({1,D, ),

Then, we have

and  Pip.

Npp(em) = 'N‘-Bln(zrsm ", ) N (@-1%),

where aelly, teHy. Since (@, —D, )y = +1, using condition (i), we see
that Co

(Ve (@), _,Dsm)p = (Nyy,(a), — Dy = 1.

This gives {Nppu(tn}, — D)y =1 when the local degree n{P[p) iz even.
On the other hand, if »(Pip) is 0dd, we still have that 2u, <8(0% (L)) —
‘here we assume that ¢,, was chosen at the outset fo have 7, being odd.
Thus, we always have: (Npy(ey), —Dy), =1, and the desired eonclusion
follows., Similar considerations, using Lemma 4.4 always, handle the
remaining cases of r(K, . .,) =4, and > 5. This completes the. proof
for part (a). : ' :
(b} Thiz part is handled in an analogous fashion.

" Buboase (iii) is the easiest of all three subcases, and we omit its

proof. We are now completely finished with Case L
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Cage II. There is at least one Jordan component of L, having rank
three or greater. Reeall from [2] that a lattice ¥ over or, is said to have
even order it @(P(N)) CULF, and has odd order it @ (P(N)) S 2L, 7.
Since we are excluding the case where 8(07(L,)} can be Fj, it follows from
Theorem 3.8, {27 that if ’

L,=Iy1... 1L

is a Jordan decomposition for L, (remember L, is not modular), then I
must have odd order all j =1, ...,¢ Furthermore, we have 6(0+(Lp))

" =W, F;% A unary Jordan component (2"} for I, has odd order if and

only if » is odd, and hence Lifts to an odd order unary component above

for Lg. A binary component 2°M, where M is nnimodular, has odd order

when: (i) v is even and M =z 4(0,0) or A(2, 2p), (ii) » iz odd and M
= A(1,0) or A(1,4g). A(0,0) Temains unchanged upstairs. A(2,2¢)
remains algo unchanged unless A, becomes a sguare in Eg in which case
it becomes .4{9, 0). Bimilarly, A(1, 0} remainy unchanged, and A (1, 4¢)
changes fo A(1, 0) if and only if ApeE?.' Thus, a binary component of
odd order remains odd order upstairs: Finally, if a compopent I; with

- rank three or greater has odd order, then I, must be totally improper

and so has even rank. Write I, = 2"¥, where M is unimodular. 1t is
not difficult to see that » must he even and M is either hyperholic or

~else isometric to

A0,0) L... 14(0,0) LA(2, 20).

In any case, .I; clearly lifts to a component of odd order as well. There-
fore, 8(0% (Lyg)) = Up By for all Plp. Hence, Proposition 4.1 is valid for
this Case IL

Case ITL. Every Jordan component has rank less or equal to two,
but on the other hand, there is at least one binary component. In this
situation, 6(0*(351,)) is fully described by Theorem. 3.14, [2]. Once again
since we are excluding the spinor norm group from being Fy, only the
following possibilities can oceur: writing .

L, =L, 1270, 1 ... 12",

for a Jordan splitting of L, with I,’s unimodular, then

(A) all Jordan components have odd order;

(B) all Jordan components have even order;
or

(C) all binary ecomponents, say, 27I; have the form where I;
= 4 (a;, 2b)), @, byell,, and moreover we must have:
(Ci} the associated spaces of 4]l these binary components are iso-
mefric, : ‘

2 — Acta Arithmetica XXXIL2 -
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(CH) for any nnary component, say, 2%L,, Where‘Lk 2 {g), tpelly,
the Hilbert symbol (ﬁuk, — det {4 {ay, 2b;) )) = +1,
(Citl) g, —t, =zt foralls =1,...,¢—1

In the execeptional cases (A) and (]3), 6(0*(
exceptional ease (C),

0(0* (L)} = 6(07 (Ly))

L)) = U, F}’, while in

= {ceF5: (o, —det(Ly), = +1).

