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{62) in whick R = [711, -vvy By]. Therefore, by Lemma 12 there exists
a veetor h® =[73, ..., #] such that the system of equatlons

-Mhﬂz'(mu:mn cean ) =0 (de I)

is soluble in integers. Denoting a solution by [4f, #1, ..., @] we get from
(60) and. (61) for all i1

. %
L o — =
iy Z Buige i bhgm 0,

ie_

hence by (59)

References

[1] G.Darbi, Sulls reducibilita delle equazioni algebriche, Annali Mat. Pura Appl.
4 (1925), pp. 185-208.

[2] H.HXasse, Zum Bxistenssalz von Grunwald in der Hlassenkérperiheorie, J. Reine
Angew. Math. 188 (1950), pp. 40-04.

[8] D. Hilbert, Die Theorie der algebraischen Zahlkérper, Ges. Abhandlungen,
Band I, Reprint New York, 1965.

[4] M. Kneser, Lineare Abhaﬂgmgkewt von szem Agta Avith. 268 (1975), pp.
307--308.

[5]1 W. E. Mills, Oharacters with preassigned values, Canad, J. Math. 15 (1963),
pp. 160-171.

[6] A. SBchinzel, On power residues and omponemml congruences, Acta Arith. 27
(1975), Pp. 397-420.

[7] Th. 8kolem, Anwendung exponentieller Kongruensen sum Beweis der Unldshar-
keit gewisser diophantischer Gleichungen, Vid. akad. Avh. Oslo I, 1937, nr 12.

. [8] — On the emistense of & mulifplicative basis for an arbitrary algebraic field, Norske

Vid. Selsk. Forh. (Trondheim) 20 (1947), nr 2.

[8] N. G. Tschebotariw (Cebotarev), ber einen Bate von Hilbert, Vestnik Tkr.
Akad. Nauk, 1923, pp. 3-7.

{101 N. Tschebotaréw, H. 3chwerdtfeger, Grundsiige der Galois’schen Theorie,
Groningen-Djakarta 1950.

{111 8. Zndm, On properties of systems of arithmetic sequonces, Acta Arith. 26 (1975),
pp. 279-283.

Correction to [6]
P. 401: insert after formula (8):

provided p; > 2, 6 = lmodp; or p; = 2, a4 = lmod4.

Keceived on 15. 10. 1975 (772)

ACTA ARITHMETICA
XXXIL (1977)

Diophantine approximation in power series fields*
by

Worrganeg M. Scemior (Boulder, Colo.)

Dedicated to Professor Theodor Schneider
on his 66tk birthday

1. Intreduction
1.1. The setting. Let K be the field of formal series

(1) , o = g Xt (X ..

with an arbitrary integer %k and with coefficients in a given field F of
characteristic zero. The rational functions in X with coefficients in F
form a subfield K, = F(X) of K, and the polynomials form a subring
8§ = P[X]. In K we have the non-archimedean v_a;luation with

la| = 2*
if the leadmg coefficient in (1) is a; 7= 0. Xf f is a polynomial, then
|fi = 297

Many results on “ordinary” diophantine approximation, i.e. approxi-
mation of reals by rationals, carry over to approximation of elements

of K by rational functions, ie. by elements of K,.
For example, Dirichlet’s Theorem holds: If ae K does not lie in K,,

ihen there ave infinitely many rational functions flg = f(X)[g(X) in K,
with

le—(fipI < lgI™":

Also Liouville’s Theorem holds: If ae K is algebraic over K, of degree
§ > 1, then for every rational function flg, we have

(2) Na—(flg)l > ex(a) 917,

with a constant ¢,{e) > 0. Now just as in ordinary diophantine approxi-

* Written with partial support from NSF-MPS75-08233.
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mation, where Liouville's Theorem was eventually gtrengthened to Roth’s
Theorem [5 ], so.in the power series case, Liouville’s Theorem was strength-
ened by Uchiyama [7]to the following result, which we shall call the Roth~
TUchiyama Theorem: If a is algebraic of degree 5> 1, then for ¢ >0 and
for every rational function flg, we have

(3) la—(flg)l = cs(a, g™ ",

with a constant oy(a, g) > 0.

