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treating sums of exponentials and was eertainly one of the deepest pieces
of analytic number theory ever made. Some further improvements led
him a few vears later to the exponent 27/82. The method could be applied
to the cirele problem by his student L.W. Nieland, with the same error
estimate O{#*7%*). Another problem attacked by the method was the order

of growth of the Riemann zeta function, on which Van der Corput col-

lahorated with his student J. F. Koksma.

Until abont 1940 Van der Corput was extremely active in analytic
number theory, with series of papers on Diophantine approximation,
Vinhogradov’s method, Goldbach’s conjeeture, and Geometry of numbers.
“After 1940 Van der Corput added to his work on number theory an active
interest' in many other branches of mathematics. His earlier work on
the asymptotic method of stationary phase initialized extensive work
in hiz Iater theory of neutrices. He wrote on a wide variety of subjects,
like the study of functional equations for the elementary functions, and
‘o new proof for the fundamental theorem of algebra. Nevertheless he
kept working in mumber theory too. 8pecial attention might be given
to what was the first complete account on the Brdos-Selberg elementary
‘proof of the prime number theorem (Math. Centrum Amsterdam, Seriptum
no. 1 [1948)). ‘

Van der Corput was very stmm]a,tmg as a teacher, and made hig
students collaborate with him on his best ideas. Im particular four of
his best students might be mentioned who all died before him: L. 'W. Nie-
land, J. F. Koksma, J. Popken, C. 8. Meijer.

A very remarkable episode in Van der Corput’s Iife was his initiative
in 1946 to start a nafional instittution for the promotion of both pure
and applied mathematics, in order to give the mathematical backgronnd
for the post-war industrial development in the Netherlands. This Mathemat-
ical Centre did indeed provide such a background in various areas,
especially in stafistics and computer sciemce. Van der Corput was its
first director (1946-1953).

The Royal Netherlands Academy of Belences and Letters made
Van der Corput a member in 1929, Furthermore he was honoured by
doctorates honoris causa from the University of Bordeaux and from
the Technological University at Delft, and by the membearship of the
ERoyal Academy for Sciences and Letters of Belgium.

Van der Corput was an editor of Aeta Arithmetica from its sta.rt in
1036, and he had an article in its first volume,

2), Pb. 39-63). This work was based on his refined techniques for
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This paper can be considered from three points of view: 1. ultrafilter
invariants, 2. J. Ax’s theory of ultraproducts of finite fields [2], and 3.
Jarden’s “translation principle” ([10], [12]) which connects the Dirichlet
density with the Haar measure in the Galois group. We shall give an exten-
sion of ordinary arithmetic of global fields %, which — in a certain sense —
can be interpreted as arithmetic of special non-standard models of k.
The results will be applied to the first two cases mentioned above.

According to the general philosophy, non-principal ultrafilters are
$0 highly unconstructive that they cannot be distinguished from one an-
other (at least in the case of a countable index set, Bell-Slomson [5]).
However, we shall define numher theoretic invariants, related to class
field theory, which allow us to divide all non-prineipal ultrafilters on the
set of all- primes into 2% different classes (Section 2).

More generally, we consider the space @, of all non-principal ultra-
filters U on the set P, of all prime divisors of a global field %. Since they
are related to prime divisors of a non-standard model *% of % we call the
ultrafilfers U e 2, the “superprimes™ of k. As is well known ([4] or [T])
£, is a eompact subspace of the Stone-Cech eompa.ctlﬂcatlon Pk of the
diserete countable set P,. For those superprimes we can define the nsual
notions, such as “lying over”, ramification, residue class fields, efc., and
obtain analogous elemenfary properties, e.g. n = De;f; ( Sectlon . It
turns out that superprimes are always unramified.

To each superprime of k we camn attach a generalized Frobenins- and
Artin symbol. Our main result states that for a (not necessary finite)
Galois extension XK |k of a global field % the generalized Artin symbol
defines a continnous surjective mapping

(Elk) Q%G (K| %)

of the compact superprime - space .Q,‘ onto the compact space »G (& Tk)

of all conjugacy classes of the Galois group G(X | &), This mapping extends



. valuation 7,

210 W. Jehne and N. Klingen

the ordinary reciprocity homomorphism of clags field theory via the in-
variant mapping inv.:
(thecrem (3.7)).

Since for a Galois extension K|k the Galois group G{H |k) acts in
a natural way on £y, we can define the decomposition group of a super-
prime to be its fixed group, as usnal. It turns out to be a procyelic group
‘generated Dy the corresponding generalized Frobenius symbol (theorem
{4.2)). The decomposition fields can be described as the field of £-algebraie
elements in certain ultraproducts of finite fields.

In Section 5 we give the applications to Ax’s theory [2]. In his paper
Ax characterizes the field of absolute algebraic elements of certain ultra-
products of finite fields. Our refinement of Ax’s result is as follows: the

absolute algebraic subfield Abs(ky) of an ultraproduct ky = [T &,/ U of
_ .pEPk

the (finite) residue class fields %, of & number field % is just the decompo-

gition field of the superprime U .(theorem (35.2)). Moreover two ultra-

produets H kU, of the p-adic hulls %, are k-l;aOmOI'PhlG it and only

if the geupezahzed Artin hymbolq of U; and U, lie in the samé division
{(**Alteilung') of the total Galois group &y over & (theorem (5.4)).

Parts of this paper were the subject of a lecture the first author gave
at King’s College, London, about two years ago. A small problem posed
in this talle has been solved in the meantime by M. Jarden [11].

1. The space of superprimes and U-adic hulls. For a global field &
let Py, denote the set of all prime divigors of % and Q) the space of all non-

principal ultrafilbers on ;. Henece £2; ~j[:’,ﬂ\;':",v, where Pk denotes the
Stone-Cech-compactification of the discrete space Py. £, is a compach
space with respect to the Zarigki topology: The system of closed subsets
of 2 I8 given by all Qg := {UeQ,| # < U}, # afilter on Py, {inclusively
the power set #(P,) of P,). The mapping P, 2 D»Q¥ 1= {Uely] De U}
is a latfice morphism from the power set #(P,) onto a basis of the open
and of the closed subsets of £,,. (For facts on Stone—Cech-compactification
and ifs connection with ultrafilters see [4] and [73.) '

Let %, denote the p-adic completion of % with respect -to a prime-
divisor peP,. We define for every superprime Ue £2;, the ultraproduct
[ ] ky/U =: kyy a8 the U-adie hull of k. {For basic facts eoncerning ultra-

1310ducts see Bell-Slomson [5], ch. 5.)

