Finally we prove the estimate (2). First we assume that $t < d^{1/2}$. Let $q > \varepsilon^{-1}$ be a fixed positive integer. The condition t > 2 implies $\varphi(t) \ge 2$ and so if $t \le t_0(q)$ the theorem gives

$$\gamma(d, p) \ll d^{1/\varphi(t)} \ll d^{1/2}.$$

If $t > t_0$ then $\gamma(d, p) \ll \varphi(t) d^{1/q} \ll d^{1/2+s}$ as required.

Tietäväinen [8] has shown that if 2d different residue classes can be represented as the sum of w dth powers, then

$$\gamma(d, p) \leqslant w \log d$$
.

It follows easily from the Cauchy-Davenport Theorem ([2] or [8]) that we can represent 2d residue classes as the sum of 2d/t dth powers and thus

$$\gamma(d, p) \ll dt^{-1} \log d$$
.

This proves the result at once for $t \ge d^{1/2}$.

I am grateful to Dr. Maurice Dodson for suggesting a number of improvements in the presentation of this paper.

References

- [1] Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, 1966.
- [2] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), pp. 30-32.
- [3] M. M. Dodson, Homogeneous additive congruences, Philos. Trans. Roy. Soc. London, Ser. A, 261 (1967), pp. 163-210.
- [4] M. M. Dodson and A. Tietäväinen, A note on Waring's problem in GF[p], Acta Arith. 30(1976), pp. 159-167.
- [5] G. H. Hardy and J. E. Littlewood, Some Problems of 'Partitio Numerorum' VIII. The number $\Gamma(k)$ in Waring's Problem, Proc. London Math. Soc. 28 (1927), pp. 518-542.
- [6] H. Heilbronn, Lecture notes on additive number theory mod p, California Institute of Technology, 1964.
- [7] T. H. Jackson and F. Rehman, Note on difference-covers that are not k-sum covers, Mathematika 21 (1974), pp. 107-109.
- [8] A. Tietäväinen, Note on Waring's problem (mod p), Ann. Acad. Sci. Fenn. AI 554 (1973).

Elementary methods in the theory of L-functions, V The theorems of Landau and Page

bу

J. PINTZ (Budapest)

1. Landau [4] proved in 1918 that if the *L*-functions belonging to real primitive characters $\chi_1 \pmod{D_1}$ and $\chi_2 \pmod{D_2} \pmod{\chi_1}$ respectively, have $1-\delta_1$ and $1-\delta_2$ real zeros, respectively, then

(1.1)
$$\max(\delta_1, \delta_2) > \frac{c}{\log D_1 D_2},$$

where c is an absolute constant. This fact was used by Landau only to prove that the negative fundamental discriminants for which the class number h(-D) of the imaginary quadratic field belonging to the discriminant -D

(1.2)
$$h(-D) = o\left(\frac{\sqrt{D}}{\log D}\right)$$

are very rare. Namely combining Hecke's theorem (see also Landau [4]) with (1.1) one has immediately the inequality

(1.3)
$$\max\left(\frac{h(-D_1)}{\sqrt{D_1}}, \frac{h(-D_2)}{\sqrt{D_2}}\right) > \frac{c'}{\log D_1 D_2}.$$

Page [6] proved (1.1) for the case $\chi_1 = \chi_2$, i.e. he showed that an *L*-function belonging to a real non-principal character $\chi \pmod{D}$ has at most one, simple zero in the interval

$$\left[1 - \frac{c''}{\log D}, 1\right]$$

where $e^{\prime\prime}$ is an absolute constant.

The mentioned results of Page and Landau concerning the real zeros of real L-functions together with the results — concerning the zeros of complex L-functions and the complex zeros of real L-functions — of Gronwall [3] and Titchmarsh [9] were used by Page [6] to get better results for the distribution of primes in arithmetic progressions.

165

Now we shall prove Page's theorem and (using the basic idea of the original proof) Landau's theorem in a relatively simple way, using only elements of the real analysis. Known proofs for Landau's and Page's theorem use either the functional equation for *L*-functions (see [4], [6]) or some general theorems of the theory of complex functions concerning

So we shall prove

THEOREM 1. If the L-functions belonging to the real primitive characters $\chi_1 \pmod{D_1}$ and $\chi_2 \pmod{D_2}$ respectively (where $D_1, D_2 \ge D_0$ effective constant and $\chi_1 \ne \chi_2$) have $1 - \delta_1$ and $1 - \delta_2$ real zeros, respectively, then the inequality

the zeros of analytic functions (see Prachar [8], Satz 6.1 and 6.4).