As was first observed by Kolchin [1], new guestions arise in the power
series case in connection with algebraic differentinl equations. These
questions have no analog in ordinary diophantine approximation. Denote
the formal derivatives of a series a by a®, o®, ... Suppose a¢ K, satisties
an algebraie differential equation, i.e. an equation :

Ala, d, ..., o™ =0,

where A{¥, ¥, ..., ¥;)is anon-zero polynomial in variables ¥, ¥, ..., !
with coefficients in H,. Then Kolchin proved that for rational functions

flg,
{4) . ' [e—(flg)| = eg{a) igi_'ds

x_'vhere gy(a) > 0 and where d is the denomination of A, i.e. the maximum of
g +2a,+ ... +F{1+1)g

over all monomials Y% ¥71 ... ¥l occurring in 4 with non-zero coefficients.
When? = 0, i.e. when ais algebraic, then (4) reduces to Liouville’s estimate
(2). Ii is not known whether the exponent —d in (4) is best possibla it
‘1> 0; perhaps the exponent should always be —(2+¢) for >0, or
even —2. Contribntions o this question were made by Osgood [3], and
special equations were discussed by Schmidt [61 Osgood [2] used Kol-
chin’s Theorem to prove & result on algebraic functions which is stronger
than Liouvilie's estimate (2)and weaker® than the Roth-TUchiyama esti-
mate (3}, but which in contrast to the latter is effective in some sense.

Now in ordinary diophantine approximation one deals not only
with approximation by rationals, but also with approximation by algebraic
numbers. Similarly, in the power series case, one deals with APPToxi-
mation by algebraic functions. In the present paper we intend to discuss
approximation by selutions of algebraie differential equations. In particu-
lar, we shall prove generalizations of Liouville’s Theorem, dealing with
approximation to a solution of an algebraic differential equation by
solutions of other differential equations.

¥ Excopt that for functions of degree 3 it is stronger.
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Of course, the “expansions about infinity’”® (1) could be replaced
by other expansions, say by expansions ap XE 4 ap o X4 ... about
zero. The expansions (1) have the advanfage that now the polynomials
play the role which iz played by the integers in ordinary diophantine
approximation.

1.2. Heights. Let ¥ be & “differential variable”, ie. a variable with
which we associate further variables Y,, ¥,,..., representing “deriva-
tives'’ of ¥. A differentiol monomial will be an expression

(5) PY) = P(Y, ¥, ..) = FoYn, Y&

with nonnegative integers 4y, ..., a;. We write K[{¥] (or S[Y7]) for the

ring of differential polynomials
(6) , A =D ap,

where the sum is finite, where the P, are differential monomials and

where the coefficients x,, iie in K (or in 8). Given a differential polynomial

(7) . _AZan-Pn

with f,¢8 = F[X] and with distinct monomials P,, define its height
$(4) by
() H(4) = IH'aiXIfnl' = nla,x{zﬂ‘*gfn)_

Let A(a) be obtained by substituting a, ¥, «®, ... for ¥, ¥y, ¥, ...
into A[¥]. : _ '

Let Q(m) be the set of 8¢ K which satisfy a linear differential equation
of order < m: '

where o
B = gmym_i— e +glyl+goy+f

is & non-zero linear differential polynomial of order < m with coefficients
Oy ooes o, f In 8 = F[X]. Here H(B) = max(ignl,---; o], 1f1)- Given
B e O{m), the height $,,(8) is given by

‘51:1,(.6)’: ngnf)(B):
with the minimum to be taken over all non-zero linear differential poly-

nomials BeS8[X] of order < m with B(f) = 0.
If P is again given by (5), define the order [(P) by

[1 if
-1 if

> 0,
L(P) =\

@y = v = = 0.
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Also put _
§(P) = ag+ ...