Aceording to the theorem of Fod (see Bell-Slomson [5], loe. cit.)

these are henselian valued flelds with residue class field [T %,/U, where
pePy

k, denotes the residue -class field of & with respect to p. The valuatlon is

given by vy: kU—>PP %/ U, (p)pep,, 7 (V5 (@) )i, - {HLere v, denotes the normed

t k) —Z corresponding to p. The elements in an ultraproduct

2,—~0, into the reduced idele class group &y of ko
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H MU are equivalence classes of (my)re HJ[ modulo the ultm—

fﬂte1 T, they will be denoted by (m,)&; or (m,) 3

We remark explicitly that &y is not complete with respect to vy,
but only henselian. Nevertheless we call by the U-adic hull of % in order
to stress their analogy with the usual p-adic hulls %,.

Every U-adic hull %5 of k contains a non-standard model of £, namely
the nitrapower *k o~ k'%/ . Smee for different ultvafilters I/ these nltra-
powers are saturated, of same cardinality and elementarily equivalent,
they are isomorphic to each other (Bell-Slomson [5], c¢h. 11), and there-
fore *k is uniquely determined up to isomorphism. Thus a superprime T
of k can be regarded as a prime divisor vy on a non-standard model *k
of %

In order to define notions like “lying over”, ramification, ete. ore
has to look for the possibility of embedding &y into K for global fields
k = K and superprimes U, TV of these fields. Firstly, let us make the fol-
lowing remark whose proof is straightforward:

{(1.1) Remark. (a) Every mapping ¢: I—»J of sefs I, J induces
a confinnous mapping ¢ of the ultrafilter spaces by UisoU:=
{McJd| ¢7'M <« Uk (¢ is exactly the Stone-Cech-extension of ¢.)

(b) ¢ is surjective if and only if ¢ is, and in that case ¢U =
{@d} 1< U} holds.

{e) ¢ is a principal ultrafilter if and only if there is a set M< U on
which ¢ is constant. In particular, U is principal, if U is prineipal.

(&) Hence for the spaces 7, 2 of all non-prineipal ultrafilters on I
resp. J the following helds:

@ maps Q; into 2, if and only if all fihres ¢~ {j} of ¢ are finite.

Let K T |k be a finite extension of global fields and j: Pp—P, the reatrlm
tion of primes.

{1.2) Tmnvwma. The restriction j induces a finite covering jgi: 22—y,
T'—TF, of compael spaces, where V. denotes the superprime

iV ={Mc P, i"Mc U} ={jD| DeV}.

Instead of V,, = Ue @, wewrite V| U and say: V divides U.
Proof. According to (1.1) j induces a continuous surjective mapping
§ =ijgy Qr—2. Sinee the number of elements in each fibre j~{p}
n
(K:%), Pg Is & union Pr = {J D; of sets D, for

i=1

which j: D; ¢ P is blje%tlve For D, takein each fibre ““the first” element,
for D, ‘“the second’ and g0 on; in general the union IS not disjoint because

is beounded by n o=

not all fibres contain = elements) From Py = U D; it follows that

=1
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Qp = OFE = U 0% with open subsets QP¢. Finally, these QP are

i=1
homeomorphic to £, under jg, since ultrafilters Ue 0% are uniquely
determined by their restrictions Ulp:= {MnD;| Me U} to D;. Hence
the proof of lemma (1.2) is complete.
{1.3) Remark. Bach Fk-isomorphism o: K 1=K, of gldbal fields
determines naturally a homeomorphism (again called ¢) o: L —+Qf,
for which the diagram

_..Kl —“; QKZ
b1 ¢ Bk
o

conimutes.
In particular, if K|k Iy a finite Galois extension then the Galois
group G{F|k) acts faithfully on L. _
Proof. o: K,—K, induees a bijection o': Pg —+Pg, for which the
diagram

Pg —> Py,
Ny T
£y

commutes. Hence, according to (1.1) ¢ determines a horeomorphism
G: Qg ~Qg,, defined by ¢U = {¢' ¥ | M < U}. This homeomorphism may
also Dbe called o, because different isomorphisms v, o: K,—»K, induce
different mappings 7, . For, lef T = 5. Then § = id with the k-auto-
morphism ¢ = ¢ 'or of K,. Since gl = U is equivalent t0 Fix(p)e U
{Klingen [13], Prop. 5.2) § = id means that Fix{g') is a cofinite set in PK

Therefore almost all primes of the fixed field L of o are Imdecomposed,

in K;. Hence T = K, and g is the identity. This shows that in the case
of a Galois extension the action of the Galois group it faithful, and the
proof of (1.3} is complete. '

(1.4) Lemma. (a) The natural (dmgonal) embedd’mg n by — ]Y Ky
induces an embedding of valued fields ky: = ﬂ k[ U—~ H Km/V __KKV
_(Ue 2y, Ve Q) if ond only if V divides U.

(b) For ultrapowers one gets a still stronger result: If Ve Qg divides
Ue &, the induced embedding ZF5|U — ZFE|V is an isomorphism.

Since for all pon-principal U resp. V the #ltrapowers Z7%/U and
ZPx[V are isomorphic — use the same argument econcerning *% — the

emphagis of (b) Hes in fact that there is a natural isomorphism #f ¥V div-
ides U. ' ‘ :
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Proof of (1 4). (2) Let ¢: [ by HE;Q denote the natural embed-
pth
ding, that means g{{a,)ep,) = (ajw))ﬂkpx. Because of the definition of
the valuations »y and vy on ky reap. Ky this p indnces an embedding
@: ky—Hp of valued fields if and only if the following equivalence holds
for every (e), (By)e Jf Ky:
pely.

{pePi] oy = Byl Uw{PePr| aym = Bymte V-

But
{PePr| aym Hpe Pl @ = B},

5o the validity of this equivalence for all (a,), (8,) means: Me U MV
for all M < Py.
{b) In analogy to (a) one has an embedding i: Z°%/U — ZFx|V.
n

Now let Py = |} D, with j: DX

Pl
there is & ve {1,...,%} with D, V. Let : PL—>D denote the inverse
mapping of jlp, . Then one finds for every (mm)w ¢ ZFE|V the element

(me(p))pgpkez Fr| U as an inverse image under i; for,

= By} =1

P} bijective (zee proof of (1.2)). Then

t{(Mgyier,) = (MolsmnIpepe = (Mpherg

since {Pe Pri My — My} 2 D, V. This proves the lemma.

