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Finally we prove the estimate (2). First we assume that ¢ d'%
Let g > £* be a fixed positive integer. The condition ¢ > 2 implies ¢(2) > 2
~and so if §<C 4(g) the theorem gives

y(d,p) £ d}/w(t) <& 2L

Xf £ > 4, then y(d, p) < p(£)d¥% € @+ as required.
Tietédvdinen [8] has shown that if 24 different residne classes can be
represented as the sum of w dth powers, then

y(d,p) € wlogd.

It follows easily from the Cauchy-Davenport Theorem ([2] or [8]) that
we can represent 2d residue clagses as the sum of 24/t dth powers and thus

y(d, p) € dt'logd.

This proves the result at once for ¢ .
T am grateful to Dr. Maurice Dodson for suggesting a number of
improvements in the presentation of this paper.
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Elementary methods in the theory of I-functions, V
The theorems of Landan and Page

by
J. PINTZ (Budapest)

1. Landaun [4] proved in 1918 that if the L-functions belonging to
real primitive eharacters y, (mod D) and y, (mod D) (g = ya) Tespect-
ively, have 1—48; and 1 —8, real zeros, respectively, then

4

d _
(L.1) max (dy, §;) > log D, D, '

where ¢ is an absolute constant. This fact was nsed by Landau only to
prove that the negative fundamental discriminants for which the class
number k{—D) of the imaginary quadratic field belonging to the diseri-

minant —D
VD )
log.D

are very rare. Namely combining Hecke’s theorem (see also Landau [4])
with (1.1) one has immediately the inequality

W=D, R{— 2))> ¢
vD, ' VD, /| logD.D,

Page [6] proved (1.1) for the case g, = y,, i.e. he showed that an
I-fanction belonging to a real non-prineipal character x(mod D) has
at most one, simple zero in the interval

0”
a4 [1 logD’ 1]
where ¢’ is an absohite constant.

The mentioned results of Page and Landan concerning the real
zeros of real L-functions together with the results -— concerning the zeros
of complex I-functions and the ecomplex zeros of real L-functions — of
Gronwall [3] and Titchmarsh [9] were used by Page [6] to get Dbetter
results for the distribution of primes in arithmetic progressions.

(1.2) h{—D) = o(

r

(1.3) max (
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Now we shall prove Page’s theorem and (using the bagic idea of the
original proof) Landau’s theorem in a relatively simple way, using only
elements of the real analysis. Known proofs for Landaw’s and Page’s
theorem use either the functional equation for L-functions (see [4], [6])
or some general theorems of the theory of complex funetions coneerning
the zeros of amalytic functions (see Prachar [8], Satz 6.1 and 6.4).

S0 we shall prove _

TerorE™ 1. If the L-fundiions belonging to the real primitive charac-
ters y, (mod D) and x, (mod D) respectively (where Dy, Dy 2= Dy effective
constont and y, 7 y.) have 1 —8; and 1—J; real zeros; respectively, then
ihe inegualily
(15) max(&l, 8) = m

holds.
TemorEM 2. An L-function belonging fo the real non~principal cha-
racter y (mod. D) has at most one, simple real zero in the inderval

C940(1)
(1.6) [1—@3_’1]'

This wag proved eariier by R. J. Miech [5] only for the interval -

[1-0.28/logD,1].
I we use Burgess’s inequality [1] that for a primifive character

g (med D)

N+H Lo,
(1.7) { > x(n)lg O(r, ) H "D

n=IV-41 ’
{where + denote an arbifrary natural number, ¢ an arbitrary positive
nuraber and C(r, &) & constant depending on r and &) we have Theorem 2
with the inferval '

(L.8) [1 _Atold) 1].

logD ’

(Directly we get (1.8) only for real primitive characters, but if

x (mod D) is induced by the primitive character j, (mod D,) then

L(l—~8,y) =0 implies L(1=6, ) =0 and so

4-0(1)
log. Dy

4+0(1)

{1.9
1.9) logD

)

Though the nse of Burgess’s inequality involves only a little technical
. difficulty we give here the proof in the more simple version using the
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Pdlya-Vinogradov inequality. (If we use Burgess’s inequality, in Lemra 3
the error term will be ¢(1) on choosing

x = DHite. g8
and thus we get the interval (1.8).)

