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Elementary methods in the theory of L-functions, VI
On the least prime quadratic residue (modp)

by

J. PNtz (Budapest)

1. I. M. Vinogradov conjectured more than 350 years ago, that the
least prime quadratic residue modp (p is a prime)

(1.1} P{p) < ele)p®
where ¢ is an arbifrary positive number and e(s) a constant depending
on & )

Yu. V. Linnik and A. T. Vinogradov proved in 1964 [5], that

(1.2) Py <olep™ (e>0).

The somewhat roughly outlined proof wuses complex integration,
Burgess’s inequality [1], and Siegel’s lower bound [7] for L(1, z).
Conditional results conmecting the hypothesis of I. M. Vinogradov
mentioned above with the value of L(1, y,) — where y,(n) = (n/p) — were a-
chieved by Linnik and Rényi [4], P. D.T. A. Blliott [2] and D. Wolke [8].
Linnik and Rényi showed that if P(p) > p"* then

- (7]
(1.3) L(1, 1) :.2—19- <1.

n
n=1

On the same condition Elliott proved

(loglogp)*
(1.4) L1, Xp)ﬁ “logp
Wolke proved :
(1.5) L1, x) < Togp

The results of Elliott and Wolke were bagsed on a lemma, which is

the essential part of the work of Linnik and A. 1. Vinogradov [5],
mentioned above in which they proved the inequality

P(p) < c(e)p*.
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Besides this, Tlliott uses a result of Hardy and Ramanujan [3], con-
cerning the number of the natural numbers less than o and having ex-
actly » distinet pnme divigars. Wolke applies Brun’s sieve method. in order
to prove

v o) mlogfn.
nsa: log*y
pln—sp=y

Now we shall demonstrate that one can derive Linnik and A. T. Vino-
gradov’s [6] resuls f_rom Burgess’s inequality and Hiegel’s theorem in
8 gimple elementary way (which, however, is somewhat similar to the

non-clementary original proof [5]). We ghall also give & simple, elemen-

tary proof for Wolke’s result in which besides a lemma, proved in [6] -

in an elementary way, we use only the relation

‘ Z'—d-(—@—( +eo(l ))logﬁA.
"

e

(1.6)

So we state

TemorEM 1. For an arbitrary positive & there 18 an ineffective constant
py(), depending only on s, that the least prime guadmtw residue P (p) (mod p)
(where p is a prime)

(17) Pp)<p™™ i p>pole).

THEOREM 2. If the least prime quadratic residue (mod p) (where p is
& prine)

{1.8) _ P(p)>p* 2P, .
(where ¢ <L §, Py is an absolute constant), then the inegquality
=]
: T 24
1.9 L1 = —|ntg
w9 s 7] ;(p)% = Plogp
holds.

_ 2. To prove Theorem 1 we use Burgess’s inequality (1], according
0 which if p is a prime,  an integer, and y(d) = (d/p) then the 1]16(;{11&111‘@r

N+H 1 r+1
(2.1) | Y @< omE Tpetlogp
d=N=+1

holds, where C(r) is a constant depending on 7.
Further we use Siegel’s theorem [7], which states, that for an arbi-
trary n > 0 and for a real non-principal character y (mod D)

(2.2) L(L, ) > e() D"
with a constant ¢(y) depending only on .
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We shall assume that for 0 < & < }

(2.3)
(where p > pq(e)).

1
Let r = 2_3,

P(p)>a = piht

(2.4) gin) = (@ = [ +xd+ ... +2%p0)
din »fiin
and further '
1 or+R
(2.5) A=0Cmw "pelogp < y=VAz <o

(if p > pole))- :
Then we see from (2.3) and (2.4), that for n << o

e if s =1,
(26) gl = [0, it ow I
So we have
2.9 ]/ -—2 (n) = Z dy|= Ld)_ v (d){f}
(2.7) [Va] g z 7 itk

n<w i o=
Here using (2.1} and Abel’s inequality we get the inequality

| Zraf]<| Zrofille 3] X rafd)

v ="

@y+§-:¢ = VAo -+VAz = 2V4s.

(2.8)

On the other hand (2.1) gives
1 f’+1
d)]<6‘ 'r)u “pelogp

(2.9) a0 =|

a<datt

and s¢ by partial summation we get the inequality

2% l—lf g

d>z

r+l

(2.10} . )p 4*“ logp du

1 r+l1 .A.
= rC(r)e 7 pu logp =1—.