Ay a consequence of (1.4} we can make the following definifions:
Let K |k be a finite extension of global fields and ¥ reap U guperprimes
of K resp. k. If V divides U we define:

e(V|T) = exp (V) = (vp (K} : vp(k)) ramification indew of V|T,

FVi0) =fzp(V) = (Ep: ky) residue class degree of VU

gxpl U) = number of Vefp dividing U.

Since for relational structures M with finite underlying set the diagonal
embedding d: M->M*/U into an arbitrary ultrapower is an isomorphism,
such ultrapowers will be identified with their basis. Thus

(Mm% = mes (m)%y = d(m)<={iel| my =mpe U

Using this identification we get under the assnmptions of the preceding
definitions: ‘

(1.5) ProrosrrioN. Let Kk be a finite extension = of global fields
and VU superprimes. Thon:

(8) exp( V) = {exp (B erg: TznlV) = (Ffzn(P))iey  ond 9zx(T)
= (gxp(P)op, wre natural aumbers < (K :k). In any case exp(V) =1
holds: Al swperprimes arve unramified.
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(b} The residue class degree cquals the “local degree’:
JeplV) = (Ep: by).
{e) The usual relation

= MAWwIT)
TF

holds, the sum taken over all We By dividing « fized superprime Ue Q.

(d) In the case of a Galels emtension I |k all superprimes V of K lying
over U are conjugate under the action of the Galois group G (K |k). Hence
in that ense

(K 2 k) = grp(U) (D)
where fr(Uyi=f(VIT) for ofl V|T.
Prooif. (a) The presentation of the number eg, (V) and fx (V) as

elements of an ultrapower of natural numbers is an immediate consequence
of the identification ky—Kyp and fio§ theorem. For instance one hag

exp(V) = (op(IF) : v (n og iy /V - Yy 7":’(iﬁ))/v)

which, using 0§ theorem and the boundedness of all aKm(iB) Dy (K : k),
is the following natural number < (&K : k):
(T’ﬂ?(}'?:’f‘)‘: vﬁ(kﬁﬁ?)))g@x = (gKIk(qS)H;PK‘
Similarly for the numbers f. Bince eg(P) = 1 for almost all Pe Py we
conclude eg, (V) = 1. This proves the statements concetning ¢ and f.
For a natural number g the equality g = (gK[k(p)]gpk means that
the set: '

= {pe P;| there exist exactly g primes of K over p}
belongs to U, and lhence

Ni={PePg| j(P)eM}e ¥  for every V]U

By definition of M we can write & a5 a union, ¥ = U N, of disjoint

sets ¥,  Pp with j: ¥N,53 M bijective {see proof of (1. 2)) Hence the super-
primes Ve O lying over U contain exactly one N, and, since j: N, M
is bijective, two superprimes ¥;, V.| U containing the same N, must

coinecide. 8o there are exactly as many superprimes ¥ over U as sets Ny, .

namely g. This proves gg,(T) = (gmk(p))pepk
{b) Becanse of Lof theorem (Hyp: By equals

(o : Tym)pere = (e (B iy B)) b
cand, nsing (a), this proves (b). .
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(¢) The statements (a) and (b) huggest the validity of (c) becanse of
the fundamental equations (K :k) 516’1:;5 Pz (P) in global fields.

However, one has to pay attention to the fact that different ultratilfers
appear in the sum of (e). Let ¥y, ..., ¥, be the superprimes of K dividing
U and e :=e(V,|U), f;:=f(V;]T}). That means

ii=1{BePxl 6xu(P) = e V; and Fy:= {Pe Pr| frnlP) =file Vi
Moreover, because of {(a}, we have Al 1= {pe Py| ggu(p) *—".g}e U, and
g :

hence §~ M =:N = (J N, with N,eV, (see proof of (a}). Since

i=1

a
(M §(B,NE,NN)e U holds, we can choose qs Py, and Pie ByNF,NN; such

Tl
that EB: lg for all 4¢{1,. - g} Now PB,e B;nF; implies ¢; = ex, (B;) and
flm B}, and iBlsl\ t=1,...,¢) means that Py, ..., P, are exactly

the prime divisors of q in K. Therefore

g q _ ' '
2 el Wiz W) = Zeifi = 2 el Be) Frp(Bi) = (K k).
wir i=1 im1 '

{d) Choose M = Py with j: M ~ P, bijective. Since K |% is a Galois

extension, one has Py = |J oM. Hence for every V, ¥V e @2y there
ael{ K |k}
exist o, 0 ¢ G(E k) with e M V,c Mec V. IE ¥V and V' divide U then also

o™V, &1V’ divide U (see (1.3)), and ‘therefore the restrictions o™ Vi,
and a’“’l V' |5 must coincide since j: M ¥ Py is bijective, From this we
conclude ¢~V == o "1V’ (see proof of {1.2)}, which proves (d) and hence
the proposition.

Using inverse resp. direet limits we Wl]l extend the definitions of
superprimes and U-adic hulls from global fields ¥ to arbitrary separable
algebraic extensions K of global fields. For such fields K we define the
space of superprimes by L2z :=1lim Q,; here the projective limit is taken

over all global subfields k of K a,;l_c'i with respect to the mappings in (1.2).
For an extension L|K of separable algebraic extensions of global fields
let jrx: 2;—>Qy denote the matural projection. For Ve 2y the TV-adic-
hull of K iy defined by K= lunky ; here the direct Himib is taken over

all global subfields & of K with respect'. to the mappings of (1.4), and ¥V,
denotes the restriction jg(¥) of ¥ to k. In the case that K and L are
global fields all these definitions agree with the former ones.

An immediate generalization of (1.3) is the following fact:

- (1.6) LEMMA. et KD, K, I be s_épm'wﬁle algebraie extensions of global
fields and K, < K, Ky = L. Then euch Ky -isomorphism o: K 5 L induces
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o homeomorphism o: Qg—Qp wilh jpg 00 = i, If LK is ¢ Galois
etension, the Galois group G{L|XK) acts fmthfull y on Qp and the fibres of
= ore exactly the orbits of 2, under the aciion of G(L]XK).