(1.5)
$$\max(\delta_1, \, \delta_2) > \frac{1}{227 \log D_1 D_2}$$

holds.

164

THEOREM 2. An L-function belonging to the real non-principal character χ (mod D) has at most one, simple real zero in the interval

$$\left[1 - \frac{2 + o(1)}{\log D}, 1\right].$$

This was proved earlier by R. J. Miech [5] only for the interval $[1-0.28/\log D, 1]$.

If we use Burgess's inequality [1] that for a primitive character $\chi \pmod{D}$

(1.7)
$$\left|\sum_{n=N+1}^{N+H} \chi(n)\right| \leqslant C(r, \varepsilon) H^{1-\frac{1}{r}} D^{\frac{r+1}{4r^2} + \varepsilon}$$

(where r denote an arbitrary natural number, ε an arbitrary positive number and $C(r,\varepsilon)$ a constant depending on r and ε) we have Theorem 2 with the interval

(1.8)
$$\left[1 - \frac{4 + o(1)}{\log D}, 1\right].$$

(Directly we get (1.8) only for real primitive characters, but if $\chi \pmod{D}$ is induced by the primitive character $\chi_1 \pmod{D_1}$ then $L(1-\delta,\chi)=0$ implies $L(1-\delta,\chi_1)=0$ and so

(1.9)
$$\delta \geqslant \frac{4 + o(1)}{\log D_1} \geqslant \frac{4 + o(1)}{\log D}.$$

Though the use of Burgess's inequality involves only a little technical difficulty we give here the proof in the more simple version using the

Pólya-Vinogradov inequality. (If we use Burgess's inequality, in Lemma 3 the error term will be o(1) on choosing

$$x=D^{1/4+s}\!\cdot\!\tau^{-8}$$

and thus we get the interval (1.8).)

2. To prove Theorem 1 we need the following LEMMA 1. If χ is a real non-principal character (mod D)

$$L(s) = L(s, \chi), \quad 0 < \tau < 0.01$$

hen the inequality

(2.1)
$$-\frac{L'}{L}(1+\tau) < \frac{\xi'}{\zeta}(1+\tau) + 9\log D + \frac{6}{5\tau}$$

holds.

If further

$$L(1-\delta,\chi)=0, \quad 0<\delta<\frac{1}{4},$$

then the inequality

(2.2)
$$-\frac{L'}{L}(1+\tau) < \frac{\zeta'}{\zeta}(1+\tau) + 3\log D + \frac{\delta}{\tau} \left(6\log D + \frac{6}{5\tau}\right)$$

holds.

To prove Lemma 1 we shall use

LEMMA 2. If χ is a real non-principal character (mod D), $g(n) = \sum_{d \mid n} \chi(d)$, then for an arbitrary τ , with $0 < \tau < \frac{1}{2}$, there exists a c_{τ} , such that for $x \geqslant 3D$, $L(s) = L(s, \chi)$, the relations

(2.3)
$$\sum_{n \le \tau} \frac{g(n)}{n^{1-\tau}} = \left(c_{\tau} - \frac{1}{\tau}\right) L(1-\tau) + \frac{L(1)x^{\tau}}{\tau} + \frac{4\vartheta x^{\tau}\sqrt{D}}{\tau\sqrt{x}}$$

and

(2.4)
$$\sum_{n \leq x} \frac{g(n)}{n^{1+\tau}} = \zeta(1+\tau)L(1+\tau) - \frac{L(1)x^{\tau}}{\tau} + \frac{4\vartheta\sqrt{D}}{\tau\sqrt{x}}$$

hold, where ϑ denotes a real number, possibly different on various appearances, such that $|\vartheta| \leq 1$.

The first part of Lemma 2, (2.3), is Lemma 0 of [7] (with the only modification that in the proof z must be chosen $z = \sqrt{3Dx}$; (2.4) one can prove analogously to (2.3)).