2. To prove Theorem 1 we need the following
LemMa 1. If y 48 a real non-principal character (mod IF)

L(8) = Lis, x}), O0<r<0.01
hen the inequality
L’ 1 E’ Y 6 .
{2.1) —di—(l—r'r)<?(1~[«r)+910g_l)+—g;
holds.
If further

L(1—8,7) =0, 0<3<i,

then the inequality

r

z : 3 6
(2.2) (l+7)< —é_(l—!—r)+310g1)~|-~—;(610g_l)+g)

7

holds.

To prove Lemma 1 we shall use

LEMMA 2. If y is @ real non-principal character (mod D), g(n) = 3 x(d),
din

then for an arbitrary =, with 0 < v < L, there ewists a ¢,, such that for > 3D,
L(s) = L(s, %), the relations

(2.3) 9m (cr---];) L1y 2B ewm'@
nEE s T ﬂ/m
aﬁd
gy ‘ L)z 40D
(2.4) éj il Z(1+1)L(ZF+T)_ 0 7

hold, where & denotes a real number, possibly different on various appear-
ances, such that |9 < 1.

 The first part of Lemma'z, (2.3), is Lemma 0 of [7] (with the only
modification thatin the proof # must be chosen z = V?Tﬁ;:; (2.4) one can
prove analogonsly to (2.3)) ,



icm

166 J. Pintz

A conseguence of (2.4) for a—co is the equality

@5 f

In consequence of

14y L(d+1).

gin) = [t +z(@)+ .. +2°(@) =
2%
we have
Lf Cl’
2. — (17—
(2.6) L( +7) : (1+7) |
<1 g{n)logn g{n)logn g{n)logn
.../S'_""H-—t_ 2 BT Z fare
n=1 w n<p? L r= DB Lt B
= - < N — _ < 3log D+ —
51 g(m) 2 gin) 2 g(n) ¢
= W ST W =t
where
g(n)logn o g(n)
@7 B= Z T O 2 ptte
nsD? n=1

A consequence of (2.4} for k= 3 is the eqﬁa,lity

2.8) - g(m) mL(l)( 11 )+ 89V D
e BT x \DF DO g
.. Thus using the easy elementary lower bound of A. O. Gelfond [2]
' 1
L)y ——=————
]/ﬁlogﬁl)
we have
g(ﬂ, logn
oo 2= 33 sl
: =3 p=pbi1
(D"—1)L(1) 8VD
< (k+1) logD{ —+ _,.H.}
g T.DEF W D*
log.D {L(l} ( 1 ) 32 8
= — |4+ = + = -+ }
v (D -1} vpWp-1) VDYD-17

logD (L(1) {, 1 I(1) L1
< = -
T { ¥ (a+ rlﬂgD)} TP (510g1)_+ r)'
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Using (2.8), the inequality L(1) > 1/VDlog*D and in case of a real
gere 1—0 > % (2.3) too, by 7 < 0.01 we get the inequalities

(3.10) o> N Em IO 49D . 55Q)
. = ﬂ1+‘: _L.D:-}:‘ I/IT ST.DBT
ﬂ>.D3
and
' g(ﬂ g n)
1) D N PR o)
ngD:’" n<D?
1 [yDp¥ 49D%D
R R
!  BLD®  BL(1)
T Dt 88 66DV

So from (2.9), (2.10), and (2.11) we get the inequalities

: B
{2.12) —G—< (510g1)+ )
and
68
(2.13) B<—(51 +—~}-l)
¢ Bt T

which together with (2.6) prove Temma 1.

Now using the fact that i, x. is a non-principal character mod D, D,
we can apply (2.1) for y, and y, and (2.2) for x; z, and so for a real T with
0 < < 0.01 we have

0< D Am) L4 )L+ z(m)n™ "

=l

(2.14)

I ’ L}

g L L I
== “‘?(1—]‘7)—‘3‘(14"‘7; 951)"""‘5(1‘]"‘: X?,)_TL“(I"FT: A1Xs)

<2 E- (14 7)+3(logDy+1log Dy) +9log Dy Dy -+

] 6
+—;(5110ng+ 5210gD2)+“5‘;{(61+ aa)+'57-

Here for 0 < 7 < 0.01L one has

¢ i 6 - 3
2—-(1+1:)+——<-—2'0.98m—i-—g— -

(315) ¢ T e S T
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Put D = DDy, 6 =max(d;, d;) then (2.14) implies the inequality

3 6
— <12log D+~

(2.16)