Proof. Since £, =lm 2, =1im Q,,, where | resp. £ ran over all

i

1 P

global subfields of L resp. K, the first part of (1.6) follows from. (1.3).
The faithful action of G{L|K) on 27 in the Galois case is an immediate
- consequence of {1.3) too.

Because of jr,z00 = jpx each orbit of G(L|K) lies in one fibre of
jpx. Now take superprimes ¥V, W of L with jyxV = jrxW. Since LIK
is a Galois extension, the set & of all global fields I = L which are Galois
extensions of INK is cofinal in the set of all global fields 7 = L. For, let

“ael be an arbitrary element and % o global subfield of X containing fthe
coefficients of the minimal polynomial f of a over K. Then, if we choose I
as the normal hull of k(a)|k, we get a global field I = I whieh iy Galois
over INK and contains o Because of the cofinality of % we have £
= lim £2,. According to proposition (1.5) (d) the sets M, = {pe G(I{INE])]

[
o(V;) == W} are non-empty for all l« % and hence we can choose ¢ lim ;.

Teg
For all 1e.% we have ol;{V;) = W; and hence ¢V = W. Moreover, for

all global subfields % of K we have o, = id, so that & iz an element in
G (LK) with the desired property. This eornpletes the proof of lemma
(1.6).

2. Stone-Gech extension and a number theoretic invariant of ultrafilters.
As mentioned in Section 1 the space (2, of superprimes of a global field %

is a compaet subspace of the Stone-Cech compactification f’,v of the dis-
crete space P, Henee arbitrary mappings z: P+ into compact spaces €
extend uniquely to continuous mappings 7: l3k+ ¢, which especially are
defined on £2,.

A slightly different situation oceurs if the space ¢ igs a projective
limit of corapact spaces O, (iel)

¢ =1im¢; with defining my: C;—C;,

d {r;) & family of compatible maps into the C; defined on varying cofi-
" nite subsets D; of a discrete set P

Tt turns out that the family (v,) can be extended to a continuous mapping,

not on the whole compaectification P but on the compact subspace £2p
= P\P, with values in ¢. This is the content of the
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(2.1) EXTENSION PRINCIPLE. By assumption, the family (z;). of map-
pings v D=0y, defined almost. everywhere, i.e. on cofinite sets D, ful-
fils the compatibility condifions

Ty =mu0t;  on DDy for i<,

The natural projections m;: C— C; from the projective limit ¢ = lim C; into

—
el
G, are ussumed o be surjective.

(a) Then there is a uniquely determined continuous mapping 7: £2,~>C

with the property

motr =1, for all iel.

Here 1;:
of 7.

(b} In the case of finile sets C; the map 7 can be described explicitly
as follows:

For an element ¢ = (6}7e¢ C and a non pfrwwzpal ultr aleter Ue 2p
the following holds:

T (U} = ¢« U contains the filter basis {z7'{e}] ic I},

Qp—C,; denotes the restriction fo Qp of the Sione-Cech estension

Hence, T is surjective if and only if all fibres of oll =; are infinite.

Prootf. In order to prove (a) one observes that the closure D; of D,
in P containg % (see [7]) and that ©P¢ = Q. since D, is cotinite. The
Stone~Oech extensions of the z; are defined on 30: and their restrictions

.z, to Op fulfil the corresponding ' compatibiliby conditions:

7, =myor; for  i<j.

Hence the family (z,) determines & unigue continuons mapping 7t Qp—C
into the projective limit ¢ = lim ¢ with the asserted property.
iEI

For a proof of (b) we assume all C; to be finite sets. Because of J.')i
= {TUeP| D;e U} (see e [7]) the equivalence elass (r:l0))5epe CE[U s well
defined for every Ue_D and can be congidered as an element of C; by the
1dent1flca,t10n in Section 1. This defines an extension 7;: D, >0 of 7,
by _

F(U) = (n(p) UeD;

which in fact is the Stone-Cech extension of =; since it i3 continnous:

According to the definition (and the identification in Section 1)
we have ’

VoipeC;  for

7(0) = U 277 e}
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and hence the inverse image of ¢;« 0; under 7, is
{Ue Dy 7y ebe U

which clearly is an open set (see See. 1} in P. : .
S0 we have shown that the continuous mappings T; of (a) are given
explicitly by

(2.2) F(U) = [ry(p))ipe € for  TeQp, or
7, (U) = ¢, Uatiie}.

For v this means:
HT) = (e)uy <> Usrit{e for all ie1.

This proves the first part of (b). ‘
As to the last part we notice that for each element ¢ = (¢);y¢ € the
sets 77 {e;}, i< I, form a filter basis on P. Hence there is a non-principal
ultrafilter U containing this filter basis if and only if all 7;71{¢,} are infinite.
"This eompletes the proof of the extension prmelple
Ag a first appleation of the extension principle we shall define a2 num- -
ber theoretie invariant of ultrafilters ag a continuous mapping

(2.3 inv,: 2y 6;

which attaches to every superprime U of a global field % an element in the
reduced idele class group € of k. This group is defined as the projective
Iimit '

¢, = im0, /of
7

where o runs through all open subgroups of G, of finite index. Hence Fk
iz a profinite group, isonorphic to the Galois group of the maximal abelian
extension of & under the reeiprocity isomorphism. In the number field
case, O, is the idele class group (), modulo the connected component
D, of the identity: :

0, = 04/D, in the number field case.

We need some notations:

m a divisor modulus of & in the sense of class field theory,

DY the group of (finite) divisors of % relatively prime to m,

8.(m) the *Hauptdivisorstrahl” moedulo m,

&p(m) = {k™| e idele unit of %, # = 1{m)} the group of idele clasges
representable by idele units congruent 1 modulo ny,

d(m) set of prime divisors of m.
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Since the ray class groups D[S, (m) are isomorphic to /&, {m) and
since subgroups of € of finite index ave open if and only if they contain
some &(m), we get

Cp = Hm O™ ~ fim DF/E™.

m .x‘(m) m, H[m)

Here for each divisor modulus ms#™ resp. H™ runs over all subgroups
of O, resp. DY of finite index which contain &,{m) rvesp. 8;(m). Following
Hagse [9], we call such subgroups H™ ideal groups mod m.