*(P) = g+ 30+

I A is a differential polynomial, write 1{d), s(4), r{4), respectively,
for the maximum of I(P), s(P), 7{FP) over the monomials P occurring
in A with non-zero coefficients. Then I(4) is the order of 4.

Let £2(m, &) be the set of ¢ K which mnsfy a non-trivial differential
eguation B(f) =0 with

-ty
PR + (21—1}[&;

(9N BeS[¥] having IB)<sm, sBI<Ls.
Gaven fe 2{m,s), the helght $,.(8) is given by
s (8) =miﬂ5 {(B),

with the minimum to be taken over all non-zero B with (9) and thh
B(p) = 0.

1.3. The results. First about solutions of linear differential equa-
tions: .

TEEOREM 1. Suppose ae 2(1), but ¢ (1
such that .
(10) AT
- Jor every B # a in 2(I).
In general we have
THEOREM 2. Suppose m >0, s=1 are given. Suppose a satisfies

& now-trivial differential equation A{a) = 0, but satisfies no non-trivial
differential equation of order < m. Then for § +# a, fe 2(m, s), we have

(13) lo— Bl > €54 (8)°%,
wheve ¢; = e{a,; m, ) > 0 ond where
6 = 9m+2(7.(A)S]2m+1_1‘

No special importance attaches to our value of the econstant g.
The restriction that o satisfies no differential equation of order < m could
be removed at the cost of further complication and a possible change
of our value for ¢;. 8ince Q(0,1) consists of rational functions, the case
m =0, § =1 is Kolchin’s Theorem, except for the just mentioned
restriction and except for the value of ¢.

—1). Then there is & ¢,(a) > 0

Both Theorems 1 and 2 are Liouville type results. We have as yeb '

no Roth type results.

The reader will not be surprised to hear that resultants play an es-
sential role in the proof. More surprising is the fact that existemnce
theorems on pewer series solutions of differential equations are needed,
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2. Differential equations (*)

2.1, Notation. Suppose A'=_A(Y) =A4(¥,¥,...., ¥) is a diffe-

rential polynomial. The derivative A" of A is defined by

04 04 . BA a4
) - Y
AV =gz Ty Tt aw Bt Tay,
All the usual rules on differentiation of swms and products hold. The
higher derivatives A®, A® ... are defined by induction. It is easily
seen that for ae K we have :
_A(l) (A(a))(n
Given two differential polynomla.ls A, B, put
AoB = A(B, BM, ...
Then (AoB)o( = Ao(Bo(), and in partienlar (AoB)(a) = 4(B(a)).
In the introduction we used the multiplicative valuation |al, in order
to gtress the analogy with ordinary diophantine approximation. -In
what follows, it will be more convenient to use the additive function
v with 2{0) = —o0 and

Yz+1

v(a) =k

if a is given by (1) with a; 5= 0. Clearly |af = 2%%. We have v(a+§)
<max(fu(a), (ﬁ)), and equality holds here if ¢(a) # o{f}. Not v itself,
but —o is an “additive valuation’.

2.2. Linear polynomials. Given a homogeneous linear ditferential
polynomial

L =3, Y40 Y+ . +4,F,

Cput w(L) = —eo if L = 0 and

w(T) = max (v(i)—i)
Ot

otherwise. Then certainly (L +Ly) < max (w(L,), w(L,)), with equality
it w(l;) 7 w(L,). Given a non-zero homogeneous linear differential
polynomial L with w(L) = w, we may write

(12) L= Dyt Doyt oees

where

(13)  L; = ap X Y+ ay XT 4 o

+arj£Xi+ZYz (j Zw, w_—l, L...)

with constant coefficients, and where Iy, == 0.

{3y The lem;:na,s of this section are not new, but are cellected here for convenience _
Bee o.g. [4] o
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Suhstituting a = X', we obfain
— .p-[d(t) XH—J?

say, with certain polynomials pz; of degree < 1. The polynomial pr = pr,
is not zero and is the indicial polynomial of L. The indicial polynomial
of L =0 is identieally zero. Tt follows from (12), (14) that

gt (E—T4+1)) X4

{15) w(L) = max(v(L (X1) — o (XY),
4

hence that

(16) w(L) = mﬂax(v(l]{a)]mv(a)),

and that in‘ fact
(17) w(L)
it pr{v(a)) #0.