A consequence of (2.4) for $x\to\infty$ is the equality

(2.5)
$$\sum_{n=1}^{\infty} \frac{g(n)}{n^{1+\tau}} = \zeta(1+\tau)L(1+\tau).$$

In consequence of

$$g(n) = \prod_{p^{\alpha}|n} (1 + \chi(p) + \ldots + \chi^{\alpha}(p)) \geqslant 0$$

we have

$$(2.6) \qquad -\frac{L'}{L}(1+\tau) - \frac{\zeta'}{\zeta}(1+\tau)$$

$$= \frac{\sum_{n=1}^{\infty} \frac{g(n)\log n}{n^{1+\tau}}}{\sum_{n=1}^{\infty} \frac{g(n)}{n^{1+\tau}}} \leqslant \frac{\sum_{n \leqslant D^3} \frac{g(n)\log n}{n^{1+\tau}}}{\sum_{n \leqslant D^3} \frac{g(n)}{n^{1+\tau}}} + \frac{\sum_{n > D^3} \frac{g(n)\log n}{n^{1+\tau}}}{\sum_{n=1}^{\infty} \frac{g(n)}{n^{1+\tau}}} \leqslant 3\log D + \frac{B}{C}$$

where

(2.7)
$$B = \sum_{n>D^3} \frac{g(n)\log n}{n^{1+\tau}}, \quad C = \sum_{n=1}^{\infty} \frac{g(n)}{n^{1+\tau}}.$$

A consequence of (2.4) for $k \ge 3$ is the equality

(2.8)
$$\sum_{D^{k} < n \le D^{k+1}} \frac{g(n)}{n^{1+\tau}} = \frac{L(1)}{\tau} \left(\frac{1}{D^{k\tau}} - \frac{1}{D^{(k+1)\tau}} \right) + \frac{8\vartheta\sqrt{D}}{\tau\sqrt{D^{k}}}.$$

Thus using the easy elementary lower bound of A. O. Gelfond [2]

$$L(1) \gg \frac{1}{\sqrt{D}\log^2 D}$$

we have

$$(2.9) \quad B = \sum_{k=3}^{\infty} \sum_{n=D^{k+1}}^{D^{k+1}} \frac{g(n)\log n}{n^{1+\tau}}$$

$$\leq \sum_{k=3}^{\infty} (k+1)\log D \left\{ \frac{(D^{\tau}-1)L(1)}{\tau D^{(k+1)\tau}} + \frac{8\sqrt{D}}{\tau \sqrt{D^{k}}} \right\}$$

$$= \frac{\log D}{\tau} \left\{ \frac{L(1)}{D^{3\tau}} \left(4 + \frac{1}{D^{\tau}-1} \right) + \frac{32}{\sqrt{D}(\sqrt{D}-1)} + \frac{8}{\sqrt{D}(\sqrt{D}-1)^{2}} \right\}$$

$$< \frac{\log D}{\tau} \left\{ \frac{L(1)}{D^{3\tau}} \left(5 + \frac{1}{\tau \log D} \right) \right\} = \frac{L(1)}{\tau D^{3\tau}} \left(5 \log D + \frac{1}{\tau} \right).$$

Using (2.8), the inequality $L(1) \gg 1/\sqrt{D}\log^2 D$ and in case of a real zero $1-\delta > \frac{1}{2}$ (2.3) too, by $\tau < 0.01$ we get the inequalities

(2.10)
$$C \geqslant \sum_{n > D^3} \frac{g(n)}{n^{1+\tau}} = \frac{L(1)}{\tau D^{3\tau}} + \frac{4 \vartheta \sqrt{D}}{\tau \sqrt{D^3}} \geqslant \frac{5L(1)}{6\tau D^{3\tau}}$$

and

$$(2.11) C \geqslant \sum_{n \leqslant D^3} \frac{g(n)}{n^{1+\tau}} \geqslant \frac{1}{D^{3\tau+3\delta}} \sum_{n \leqslant D^3} \frac{g(n)}{n^{1-\delta}}$$

$$= \frac{1}{D^{3\tau+3\delta}} \left(\frac{L(1)D^{3\delta}}{\delta} + \frac{4\vartheta D^{3\delta}\sqrt{D}}{\delta\sqrt{D^3}} \right)$$

$$\geqslant \frac{1}{D^{3\tau+3\delta}} \cdot \frac{5L(1)D^{3\delta}}{6\delta} = \frac{5L(1)}{6\delta D^{3\delta}}.$$

So from (2.9), (2.10), and (2.11) we get the inequalities

$$(2.12) \frac{B}{C} \leqslant \frac{6}{5} \left(5 \log D + \frac{1}{\tau} \right)$$

 \mathbf{and}

$$(2.13) \frac{B}{C} \leqslant \frac{6\delta}{5\tau} \left(5 \log D + \frac{1}{\tau} \right)$$

which together with (2.6) prove Lemma 1.