- We want to remark that for number fields % we have the following
deseription of O, since in that case the ray class groups DT /8x(w) are
finite:

0, =limD¥/8,(m) if % is a number Held.

m
Tn the function field case, however, the ray class groups are merely finitely

generated, and so, in general, we have to use the description of Cj men-
ticned above.
_ Clearly, the mapypings

P N\S(my—>DFH™,  prspH™

form a compatible system of mappings defined almost everywhere on Py.
(Here, m runs through all divisor moduli of & and H™ through all ideal
groups mod m.) Therefore they induce, according to (2.1), a continuons

mapping inv,: Qk+@. This is the first step towards the following
(2.4) TEEOREM. For all global ﬁélcls k there is o watural conbinuous
and surjective mapping

iIWk H Qk"'% GI.:

attaching to each non-principal wlirafilter U on Py an element in the reduced
idele class group, called the invariant of U.
We have the following explicit deseriplion:

(agem H™), gem < Uim DE/H _(‘“)

. mam

in‘Vk U ==

if and only if U contains the filter basis formed by the arithmetic prime pro-
qgressions

{pe Pyl p = apm mwod H™}

(m divisor modulus of F, H™ ideal group mod m).
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In ihe number fidld case this description can be simplified:

(am Sg(m)) € Hm DTS, (m

m

ille U =

if and only if U contains the filier basts of all arithmelic prime progressions
Di{tm) = {pe Pyl p = apmod §(m)}.

Proof. The explicit formula for the invariant is based on the exten-
sion principle (2.1), (b}. The simplified formula in the number field case
follows from the finiteness of the ray class groups. Hence, to coraplete
the proof of (2.4), we have only to show the surjectivity of inv,,. Aceording

to the expHleit description we have to ghow: For all divisor moduli m,‘

all ideal groups H™ mod m and all qe DT the sets
Dgim(a) = {pe Pyl p = a mod H™}

are infinite. Tn the number field case this is true according to the theorem
on arithmetic progressions. The proof of this fact {see for instance Haasse
[9], T §5, 8) relies on the behaviour of the L-functions at ¢ = 1. Since,
according to F. K. Schmidt [16], the L-funections have the same behaviour
in the function field case, the sets Dy (a) are infinite in general.

3. The generalized Frobenius symbol" as extension of the global
reciprocity isomorphism. Let %' |k be a finite Galois extension of global
fields. By the procedure in Section 2 the usual Frobenius symbol

[k' ] P NE QK |B),

where R’ is the seb of primes of X’ ramified over %, has a unique con-
tinuous extension

¥k P
{8.1) _ [—-»-L] Lp—G (K | k)

to the superprime space . The explicit definition is, using (2.1),

AL E e
i) [”_]z([’—]) e G BP¥ T = GUK 1K),
0 |~ | (% 1%)F5] (K | %)

(3.2) ,
. [* |k . .
(i1) [ T ] =g iff U>Dy (o)

where for oe G(I'|k)

- , E
Dynylo) ={P EPk’I[ pll ] = 0‘}

denotes the Cebotaren set of o.
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Using the ordinary restriction formula for Frobenius symbols of

global fields %" %'k
[kn”‘] [L’Ik] fo "1 ;l
L =15 19 ps

and according to the definition (3.2), the mapping (3.1) can be defined
for arbitrary Galois extensions K|k of a global field k: There is a con-
tinnous mapping: )

(3.3) [ﬂ“—]: Qp—>GER) =&

uniquely determined by the conditions

(8.37 [ﬂ] |

E ik ,
[ E ] for all finite Galois ' | k.
v il

Vie
This means that for all finite Galois subextensions &' |k of K |k the diagrams

K%
Qx —> KK |K)

jKWl« e l

Dy —> G |E)

commute and we have

ik ,
[_Vi_] — T, sDk,lk(a]k,) for all .

The mapping (3.3) will be called the generalized Frobenius symbol of K |k.
For the definition of the ecorresponding Artin symbol we can rely
directly on the extension principle (2.1). Let x(c) denote the conjugacy
class of e G(K|k), (@) the compact space of conjugacy classes of the
compact group (& in the guotient topology Then, using (2.1), the ordinary
Artin symbols
(k—lk—) P NR-ox{G (K |k),

heing a compatible system of maps from cofinite sets into finite sets, can
uniquely be extended to a continwous mapping

_(KH;

(3.4) —): Q,-x(G(E|K));
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the explicit definition is, according to (2.1}, (b)

(3.5) (%) = %(6) iff U > {Dyplol) ¥ < K, ¥k finite Galois};

here the Cebotarev set in the ground field % is dencted by

(k’lk

Dk.m(g):{nefk p)=%(9)} for oG [R).

“We call the mapping (3.4) the generalized Artin symbol of K|k.

We notice firgtly some basic properties of the generalized Irobening
symbol:

(3.6) PrOPOSITION. AUl extension fields of the global field & are sup-
posed 1o be Galois exiensions. Then one has the usual rules

) 5—'—7‘—] = [ﬂ] for X'\ E |k and V'|V|T,
LV e 4
- KULD) y
a @] ! m[}%] for Eik\k and ViU |U for a finite
- subewlension kylk,
(i) Klk] - G[Klk] —1 fo’,‘ ceG{E k), Velg.
| o 14

The last rule shows that the Frobenius mapping (3.3)is a & = G(K | k)-
morphism, & acting on itself by eonjngation.

For a proof one observes that for finite extensions the properties
(i)~(iii) are easily deduced from the corresponding properties of the wsunal
symbols. Once proved in the finite case they follow immediately in the
general case according to definition (3.3").

As main regult we can forniulate

(3.7} TEEOREM. Let K|k be an arbitrary Galois extension of the global
field kb and A its mozimal abelien subemtension over k. Then the following
holds:

(8) The generalized Wrobenius symbol and the gemeralized Artin syfaﬁﬁ
Eik k
[-L] Der—G{K|k) resp. ( l ) .Qk—mG(Kik)
are continuwous and . surjective mappings.