Lemma 1, Let L, M be homogeneous Unear differential polynomials.
Then Mol is a homogeneous linear differentiol polynomial with

= p(L(a))—v(a)

(18) HMoL) = (M) +1(1),
(19) © - w(Mol) = w(M)+w(L),
(20) Darorlt) = pr(t)par(t+w(D)}.

Proof. We may suppose that L, M are non-zero. Only (19), (20)
require a proof. By {12), (14),

L(XY) = pr ) X L pr gy (XD L
and
MH(X™ =?M(’“)XHW(M)+19M,w\M)_-1(”)Xu+w(m—l+
Thus '
(MoL)(X') = pr(t)py(t +w (L)) Xm0
and (19}, (20) become obvious.

2.3. Solutions of differential equations. Dvely dlfferentlal polynomial
A may uniquely be written as

(a1 A =i+L+4,
‘where Ac K, where I is homogeneons and linear, and 4 is a sum
(23) d=>upP,

with differential monomials P, having s(P,) = 2. Given

z, P, ==, ¥YO¥0 .,  T{,
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write w(m,Py) = v(m,) —8& 28, — ... —la;, and set w(A) for the maxi-
mum of w(nuPu)_over' all summands in (22), with the understanding that
w(A) = —ooif 4 =0, Now (recall the definition of s(P) in §1.2),

{7, Py (X)) < t8 (P +w{m,Py) s

and if 1< 0, s(P,) =2, then
'U(ﬂupu(X‘)) < % w(w,P,) = 20(X)

Thus if £ 0, then '

Faw(w, Py

(4 (Xh) < 20(XH +w(d),
and, more generally, if o{a)< 0, then
(28) v(A(a)) < 20(a)+w(d).

LEMMA 2. Suppose A is of the type (21) with i = 0, L # 0. Supposc
ne K, n £ 0, is a solution of the differential equation

A{g) = 0.
Suppose that either 4 = 0, or that A#0and
(24) w{n} < min(0, w(L)—w(4)).

Then pg{vi{n)} = 0. :
Proof. Suppose we had pr(v(y)} # 0. If 4 = 0, then by (17),

0) =o(L{m) = vl +w(L) # —o

which is impossible. Tf A #0 and (24) holds, then L(y)-+A(y) =0,
whence by (17), (23),

OO"*’U

v(n)+w (L) =2(L(n) = v{d(n)) < 20(n) +w(d 4) < v(n)+w(L),
which again is impossible.
2.4, Existence of solutions. : ,

LEmma 3. Suppose L is a non-zero homogencous linear differential
polynomial with w(L) = w. For a fiwed 1, consider sevies
{25) n = “zxt+“t-1-xt_1 -
with undetermined coefficients. Then
Ling) = bt+wx+w+bi+w—zf+w_1+ evy
with
Bpaw_y = Prt—§ G+ bipewis

where by y_; 18 o linear form in ay, @y -oos Gggqr. (In particular, b,y

=10
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Proof. It suffices to observe that

{a} every coefficient in the series Lia, X4 ...
form in @, ..., Cﬂf—an

(b )L(a’t-—JX Thay X4 = i) e XL

LEMMA 4. Suppose A is o differential polynomial with swmmands
7w, Py having §(P,) = 2. Let ¢, w be given with

(26) _ t < min(O, Www(Z)).

@1 X1 is & linear

Consider series {253) with undeiermined coefficients. Then

(27) A(y) = ct+th+w+3t+w—1xt+w—1 e

where 0y, is a polynomial in
particular, ¢, = 0.)