By reasoning in a similar fashion as given in Care IT we can handle
exceptional cases (A) and (B). So, Iet us suppose then that we are in the .
exceptional case (C). Clearly, each binary component 274 (a;, 2b;) lifts
upstairs to the same since Plp i mramified. Also, conditions (Ci), (0ii),
and (Ciif) are all preserved upstairs as well, Hence, we deduce that

8{0% (L)) = 0{0F(Ly)) = {beBh: (b, —det(T,))y = +1),
for every Pip. Thus, if 0¢8(0F(Ly)), (Npyple), —det(Ly))y = +1 so that
Ngpic) belongs to 8(0% (L)}, VPip. Hence, Ngyp(c) does as well. This
finighes Case IIT, and therefore, completes the proof of Proposition 4.1.

5. General cases

5A. Proof of Theorem L Let jedp/PpJd% such that ¥i(7) = 1.
Put : :

T = {spotp on F: either (i) p is dyadie, or else (ii) p is non-dyadie
"~ and 6(07 (L)) non 2 W, I},
and '
R = {spot'p on F: p is real archimedean and V, is anisotropic}.

‘Then, T'u R is a finite set. By the weak approximation theorem (11:8, [T]),
there is an element deF* satisfying:
(&) & is positive at each peR,
(b) d-joe By, VpeT. :
© Since (L} >3, 101:8, [7] gives deD = 0{0*(V)}. But, (@) =7.
Therefore, without loss of generality, we may suppose at the outset our
idéle § matizfies

. jpeli’;g Vp «T.
Now, jeKer(¥,) implies that there exists ce) such that

cjpe {07 (Lg)), Blp.

Ipisa d_tacrete spot on F and not belonging to 7, then ¢ (0% (L) = W FZ
or ¥4 We want to show Ngrle) Jye0{0F (L)), 80 we may assume it is’

in the 1, F;* case. From non-dyadic considerations, we have 0{0F (Ly))
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& Ha}E*qf for Pip. As in the proof of Theorem 2.3 above,

ord, Npiple) = [E: Fl-ord,{j,) (med?2).

Sinee BE[F is an odd extension, we have Ngp(c)-j,c0(07(L,)).

Now let pe®, If p is dyadic, use the algument in the proof of The-
orem 2.3. When p is non-dyadic, j, is & square in F Apply Proposition 3.1
t0 ¢. Therefore, at every discrete spot p on #, we fﬂwa\\ have Ngw(c) Jy
c0{0%(Ly)). This nieans Nyp(c)-jedE. Since cel), Lemma 2.2 yields
jePpd%. This proves the injectivity of ¥j.

3B. Proof of Theorem II. The reasoning is entirely analogous.
We want to show that X gp(e)-j eJE. The proofs for the non-dyadic spots
remain intact. At the dyadie spots, we need to invoke Proposition 4.1.
When the rank #{L) is less than three, apply Theorem 5.1 given below.

5C. A stronger Theorem IT for binary lattices. We wish to
prove the following result:

TaroREM 6.1. Let L be o regular binary guadratic lattice and defined
over an algebraic number field I in which 2 is unmmeﬂed For any odd
degree field extension E[F, Wy is injective.

Proof. The proof iz not quite the same because the set D = 8§ (0+(V))
can no longer be characterized by 101:8, {7]. As observed in the intro-
duction, even though @,: Jy[Ppd 'y 1—d p/PpJ% may not be an isomor-
phism, it is still a monomorphism {the same goes for $z) so that still Iy,
is injective if ¥, is injective. We will again show this Iafter map iz a mono-
morphism.

The non-dyadic arguments are essentially the same as in the proofs
of Theorem 2.3 and Proposition 3.1. At the dyadic primes, also the proof
of Theorem 2.3 will take care of the case when I, is modular. So, we sup-
pose that we are in the situation where p is dyadic and Z, is non-modular.
We have then :

I’ &2 9i<“1: 2"y,

Ifr =108, Lemma 5.2 below will finish the case. If r = 2, Lemma 5.2
together with the fact that by By for every Plp wil 111)p1y Ngw(d)
M, F}* Finally, if 7> 4, use Lemma 5.3 below and the Local Square
Theorem {63 :1, [7]). Therefore, we shall be through after proving the
two lemmas below. )

Lemuma 5.2. Lei B[F be an extension of odd degree, and p any discrele
prime spot on F If aeE", beFy, and de¥™, thm {ab, —d)gs =1 for all
Pip implies (Ngz(a)d, wd) = 1.