(b} The generalized Artin symbol emtends, ibia the invoriant mapping
(2.3), the reciprocity homomorphism of class field theory: The following
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diagrams commube
Kk
Qe —> G(HIE) -
v (EE

0, > ult (K |%)

invy l' \Lrastrietion
e {5 41K}

0> &(Alk)

where ( , AE) is the Chevalley symbol of 4%,
Procf. (a) For every o< G (K |k) the compact sels

Q(k’, G') T {U'E Qk‘] ‘ﬁkﬂk(alk')e U;}

form a projective subsystem of the &, (k'|% finite Galois). Hence there
ik

exists a superprime Ve £ with [——};—] =g if and only i the projective

limis lim (%", o) is non-empty, that means, if and only if all Q% o)

+.m_

are non-empty Therefore one has to show that all 1),c 1:(6 1)y respectively
all Dy (o) —-j.DA k(o) are infinite sets. In the number field case,
this is true according to the Cebotarey density theorem. The same theorem
holds in the function field case, though it zeems not to be mentioned ex-
plieitly in the literature. Deuring’s idea 167, redizcovered by MacCluer [15],
of reducing Gebotarev’s density theorem to the case of eyclic extensions
(see Lang [14] or Goldstein [8]), can alto he applied to function fields.

In the eyelic cage the density theorem is — via the raciprocity mapping —

identical with the theorem on arithmetic progressions, which is alzo true
for function fields (see proof of theorem (2.4)). Hence the sets Dy (o)
are infinite. This eompletes the proof that the generalized Frobenius symbol
is surjective. The same is true for the generalized Artin symbol since for
all superprimes Ve Qg, Ue 2 with V]I the relation

iK]k _ Kk
( 5“)_”[ i ]
holds.

. {b} Because of this last remark one has only to prove that the lower
half of the diagram commutes. For an ideal group H™,mod m let Lym be
the class field of % Dbelonging to H™ and Kgm := Lymn K. Hence

G(A[R) =lim G(Egmik) and C =lim DHE™,
mFm) ' ) mj_ﬁ")

2 — Acta Arithmetics XXXIL3
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For the Chevalley symbol ( , 4|k) the following diagrams ecommute,
where ¢ denotes the nsual Artin symbol:

(1%
—> (4| k)

\L restriction

[

natural projection my, E .
Y

DO E "> G g | )

Because of proposition (3.6), (i) we have
(Krk) _ (Kz(m)lk)

and therefore one has only to show that for all divisor moduli m and all
ideal groups H™ modwt the following diagrams commite:

Eggim)

(Kﬂ(m)'k
2 _—> #G (K (1) I k)
sl
D [E™ )

These diagrams commute since they are the continuouns extension of the
corresponding (obviously commuting) diagram

K )ik . o
g\Pk {f—le(xﬂ(m, %)
) |

P D™

and because Ppn8(m) iz dense in 13\6(m) 2 £,. Hence theorem (3.7)
is proved.

Finally we want to mention, thongh in a few words, the connection
: . {0k ~
between the Artin mapping (Q—!) 2~ (Q k) (& a number field,

Q the algebraic closure of @) and Jarden’s franslation prineiple ({10]).
As shown in [12] the Artin mapping turns out to be measurable with
respect to the Haar meagure on »@(Q |k) and with respect to all, in a cer-
tain sense reasonable, measures on &, extending the Dirichlet density
on P,,. This fact yields a natural supplement and a new proof of the transla-
tion prineiple.

4. Decomposmun fields of superprimes. Let % be a global field, |k

& Galois extension and V a superprime of K.
b
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The decomposition group of V over k is defined, as usual, as fixed

' group of V:

3xw(V) = {oc GLE k)| ¥ = T}.

The corresponding fixed field Zy, (V) = Fixg(3x;( V) is the decomposition
Jield of ¥V over k. In the same way as for usual primmes one proves

(4 1) (a) Decomposition groups and fields belonging to different
Ve O dividing Ue 2, are conjugate under G(K k).

{(b) K K|k is finite and V divides Ue 2, the following holds:

) (B : Zgp(V)} =F(VIT);

(ii) The decomposition field Zg. (V) is the biggest field I between
Lk and K such that f(V,iT) = 1.

{4.2) TErorEM. Lot K|k be an arbitrary Golois extension of the global
field k and V| U superprimes in Qg, O, respectively. Then the decomposition
group 3z V) is a proeyolic subgroup of G{K k), generated topologically -
by the generalized Frobenius symbol:

Fuvery proeyclie subgroup of G(K |k) cccurs as a decomposition group. The
decomposition field Zzy (V) 18 the intersection of K with the U-adic field
kg (within E5): '

ZeulF) =Enky in Ky

wnder the natural embeddings introduced in (1.4).

The proof is based on two lemmas, the first of which is proved in
[13]. :
(+.3) Leass (Klingen [13]). Let I be a set, o1 I-»I o permutation of I
and U an ultrafilter on I. Then the following holds:

oU = ) = {iel] a(i) = i}

C{4.4) LievMMA. Tet Lk be a finite Galois emtensién and W a superprime
of L. Then the decomposition group 3gp{W) is isomorphic fo the ulira-
product [] 3.(B)W of the standard decomposition groups (under the

BeP '

L
diagonal mapping d: G(L|k)—~G(L|EFL/W). Hence the following diagram
commutes :

U if and only if U.contm'm Fix(

Brp(Wy———G(L|k)

¥, \a
n (P W——>G{L | k)L W

Proof. For o‘eG(L]k) d(c) belongs to H Bza(P)W it and only
if W containg {PePr| oe I (P} = {EBePLj UEB P31, Because of (4.3)
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this happens if and only it oW = W, that means if and only if ¢ belongs
to the decomposition group 3z (7). This proves lemma (4.4).

Proof of theorem (4.2). Aeccording to the action of G(K|[k)
= lim@(L|%) on O = lim Q; (L running over all finite Galois subexten-

—

o .
sions of K |k) we have 3gp(V) = lim3z. (V). Henee, to show Ju (V)
A

K|k '
= <|:——T|7-]> oue has only 0 prove that every 3z x(Vz) is generated by
ik Lk . Lo
[ ! ] [ | ] By lemma (4.4) 37(Vy) is canonically iso-
V iz Vo
morphic to an nltraproduct of the (for almost all P cychc) gr O'Ll}_)‘% Jrzl 2]3)

‘of bounded order (namely < (& : %)), and hence it is itself cyclic. Since the
. 3P are generated (for almost all P) by the usual Frobenius symhol

Lik
[ : ] the ultraproduct Is generated by

B
LIEE Lk
5., 151
Since the gener&li.zéd Frobenius symbol Is a surjective mapping from Qg

onto G{K |k} (theorem (3.7)}, every proeyelic subgroup of (K |k) is a de-
composition group.