Proof. We may suppose that 4 is of the special type
4= X“]Z' X,

is

veuy gy with constant term zero. {In

with #({T) = w—i,— ... —i,. Then the coefficients on the right hand
side of (27) are forms in a,, a, ;, ... of degree 5. A fypical summand of
A(y) will be some constant times

a a't-—]'s _Xu'l'(t".fl =i (i gig) .

—jp
The exponent here will equal ¢+w—j if

thw—j =st—f— ... —js—{—w(r.?l_).

Then by (26),
Je<ht e Ho= =1yt w(d) —w+j < thw(d) —wij<j.
80 ¢y 18 & polynemial in a;, ..., 2_;,;.
Levma 5. Suppose A is given by (21), with L # 0, A % 0. Suppose
that py(t) has no integer root &< v(A )— w(L) Suppose thai either 4 =0
or that A # 0 and

(28) 8(4) < min (w (L), 20 (L) — ().
Then there is an ne K with v(n) = v(1)—w

Alq) = 0.

(L) having

Proof. Put w = w(L), v = #(3), t = v—w. Write % in the form (25)
Then '

L+ A(n) = X" +d X+ ..,
with coefficients

. dv-.-j = prit _J) ai«—:i_l'&v—j:
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where &”“f is a polynomial in &, ..., a;,_;,,;. This follows from Lemma 3
if 4 =0, and it follows from Lemmas 3, 4if 4 = 0. In the latter case
observe that the condition (26) is satisfied in view of {28). By our hypoth-

_ esis on Pz, the. coefficient py(¢—~j) of a;_; is non-zero for §j = 0,1,

‘We thus can successively choose @, @;_,, ... such that L(p) -4 (q) = —
i.e. that 4.(n) = 0. Since v(A) =w», we have d, = p.()a; % 0, Wwhence
at#O and'u(?y)-— =0 -—10.

3.%Approximation_by, solutions} ;0f linear differential equatlons
3.1. Linear differential ideals, The linear differential polynomials

A =240 = A4+23Y+4 T+ ... + 4T,

form a vector space V over K. Given [ > —1, the linear differential poly-
nomials of order <! form a subspace ¥; of V of dimension [+-2 with
bagis 1, ¥, ..., ¥, A linear differential ideal is defined as a subspace
of 7 which is closed under taking derivatives and which is equal to ¥
if it contains 2 non-zero element of order —1. The principal ideal (A4)

‘generated by A4 =0 ig the intersection of the linear differential ideals .

containing 4. If 1(4) > 0, then (4) is the subspace of ¥ spanned by

A, AV, A® | Hence (A4) consists of the polynomialy Lo4, where L
is a homogenecus linear differential polymomial. If 7(A) = —31, tHen
{4) = T.

TEMMA 6. Bvery non-zero linear differential ideal is a principal ideal.

Proof. Given a non-zero ideal J, let A be a non-zero element of 3
of leagt order; say I{4) =1 1 { = —1 then ¥ = ¥ and thus I = (4).
So suppose that I = 0. Let B be an arbifrary ncn-zero element of 3 with
I(B) = m. The polynomials
(29) B, A, A®, ., A®D
span a subspace S of V,,. Since' 4 with I{4) =1 is a non-zero element
of 3§ with least possible order, the intersection SNV, ; = 0. Sodim8+
+dim¥;,_; = dim(8+ V) < dim¥V,, and dimS<dimV,—dimV,,
== m—1+1. We conclude that the vectors (29) are linearly dependent.
Sinece 4, 4™, ... are linearly independent, B must be linear combination .
of A, AWM, ..., AN Therefore Be(4) and I = (4). : '

Tf (4) = (B), then clearly 1(A) = I{B). Thus the order I(3J) of a linear
differential ideal 3 may be defined as the order of any of its generators.

Write (A, B) for the ideal generated by 4, B. : '

3.2. Differential resultants. Suppose 4 70, B # 0 genera.te a dif-
ferential ideal J. Put I == 1I(4), m = I(B), r = 1(J), i_md suppose that-

{30) r<l, r<m.
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.A. mﬂ.“l"ﬁo]"l— e —i—ﬂ.]Y“
then

A8 =MLY AL Yt A e (E=1,2,00),

- where the A"l and the A" are certain linear combinations of 2 and the
Afs and their derivatives. Similarly, if

B=pt+mY+. ... +pn¥n,
then '
BO = T 4 i Y T i T (5=1,2,.)