Now using the fact that $\chi_1 \chi_2$ is a non-principal character mod $D_1 D_2$ we can apply (2.1) for χ_1 and χ_2 and (2.2) for $\chi_1 \chi_2$ and so for a real τ with $0 < \tau < 0.01$ we have

$$\begin{split} (2.14) \quad & 0 \leqslant \sum_{n=1}^{\infty} A(n) \big(1 + \chi_1(n) \big) \big(1 + \chi_2(n) \big) n^{-1-\tau} \\ & = -\frac{\zeta'}{\zeta} (1+\tau) - \frac{L'}{L} (1+\tau, \chi_1) - \frac{L'}{L} (1+\tau, \chi_2) - \frac{L'}{L} (1+\tau, \chi_1 \chi_2) \\ & \leqslant 2 \frac{\zeta'}{\zeta} (1+\tau) + 3 (\log D_1 + \log D_2) + 9 \log D_1 D_2 + \\ & + \frac{6}{\tau} (\delta_1 \log D_1 + \delta_2 \log D_2) + \frac{6}{5\tau^2} (\delta_1 + \delta_2) + \frac{6}{5\tau}. \end{split}$$

Here for $0 < \tau < 0.01$ one has

$$(2.15) 2\frac{\zeta'}{\zeta}(1+\tau) + \frac{6}{5\tau} \leqslant -2 \cdot 0.98 \frac{1}{\tau} + \frac{6}{5\tau} < -\frac{3}{4\tau}.$$

Put $D = D_1D_2$, $\delta = \max(\delta_1, \delta_2)$ then (2.14) implies the inequality

$$\frac{3}{4\tau} \leqslant 12\log D + \frac{6}{\tau}\delta\log D + \frac{12\delta}{5\tau^2}.$$

Now choosing $\tau = (40 \log D)^{-1}$ (2.16) is equivalent to the inequality

$$(2.17) \qquad 30 \log D < 12 \log D + 240 \log D (\delta \log D) + 3840 \log^2 D \cdot \delta.$$

Hence

$$\delta > \frac{1}{227 \log D} . \blacksquare$$

3. To prove Theorem 2 we need the following

LEMMA 3. Let χ be a real non-principal character (mod D),

$$A = 2\sqrt{D}\log D$$
, $L(s) = L(s, \chi)$, $g(n) = \sum_{d|n} \chi(d)$.

Then for an arbitrary real τ , with $0 < \tau < \frac{1}{3}$ there is such a c_{τ} , and such a c'_{τ} , $|c'_{\tau}| < 3$, that for $x \ge A$ the equality

$$(3.1) \qquad \sum_{n \leqslant x} \frac{g(n)\log n}{n^{1-\tau}} = \left(\frac{1}{\tau} - c_{\tau}\right) L'(1-\tau) + \left(\frac{1}{\tau^2} + c_{\tau}\right) L(1-\tau) - \frac{L(1)x^{\tau}}{\tau} \left(\frac{1}{\tau} - \log x\right) + \frac{6 \vartheta x^{\tau} \log x \sqrt{A}}{\tau^2 \sqrt{x}}$$

holds.

For proving Lemma 3 we shall use the following lemma of the real elementary analysis.

Lemma. For an arbitrary τ with $0 < \tau < \frac{1}{3}$ there is such a c_{τ} , and such a c'_{τ} , $|c'_{\tau}| < 3$, that for $u \ge 1$ the relations

(3.2)
$$\sum_{m \leq u} \frac{1}{m^{1-\tau}} = c_{\tau} + \frac{1}{\tau} (u^{\tau} - 1) + \frac{\vartheta}{u^{1-\tau}} < \frac{u^{\tau}}{\tau}$$

and

(3.3)
$$\sum_{m} \frac{\log m}{m^{1-\tau}} = c'_{\tau} + \frac{1}{\tau^2} - \frac{u^{\tau}}{\tau} \left(\frac{1}{\tau} - \log u \right) + \frac{\vartheta \log u}{u^{1-\tau}}$$

hold.