The statement of (4.2) about the decomposition field has again to

be proved only for finite Galois extensions L]k, since we have

Zgp(V) = UmZpg (Vi) = U Z (V)
=
becanse of Jgy(V) = limSLp;{VL)"
T
] Ly/Vy =L
/ ng - a Br ; VL
AR / ;
| /D L peby, i
Z () | /
ZL]};(IITL)

E

The diagrams on the left side commute for all e P, and induee (by taking
the nltraproduct with respect to Ve 2} the commuting diagram on the
right side. Here U is the superprime of % lying under ¥ and : denotes

icm
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the natural embedding of &y into Lp
proved ix:

(see (1.4)). The only fact left to e

Zup(Vi) = Lokg = In Jlw/T

pely

k(U if and only if

in LT’L'

Xow, ae Ly, belongs to Ln []
}Jst

agel, and

{EBG.PLI ae kj(qs)}E VLJ
that means

V52{Pe Pyl ae Lk = Z, (P)} = {EBEPLI e FiXL[-BL[k(EB))}'

Because of lemma (4.4) this happens if and only #f aeFixg(37,(V )
= Zz;(Vy). This completes the prooi of theorem (4.2).

5. Absolute algebraic fields. For an extension K|k of fields let
Alg(H |E) denote the field of all elements of K separable algebraic over .
If % is the prime field of K Alg(K |%) is the field Abs(K) of all absolute
algebraic elements in K (in the sense of J. Ax [2]), With Ab(K|%) we denote
the corresponding maximal abelian extension of & in Alg(K k).

Let & be a global field and U a superprime of k. Since for every ae &*

v, (a) = 0 for almost all pe P, we have vy(a) = 0 for all a< k™. Hence k&
is contsined in the valuation ring Ry of ky and the mapping k“‘)‘kv,
a—@ is a well defined monomorphism.

(5.1) Remark. Alg(ky| %) and Alg(%5!%) are naturaily k-isomorphie.

Proof. We have to show that Alg(ky (k) is contained in the valuation
ring Ry and mapped onto Alg{ky|k) under the nafural mapping »:
Ry—ky. Take ae Alg(kyik) and let fe k[X] be its monic irreducible
polynomial. Hence ¢ = (ap)pd,k with a,ek, and f(e,} = 0 for all peP;.
Since for almost all pe Py fis a polynomlal over the valuation ring B,
of k, we have o,¢ B, for almost all pe P, hence vy (a) = 0. Obviously »
induces 2 k-monomorphism from Alg(%y k) into Alg(ky|%). This k-mono-
morphism ig surjective because ky is a henselian valued field. This proves
(5.1).

Tf in theorem (4.2) one chooses for K the separable closure %, or the
maximal abelian extension A of &, one gets the following characterization
of the fields Alg(ky %) resp. Ab(ky |k} as fixed fields. Obviously these
fields are realized in %; only up to conjugacy. '

(5.2} THEOREM. Let k be o global field and U a superprime of k. Then:

{a) The subfield of k-algebraic elements in ky is — wp to conjugacy —

k| EY
the fized field of oeG(k,ik) with x{c) =( sl; ), or in short terms:
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- YAy
Alglky k) = Alg(ky|k) = Figy, ( T )
the fized field of the Artin symbol of U. _
(b) The mamimal abelion subemtension of kg|k is the fimed field of
the value of the invariant of U under the Chevalley symbol:

Ab(kgyik) = Ab(Ey|k) = Fix, (inv, T, A |%).

Proof. (b) follows from (a) and theorem (3.7):

Alk '
%{o ) =(--ﬁl——) = (inv, U, 41%).

Alg(ky|k) is E-isomorphie to Z; (V) for a,ny.
. b1k
Ve with V|T. Because of ( o)

k II'; . r~ -
':’V ] = 0. 8o we get Alg(ky|k) T Zpp(V) = Fixg (o)
and complete the proof of (5.2).

As a consequence one can dedoce the folIOng result of J. Ax ([2],
Prop. 7 and 7°):

(8.3) COROLLARY. {a) Let K be an algebmw emtension of Q with Gy
WG(K]K) procyclic (K the algebraic closure of K). Then there emists an
ultrafilter U on the set P of all prime numbers such that

K‘E‘Abs (!JEZ _FP/U).

{b) Let K be an algebraic estension of the prime field F, of characieristic p.
Then there ewists an ultrafilter U on N such that K ~Abs( n F ,,/U)
(F = the finite field of ™ elements.)

Proof. (a) Let oe G(Q [Q) be a generator of Gy = G Q | K). Since the
generalized Artin symbol is surjective (theorem (3.7)) there exists a super-

'Aceording to theorem {4.2)

):x(c) there exists a Ve O,

with V| ¥ and [

prime Ue 24 with (?é—g) = x(0). Hence, according to theorem (5.2),

we have

K = Fixg (o) ~Alg(Qy]Q) = Abs (HFI,/U).

{0) Smce the absolute Ga101s group G—F = G(F iF,) is procyeclic,
there is an automorphism o of F with K leF (o). Let ¢’ be. the unique
extension of ¢ to a k-autorhorphism of F (X), Where % denotes the rational

function field F,(X) in one variable over F,. Theorem (5.2) can now be
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a.pphed to the global field k and an arbitrary ¥e G, = G (k%) with 7|z
= ¢". With the same argument as in the proof of (a) we get L:= F1xk (a‘)

% Alg (kyt%) for some superprime U of k. Since K = Fixg (o) = nL

= Abs (L), we have:
Abs ( H %,/ T)-

K =~ Abs(ky) =

To complete the proof of (5.3) (b) we have onlv to show that Abs( H o/ )

i§ isomorphic to Abs( [] F_ o/ U’) for some ultrafilter U’ on N. The valu-
AN

ations of F,(X) correspond (with one exception} to the set & of all irredue-
ible monic polynomials of F,[X]. Their residue class fields are the finite
fields Fp,,, n being the degree d(f) of the corresponding polynomial f. Hence

»Qkk/U HFM/U

Since the mapping‘d: F >N, fr>d(f) has finite fibres, nsing (1.1), the
nltrafilter dU on N iz non-principal.-If suffices to prove :

Avs([] P, /av) Abs ([ ] F a0/ 0).
neN JfeF
The isomorphism is given by the mapping
D:'QFpn/dU—;»gFﬂﬂ/U,

D it a well defined monomorphismn as one can easily verify (definition
of AU, Take

(an)ﬁg;"—*(ﬂd(n)gf-

= (ﬁf)Ue Abs (H de(f)/U}
I )

and let ge F,[X] be the monic irredueible polynomial belonging to B.
Hence U must contain the set B:= {fe F| ¢(fy) == 0}. Since {3;| fe B}
is. finite, we can find me N and ye Fp,,, with Us{fe#| p; =4} Defining

¥ if n2z2m,
ai=1
- < F , arbitrary i n <m,
we have found

a= anMNeHF ./8U with  D(a) = B.