Proof. For every Plp, (a, ——d)%_(b, —dyg. I n(Pip) i odd
(Ngpla), —d) = (e, —d)g = (b, —d),-Tn(Pp) s ever, then as (b, —d)g

Pl g Uyl
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=1, we see (Ng,(a), —d), = 1. Thus, ' |
(NEIF(G'): _’d)p = H (N$!D(a)7 _d)P H (N‘«Blv(a')’ '_d)P = (b, ""d)p

«(P(p} n{Bip)
odd even

since [#: F] = Y #(PBlp) is odd. This proves the lemma. ‘
Pip

Lnrvea, 5.3, Let p be a dyadie spot and Ty, = {1, 27uy, 7 2= 3, uell,,
adapied to the orthogonal basis {x, y}. Let B[F be any finile extension with P
a spof lying above p, ?}EP(_igB) with v == Aaé-i—l_i’y, A,BEDEEB. Then, one
of the following must oceur: (1) Aelly, (i) Belly with ordyg(4) < e(Blp),
or (iii) B eWg with ordy(4) = (r—1}-¢(PBlp).

Proof. Since _weP(jm), if A;H;p, then B must be a unit. Algo, the
symmetry f8,e0(Ly), which gives 24 "Dpy = 2B (v, ) “Dzg = Q('u)-o%.
Hence,
ordg (4% if  ordp(d?) < r-e(PBlp),

ordg(24) = .
reordg(2) if  ordg(A®) > r-e(Pp).

These conditions force the conclusions.

Remark 5.4. Tt is now quite apparent that if we are in the funection
field ease, then there would be no need to impose the restriction on the
~ rank either. Thus, we have the following proposition: Let L be a regular
quadratic lattice of arbitrary rank and defined over a (global) funetion field F.
For any odd degree field extension E[F, I'y is injective.

Appendix A. In this appendix we will present .emmples which
show that the oddness of the field extension degree in both Theorems I
and IT is necessary. ‘

» Al Let g, ¢,..., ¢, be distinet odd primes each congruenf to
5 (mod 8), so that (2/g) = —1 for every i. Denote by 4, a fixed non
sgquare unit in qu, kE=0,1,..., m Putting '

Lo 1,00 e )% (G0 @)y oes (G0 e @)™

to be a lattice over Z of rank @11 > 3. Then, it can be shown that Jy/Pod &
i3 a Z,yspace of dimension m. Similarly, the indefinite lathice L~
Z(=L (o gl s (G- 40" also gives ¢+ (L7) = 2™ Consider
now I = Q(l/ql). Let §; denote the idéle which is 1 at all components
(Epfor p 5= g and which is 4,8t p = ¢;, 4 =1, ..., m. Then, {&,, ..., &}
s 2 basis for J [Pg Jg. (Note: Since ( —1/g,) = 1 at every i, Ppdg=Ppdg)
But, the cosets in Jo/PpJ§ represented by these basis vectors £, 7 £ 1,
all eollapse in A. To see this, one notes that the ¢,-th component of the idéle
£: may be taken as ¢, since (¢,/q,) = —1. But then, ¢, is a square in H.
It is now quite apparent that a more patient analysis will reveal a, method
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whereby any desired amount of eollapsing takes place. Similarly, since —1
Is a square at all the ¢’s, considering - = Q(V —¢,) will yield similar
behaviour, as is the case with the lattice L~ with respect to either B or B-.

A2. We now show that Theorem I will also fail under relative quad-
ratic extensions. Let B = Q(l/:g) and ¥ = Q(l/——5,1/?i) its Hilbert
class field. Consider the unimodular lattice L =~ (1,1, ...,1)> associated
to the quadratic form representing sums of three or more squares. Clearly,
D = F* here. Using the calculations for the local apinor norm groups,
it is not difficult to see that PpJhk = PrJT™. But, J,/Ped T is isomor-
phic to the factor group €/C%, where @, denobes the ideal class group
of #. Since the ideal class number for F is 2, and for ¥ is 1, one sees that
gH(L) =2, and g+ (L} = 1 {since PyJg also equals PgJT). Hence, I';
must collapse. Of course, this same example also serves to show Theorem 2.3
fails for even degree extensions. '

Appendix B. A note on the definition of spinor gemus. The purpose
here is to make the observation that the concept of a spinor genus can
be introduced without mentioning spinors at all, and instead, adhering
only to the much more elementary concept of commutators (so that even