Now let z be a number, to be chosen later for which $1 \le z \le x$. Then

(3.4)
$$\sum_{n \le x} \frac{g(n) \log n}{n^{1-\tau}} = \sum_{d \le x} \chi(d) \sum_{m \le x/d} \frac{\log md}{(md)^{1-\tau}} = \sum_{d \le x} \frac{1}{1 + \sum_{e < d \le x} 2}.$$

Here using Lemma 4 we have

$$(3.5) \qquad \sum_{1} = \sum_{d \leqslant x} \frac{\chi(d) \log d}{d^{1-\tau}} \sum_{m \leqslant x/d} \frac{1}{m^{1-\tau}} + \sum_{d \leqslant s} \frac{\chi(d)}{d^{1-\tau}} \sum_{m \leqslant x/d} \frac{\log m}{m^{1-\tau}}$$

$$= \sum_{d \leqslant s} \frac{\chi(d) \log d}{d^{1-\tau}} \left\{ c_{\tau} + \frac{1}{\tau} \left(\frac{x^{\tau}}{d^{\tau}} - 1 \right) + \frac{\vartheta d^{1-\tau}}{x^{1-\tau}} \right\} +$$

$$+ \sum_{d \leqslant s} \frac{\chi(d)}{d^{1-\tau}} \left\{ c'_{\tau} - \frac{1}{\tau^{2}} \frac{x^{\tau}}{d^{\tau}} + \frac{1}{\tau^{2}} + \frac{1}{\tau} \log \frac{x}{d} \cdot \frac{x^{\tau}}{d^{\tau}} + \frac{\vartheta d^{1-\tau} \log(x/d)}{x^{1-\tau}} \right\}$$

$$= \left(c_{\tau} - \frac{1}{\tau} \right) \sum_{d \leqslant s} \frac{\chi(d) \log d}{d^{1-\tau}} + \left(c'_{\tau} + \frac{1}{\tau^{2}} \right) \sum_{d \leqslant s} \frac{\chi(d)}{d^{1-\tau}} -$$

$$- \frac{x^{\tau}}{\tau} \left(\frac{1}{\tau} - \log x \right) \sum_{d \leqslant s} \frac{\chi(d)}{d} + \vartheta \sum_{d \leqslant s} \frac{\log d + \log(x/d)}{x^{1-\tau}}.$$

On the other hand using the Pólya-Vinogradov inequality

$$\Big|\sum_{d=a}^{b}\chi(d)\Big| \leqslant 2\sqrt{D}\log D = A,$$

Abel's inequality, and considering that the functions

$$\frac{\log d}{d^{1-\tau}}, \quad \frac{1}{d^{1-\tau}}, \quad \frac{1}{d}, \quad \sum_{m \leqslant x \mid d} \frac{\log md}{(md)^{1-\tau}}$$

are monotonically decreasing in d, we get the following inequalities:

(3.6)
$$\left| \left(\frac{1}{\tau} - c_{\tau} \right) \sum_{d > z} \frac{\chi(d) \log d}{d^{1-\tau}} \right| \leqslant \frac{1}{\tau} \cdot \frac{A \log z}{z^{1-\tau}},$$

(3.7)
$$\left|\left(c_{\tau}' + \frac{1}{\tau^2}\right) \sum_{l > \tau} \frac{\chi(d)}{d^{1-\tau}}\right| \leqslant \frac{2}{\tau^2} \cdot \frac{A}{z^{1-\tau}},$$

(3.8)
$$\left| \frac{x^{\tau}}{\tau} \left(\frac{1}{\tau} - \log x \right) \sum_{d>z} \frac{\chi(d)}{d} \right| \leqslant \frac{x^{\tau} \log x}{\tau^2} \cdot \frac{A}{z},$$

(3.9)
$$\left|\sum_{z \in \mathcal{Z}} \chi(d) \sum_{m = -d} \frac{\log md}{(md)^{1-\tau}}\right| \leqslant \frac{A}{z^{1-\tau}} \cdot \log x \cdot \frac{1}{\tau} \cdot \frac{x^{\tau}}{z^{\tau}}.$$

The formulae (3.4)-(3.9) now imply the relation

$$(3.10) \qquad \sum_{n \leqslant x} \frac{g(n)\log n}{n^{1-\tau}} = \left(\frac{1}{\tau} - c_{\tau}\right) L'(1-\tau) + \left(c_{\tau}' + \frac{1}{\tau^{2}}\right) L(1-\tau) - \frac{x^{\tau}}{\tau} \left(\frac{1}{\tau} - \log x\right) L(1) + \frac{\vartheta z \log x \cdot x^{\tau}}{x} + \frac{5\vartheta A \log x \cdot x^{\tau}}{\tau^{2} z}.$$