Thus the proof of {5.3) is complete.
T+ seems worthwhile to notice the special case of the rational ground
field in theorem (5.2), (b) separately. For this purpose let U = [JU,
. _ o
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be the (‘“finite part” of the) rational idele unit group, ie. the.product
of all rational-p-adic unit groups U,. This group U can be identified
with the Galois group G(P|Q) of the field P of all roots of unity & by the
ordinary aetion &£ (uwe U). For rational integers e and m'e.N with
{a,m) = 1 we denote by

D (a) = {pecP| p = amodm}

the avithmetic prime progression of amod .
Congruence filters are all gysterns

[D(a)) me N}
which form a filter basis on the set of primes P, They determine Cauchy
filters {am+m2 | me N} on Z which converge to an idele unib ue U.

We can now formulate
(8.4) CoROLLARY. Hach superprime U on.the set P of primes contains
enactly one congruence filter
(i) . U > {D,(a,)| me N}.
If w is the uniquely determined uwe U:
(if) % = a,modm  for all me N,

then for the mawimal abelion subfield holds

(i) Ab ([] 8, U) = Fixy(a).
b2l

Hence the ultraproduct [] F,/U contains the Kronecker field P or the field
»

Poo Of all g-th vools of unity if and only 4f U conteins oll prime sefs
{p = 1modm} for all m or all sets {p = 1(¢")} for all » respectively.
Proof. By definition of the invariant one has # = v, (U) if (i)

and (i) holds. Here, in the rational case, we can identify 59 = U. But

the invariant-ma-pping Is surjective and the invariant invg(U) defermines
the eongruence filter in (i) uniquely according to (if). This proves the first
assertion. The second part follows using u = invg(U) and theorem
- (8.2), (D). '

Finally we mention the following theorem which partially is a con-

sequence of theorem (5.2}, The proof uses the continwum hypothesis
2% =y, (CH).

(5.5) THEOREM (CIT). Let & be an algebé'az‘c number field and Uy, Uye £,
superprimes of k. Then the following statements are equivalent:

(a) The ultraproducts by, and kg, of the local fields %, are k—isomdrpkie.
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(b} The ultraproducts K;l and L_a_, of the finite fields ‘EP are T-isomor-
phie.
(¢) Uy and U, belong fo the same division of G = G(Q k).
By the division D of ¢<G(Q1k) we mean the set of all 7« G{Q|k)
whieh generate the same closed subgroups as some conjugate of o, and
' )%
we say that U belongs to the division D of G, if (—%Iiw) < D
Proof of (5.5). Clearly, (a) implies (b) and {b) implies A‘bs(%})

’"T‘.‘Abs{?s?z). From (5.2) we conclude that (QEEIG) and (QD;:G) determine
the same set of conjugate closed subgroups of G("Q {%); hence (b) imples
(e} In the same way, {¢) implies Abs (]c_m)%'A.bs(Ez). Now, one main
result of J. Ax [2] says that k_ra and i“—Uz are k-isomorphic if and only
if Abs(kul) and Abs(kUz) are. Hence (e) implies (b). Let us now assome
(b). Then the ultraproducts Q k,/U; = kg, have the following pro-
perties: e

(a) kg, and ky, are valued fields with eross sections and the same
value group *Z = ZF*{U, (see the same argument in Section 1).

(b) %y, is w-pseudo-complete. In fact, every non-principal ultra-
product of a countable family of fields has this property (Ax—Kochen
{37, L. 9.

{¢) As ultraproducts of henselian valued fields the &y, are also hen-
zelisn.

(a) _i;l_ and 7;‘—;; are isomorphic fields of characteristic 0. Moreover
K hy, = 2% — N, (CH).

Hence the assumptions of M. Armbrust’s version [1] of the central
theorem of Ax-Kochen are fulfilled and it follows

by

, and kg, are k-isomorphic.

This proves the theoren.
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Some remarks on a number theoretic problem
of Graham '

by

Wrnnram Ysras Virmz (Murray Hill, N. J. and Tueson, Ariz.)

In considering generalizations of van der Waerden’s theorem, R. I
Graham [1] was led to congider finite sequences of positive integers e,
< a, < ... < a, and certain ratios, namely, o;/(a;, a;) where (2, y) denotes
the g.c.d. of @ and y. He proposed the following conjecture.

ComororuRE L Jf 0 << g, < a, < ... <a,, then

max {2;/{a;, a;}} = n.

The conjecture has been verified in some special cases:

(a) a; is square-free for all ¢ (Marica and Schonheim [27),

(b) @, is prime (Winterle [4]),

(e) » is prime (Szemerédi [3]).

One of the results of thiz note is to prove Conjecture I when w1
is prime.

A natural question to ask is: For what sequences is equality achieved?
Before going into this question we make some remarks.

1. Tf we multiply a sequenee by a constant we obtain the same set
of ratios, g0 we may aszume g.c.d. (&, ¢y, ..., @,) = L.

2. Given a sequence @ = {4, < @y < ... < G} leb A =Llem.
{@y, @y, ..., a,} and form '

9t = {Adla, < Afty; <... < Aoy
Tt is easy to show that @ and @ have the same set of ratios.
Notation. Let M, =lem. {1,2,...,n} and ¥ = M f(n—i+1),
s0 M n < M, fin—1) <...< M, /2 <M, 1 is the “inverse” of {1<2
< ..o n) '

: F‘ 5 DEFINITION. Given a sequence @, << G, << ... << @&, We say il is a stan-

dard sequence it it is a multiple of {L < 2 < ... < n} or of (" < Y <...
.oo < W, That is, either -
a; =k for all 4,

1