Now choosing 7 = (40logD)™* (2.16) is equivalent to the inequality

(2.17) 30log D < 121og D 4-240log D (Slog D) 4+ 38401og2D- 4.
Hence

218 Y P u

(2:18) . 227log D

3. To prove Theorem 2 we need the following
Lemaa 8. Lef x be a real non-principal charecter {mod.D),

= X aid).

din

4 =~9VDlogD, L(s)=L(s, ), g

Then for an arbitrary real v, with 0 < v < § there i such o ¢, and such
a o, el < 3, that for x> A the equality

ERT WAL L (—i— —c,)L’(ler (7} +c,)13(1 —7)—

Ld W
- LiL)a (?wlogw) +

L
64z log aVA
T Va

holds. _

For proving Lemma 3 we shall use t.he followmg lemma of the real
elementary analysis.

TEvvA. For an arbitrary 7 with 0 << 7 < § there is such a o,, and such
ac,, ley] < 3, that for u == 1 the relations

. 1 1 B ut
2 - = iyt — e —
(32) N m Wl <=
msu
and _
loem  , . 1 w1 Hlogu
3.3 = LI PN
(3:3) 2 e L (z’ logu)—l— W
mKuU R . .
hold.

Now let 2z be a number, to be chosen later for which 1 < z 2. Then

(3.4) Zf’?"”"“”’——z 2 1;2;?51 Z DI

m< ] Le<d<z
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' Here using Lemma 4 we have

@8 D = 2 AL Z:d N

a<s maid
- St e S
S i e
=(¢‘r—i) —"%@iﬂoﬁ%) A
d<e : d<z
) e SR

On the other hand usmg the P6lya—Vinogradov inequality
\Zx(d)kzu/_zogﬂ A,

Abel’s inequality, and considering that the funetions
logd 1 1 Z logmd
dl-‘z bl dl—r ? d’ (md)l——r
m<z/id

are monotonically decressing in 4, we get the following inequalities:

(3.6) (W_ - ) 3 z(dllogd‘\ 1 Alloc:z,
d}g
o (k) I e
(3.8) “’7{(_}_1 og )ﬂZ x;d) 1< mq;gm 'i:‘:
&
(3.9) D (@ (ﬁ;’fﬁl < zlA__ logm-%-‘%_
s<den aid

The formulae (3.4}-(3.9) now inply the relation :
o gmlogn (1 N R P
(3.10) Z_T_ = (? G)L'(L—o)+{e+— Lil—1)

L
nar

kg

1 o Alogaa”
| _:’i(_ —logw)ll(l)l»{— G
T T

T2z

aﬂzlﬂl oz
e
@



170 I. Pintz

Tt we now choose z = VAz (< @) we geb Lemma 3.
On the other hand we have

and g(m?) = 1.

gn) = H(1+x{io)+

2% n

+ 7)) =0

Thus for > 4

g{n)logn logé_
Z = 4

F A

{3.11)

Let us assume, that contrary to Theorem 2 L(s) has two zeros or a non-

gimple zero in the interval
o [ 1]
1 T g

' 2 —3¢
[l_ logD "’
(it I} > D,(e) effective constant).

Then therve exists a = with 0< < (1 —e)flogd (< %) for which
L(1—7) < 0 and I'(1—7) = 0. Applying now Lemma 3 for this 7, and for
#=A}" a8 4>VD->oo and 0 7->0 we have

(3.12)

1 1 1 g 1
. — —logip = ——~8log——logd = -—~—8log— > 0
{3.13) " loga - 8 ogr 0g . og -
sinee 1/t > logA /(1 —g) > (1+4-¢e)logA and so the right side of (3.1) is
in eonsequence of L(1)= 0 and |c| < 3,
1 . & {1 Em‘}aflogml/;l~
. — 4 —7)——|= —~loga) L(1) - ———
.(3 14) (1;3 -i-o,)L(l T) - (-r ogm) 1)+ oy
-
<040+ T <6 <Iog4
= e 6T < ——m
VA 4
v
T‘

which contradicts to (3.11) and so proves Theorem 2.
We note that az one can gee from this proof Theorem 2 is walid for
an arbifrary real valued completely multiplicative number theoretical

[}
tunetion 6, for which [6(n)| <1 and |3 6(d)|
: d=a

1+o(1) 1]
logd 71

< 4. The corresponding

interval in (1.6) is then [1.—

icm
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