‘a naive andience finds it accessible}, The introdnetion of spinors usually

necessitates resorting to more algebraically preparatory machinery ; namely,
Clifford algebra, opposite algebra, anti-isomorphism, etc., in order to
justify that the spinor norm is indeed an invariant. See [7]. Even when
Clifford algebra is not used, the procedure is still guite complicated (see [8]). )
We want to emphasize that our “new’ definition has almogt ne value
from a practical point of view, because spinorial rotations are quite
accestible to computations, and indeed, only through its use can one .
really do something significant about this spinor genus. Our point, however,
is a philosophical one! For some reason the notion of a spinor genus has
acquired a certain ‘“‘mystique’ {probably becanse quite a few truly deep
results were established only after its introduction). Thus, we aim o point
out in this appendix that employing just the group commutators, the same
creature is obtained, so that perhaps commutator genus is an equally apt
name. Let us call the commutator genus Cen (L) of a lattice T the zet of
all lattices K on ¥ = FL such that there is a- 0e0Q(V) and at each spot
peS, there is a commutatorial rotation y,eR(V,) satistying K, = oy, L,
for all peS. Similarly, one introduces Cgnt(ZL). Clearly, we have:
Cls(L) € Cgn (L) < Spn(L) S Gen(L), and Cls*({L) S Cen* (L) S Spn*(L)
S Gen™ (L) = Gen(L). We claim the following equalities prevail:
Cgn(L) = 8pn(L), Cgn¥(L) = Spn*(L).

Mo achieve these, we employ the usual adélized langnage of gplit rotations.
Tt iz quite clear that it suffices to prove the following statement:
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Given any ZeJ'y, there is a global rotation o0’ (V) with spinor norm 1
sueh thut oZed%.
Here

¢ = {Zedyp: Z,e2(V,)for all (finite & infinite) spots p}.

Tor any spot p, 0'(V,) always equals to £{V,) except when p is
discrete, non-dyadic and V, is the unique four dimensional anisotropic
space. See 61C, 93:1, [7]. Thus, we may suppose dim(V) =4. Let

={p: X4 Q(Vp)} and let X be the remaining real and non-dyadic
gpots at which V is anisotropic. We may suppose T' is not empty. By
sealing, we may further assume V represents 1. Fix a unit 4, of quadratic
defect 40p, and a prime element m, at each peT. The Weak Approxi-
mation Theorem gives us two elements «, § in the global field ¥ such
that: « is close to 4, at peT, and close to 1 at peX; § is close to =, ab
peT, and close to 1 at peX. Then, «f is close to A m, at peT and to 1 at
peX. Locally, V, (being 4-dimensional) is mniversal for every non-real
spot p and of course also at all the real spots with ¥V, isotropie. On the
other hand, ¥, is positive definite for the 1emam1ng real spots. Thus,
the Local- Grloba,l Representation Theorem gives us vecbors w,v,weV
such that Q{u) = a, G(v) = §, and @¢(w) = af. Choose we V with Q(a:) =1,
and puf o = 8,;8,8,8,. One sees that o lies in O (V) and oX,e 2(V,)
at every p, see 95 : 1a, [7]..Hence, oXcJ%.
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1. Introduction. We are mterested in the approximate evaluation
of sums like :

N
—_ v rin?z
L.Jg

f=1

Sy ()

{z real).

For instance we shall prove {zsee Remark 2):

THEoRENM 1. )
. N -
(1) Bylr) =alp, ) [ "+ 0(Vg)
]
for '
@ o= 1X  r<l. 0<g<4i¥, (p,9—1.
q q? é:N H H ?

Here a{p, ¢} is an arithmetical function of p and g, whose modulus

is zero or 1/}@ according as pg is odd or even. The exact order of magnitude

of the integral in (1) is known (see (9)) to be

M
T Vg NVE

Hence the main term in (1) is zero for odd pg and dominates ]/& for even pg
in the permitted range. (The symbols O } and = are explained at the
beginning of the next section.)

By Dirichlet’s box principle one can find for any given pair 2, Na triple
7, 4, £ satisiying (2). Therefore (1) is applicable to every real # and evalu-

ates Sy(z) up to an error 0 l/ﬂ) at most. (Obsmve that VN is the exact

order of the Ly-mnorm of §y(%).)

* The research of the second anthor was supporfed in part by the National
Soience Foundation.