175



176 . J. Pintz’

Thus from (2.7), (2.8) and (2.10) follows

(2.11) Vaz Y gln) 1, y)—rd —2V4z.
BT
Hence as
A<x and igr :[w}w] ——1——
3¢ Qe 2&
we have '
F4-1
(212)  L(1, p)<(r+3) ]/— tr+3W 0 lngpl/péri
P
‘ . 1 1 a
< o’mﬁ@p‘ﬁ“ W < o(eiogan ",

which contradicts to Siegel’s'theor_em (2.2) (with 1 = £*/b) if p exceeds
a certain ineffective constant p,(s).
3. To prove Theorem 2 we use Lemma 1 of‘ [6]:

Levmia. If ¢ 45 a real non-principal character mod D, » = l/ﬁlogzl'),

' g(n) = > x(d), then the eguality
dn

(3.1) 29'_

nSk

1, )+ L1, y)(logz+0) +o( l/ﬂli’gi”"ﬁ)

holds, wheré ¢ denotes Euler’'s constant.

] %
If we use this for g(n) = (5) (D.=p} and for the values o, =7,
@, = p* subtracting the first equality from the second we have the equality

i

(5.2) %ﬂogp-m,xmo(l)-

pen<pt .

On the other hand if P(p) * (where 0 < e ) we a,ssert the
inequality .
4(q) g{n) “d(m)

3.3 —_ — e
®3) Z,Q.ZM, 2w

g p<ngps M

H{g)#0 -

where d{m) is the number of lelbOl‘S of m.
To prove (3.3) first we show that an arbitrary integer m, for which
pEmg p“" can be written in at most one way in the form m = ¢n,
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-1

where g<< 9% u(g) # 0 and g{m) # 0. Indeed, if

(3.4) gm) = [T +zxpd +

oitln

. +x"‘(pi)) # 0

then for all the prime factors p; of n with the plopelty I(i!%) = —1 and
5o for all p; < p°, o; must be even, so if m = 12t (u(t) == 0) then necessarily

(3.5) ‘ g= []p: ana n=0 [[p.
: wilt, ' - it
pi=p® FTeda

We can also see from (3.4) that if n = ab, where p;Ja—>p; > p® and p|b->p;
< p°, then sinoe g(n) is multiplicative and g(b) == 0 or 1 (see (3.4)) we have

0 < g(n) = gla)g(b) < gla) < d{a)
and thus the mequality
d(q)g(n) < d{g)d(a) = d{ag) <

holds, which proves (3.3).
We shall further use the relation

=1 d(m?) AVESER ]
(3.6) 2 m? :H(l+p5)(2 ng) ~—.c.,< 7

m=1 n =1

d(ng) = d{m)

Hence as d{uv) < d{u)d(v), we have

3.7) i Z alg) Z d(g }1 d mﬂ) Z cifrr).

gspt 2 & r<n®
u(q)#ﬂ Hg)yF0 misrie

So using (1.6) from the formulae (3.2), {

3.3), (3.6) and (3.7) we get the
inequality '

(3.8) logp L1, zp)+o(d)

R I e

nen<p? pam<p?te r<p®
o (Y2 +2)2 =1 +o(L)log?p _ afy +o()
= (3 +o(1))etlogp ST 28
Hence .
o +o() 24
(3.9) L1, xp) < dc I

g*logp etlogp
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Values of integer-valued multiplicative functions
in residue classes

by
W. NARKIEWICZ {Wrociaw)

1. An integer-valued arithmetical funetion f is said to be weakly
uniformly distributed (mod N) [WUD (mod N)] provided the set.
{m (fin), ¥) = 1} ig infinite and the values of f prime to ¥ are asymp-
totically uniformly distributed in residne clasges (mod ¥) prime to N..
This notion was studied in [2] in the case of polynomial-like multipli-
cative functions (i.e. functions f satisfying the condition f(p*) = W,(p)
for every prime p, k =1, 2, ... with suitable W(#)eZ[2]) and & necess-
ary and sufficient condition for such a function to be WUD (mod N)
was found. This eondition malkes sense for arbitrary integer-valued multi-
plicative functions and it was shown in [3] that it is equivalent fo the
Dirichlet-weakly uniform distribution (mod ¥) of f, which seems to be
essentially weaker than WUD (mod N).

The purpose of this note is to show that for an important class of
multiplicative functions WUD (mod ¥) and Dirichlet-WUD (mod XN)
coincide and so in view of [3] a necessary and sufficient condition for f

 from that class to be WUD (mod ¥) results.

2. We shall considér integer-valued mnultiplicative functions f from

. the class Fy consisting of all functions of this type for which the series-

2 1
e
(f(p)ﬁ):-l
converges.

We need a lemma, which for r = 1 is a special case of Theorem 1.
of [1] whose proof carries without any ehange to our case, being a snnple, '
application of a theorem of B. Wirsing [4]:

Lignma. Let for k=1, 2, ...,7 f, be an inleger-valued additive funotwn,
N,,/2 an mteger and j, an infeger _fpmme o N, Let 8 =8(f1,- - Je§
Niyoiny .+ 4,) be the set of all integers n 2= 1 for which

Jelm) =1 (mod Ny)

f?-?lﬂ