If we now choose $z = \sqrt{Ax}$ ($\leq x$) we get Lemma 3. On the other hand we have

$$g(n) = \prod_{p^{\alpha}|n} (1 + \chi(p) + \ldots + \chi^{\alpha}(p)) \geqslant 0 \quad \text{and} \quad g(m^2) \geqslant 1.$$

Thus for $x \geqslant 4$

170

(3.11)
$$\sum_{n \le x} \frac{g(n) \log n}{n^{1-x}} \geqslant \frac{\log 4}{4}.$$

Let us assume, that contrary to Theorem 2 L(s) has two zeros or a nonsimple zero in the interval

$$\left[1 - \frac{2 - 3\varepsilon}{\log D}, 1\right] \subset \left[1 - \frac{1 - \varepsilon}{\log A}, 1\right]$$

(if $D > D_{\alpha}(\varepsilon)$ effective constant).

Then there exists a τ with $0 < \tau \le (1-\varepsilon)/\log A$ ($< \frac{1}{3}$) for which $L(1-\tau) \leq 0$ and $L'(1-\tau) = 0$. Applying now Lemma 3 for this τ , and for $x = A/\tau^8$ as $A \geqslant \sqrt{D} \rightarrow \infty$ and so $\tau \rightarrow 0$ we have

(3.13)
$$\frac{1}{\tau} - \log x = \frac{1}{\tau} - 8\log \frac{1}{\tau} - \log A \geqslant \frac{\varepsilon}{\tau} - 8\log \frac{1}{\tau} > 0$$

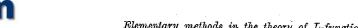
since $1/\tau \geqslant \log A/(1-\varepsilon) > (1+\varepsilon)\log A$ and so the right side of (3.1) is in consequence of $L(1) \ge 0$ and $|c_r'| < 3$,

$$(3.14) \qquad \left(\frac{1}{\tau^2} + e_\tau'\right) L(1-\tau) - \frac{x^\tau}{\tau} \left(\frac{1}{\tau} - \log x\right) L(1) + \frac{6 \, \vartheta x^\tau \log x \sqrt{A}}{\tau^2 x}$$

$$\leqslant 0 + 0 + \frac{6 \, e^{\tau \log x} \cdot \frac{1}{\tau} \sqrt{A}}{\tau^2 \frac{\sqrt{A}}{\tau^4}} < 6 \, e\tau < \frac{\log 4}{4}$$

which contradicts to (3.11) and so proves Theorem 2.

We note that as one can see from this proof Theorem 2 is valid for an arbitrary real valued completely multiplicative number theoretical function θ , for which $|\theta(n)| \leq 1$ and $\left|\sum_{d=a}^{\infty} \theta(d)\right| \leq A$. The corresponding interval in (1.6) is then $\left[1 - \frac{1 + o(1)}{\log A}, 1\right]$.



References

- [1] D. A. Burgess, On character sums and L-series II, Proc. London Math. Soc. 12 (1962), pp. 193-206.
- [2] A. O. Gelfond, On an elementary approach to some problems from the field of distribution of prime numbers (in Russian), Vestnik. Moskov. Univ. Ser. Fiz.-Mat. Estest. Nauk. 8 (1953), pp. 21-26.
- [3] T. H. Gronwall, Sur les séries de Dirichlet correspondant à des caractères complexes, Rendiconti di Palermo 35 (1913), pp. 145-159.
- [4] E. Landau, Über die Klassenzahl imaginär quadratischer Zahlkörper, Göttinger Nachr. 118, pp. 285-295.
- [5] R. J. Miech, A number-theoretic constant, Acta Arith. 15 (1968), pp. 119-137.
- [6] A. Page, On the number of primes in an arithmetic progression, Proc. London Math. Soc. 39 (1935), pp. 116-141.
- [7] J. Pintz, On Siegel's theorem, Acta Arith. 24 (1974), pp. 543-551.
- K. Prachar, Primzahlverteilung, Berlin 1957.
- [9] E. C. Titchmarsh, A divisor problem, Rendiconti di Palermo 54 (1930), pp. 414-429.

EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF ALGEBRA AND NUMBER THEORY Budapest, Hungary

> Received on 8. 9, 1975 (762)