The determinant R (¥) with I+4m—27 rows and columns, given by

A(Y) by e ly .
BT s T A L
B Aty glmer-d e et g
B(¥) el oo W
BU(Y) mh e
B(I_r_l)(y) #:[i:f s S :“5111_’_1] ﬂgi-_n::}‘]—z Han

is a linear differential poljfnomia.l called the resultant of 4 and B.’
LA 7. The resultant R(Y) is a non-zero linear differential poly-
- nomial of order v. The ideal J = (A, B) is generated by B: I = (R).
Proof. The resultant is a linear combination of '

(31) A, AD Ao g RO Bl

hence beh_)ngs to J. Being a linear combination of the polynomials (31),
it is a linear combination of 1, ¥, ..., ¥;,,,_, . But from our definition
of E(¥) as a determinant and from elementary linear algebra it follows
that the coefficients of ¥,.;, ..., ¥;,,,_,_, are in fact zero, so that I(R)
< r. It will thus suffice to show that B s 0; since Re I, this will guarantee
that I(E) = » and that in fact ¥ = (R).

Now for s 1, m, the 2¢ —1—m-+2 polynomials

(32) A, AW, 4B B BY L BE-m

He in 1‘fhe vector space ¥, of dimension s+2. So for large s, the vectors
(32) will be linearly dependent; let s be the smallest integer with this
property. We may then suppose that AP iy a linear combination of
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A, AW, L, AETD BIBD L BT Then
- A, AW, 46D B RO

are linearly independent and span3 = (4, B). In faet, if ¢ is large, then
IV, is spanned by

A, AW, A6 g BO | plem)

so that dim(INV,) = s—I-+t—m+1. On the other hand I = (@) for
some ¢ with 1(C) =1, so that InV, is spanned by ¢, CW,..., 0¥ if
rz0,and by 1, ¥,..., X;if r = —1, and dim(JNV,) = t+1—r. Com-
paring cur formulae we find that -

(33) . ' 5 = ltmer,
The polynomials
(34) ' 4, A(l), ey _A(B'"‘"‘l)’ B, _B(ll’ e Rls—m-1)

are linearly independent by our minimal choice of s. They span a subspa,c&
of V,_; of dimension 25 —1—m == s—r, while V, is of dimension »--2.

- Now (8—7)+(r-+2) = s8+2>dimV¥,_,. So the snbspace spanmed by

{34) has a non-zero intersection with ¥,: There exists a mon-zero linear
combination D of (34) which lies in V,. Since D must be a generator
of 1, it is unigque except for a factor y = 0. Since the polynomials (34)
are linearly independent, there are coefficients a, ay, ..., g,_;_;and g, f;, ...
vevy Be—m_y» 1Ot all zero, and unique except for a common factor y # 0,
such that : '

ad + o, A® o ty_p  ACTV L BB BO 4 4B, B

lies in V,. Now since s—1-1 =m—r—1 and s—m—1 =[—r-1, this
unigueness means precisely that the submafrix obtained from the de-
terminant for B (Y) by erossing out the first eolumn, is of rank I+m —2r—1.
8o in R, which is a linear combination of (31), some coefficient of this
Iinear combination is non-zero. Moreover, the polynomisls (31) are the
same a5 (34); hence they are linearly independent. So B # 0.

3.3. Proof of Theorem 1. Introduce the additive height
h{d) = maxv(f,)
n .
of a differential polynomial 4 given by (7). Then $(4) = 2"4. Detine

b (B) amd B, (B) in the obvious way. Theorem 1 now says that if o lies
in (1) but not in R(1-1), then

(38 . v(a—p) > —(1+1) y(f)—e;la)
Jor every B+ a in Q(1).
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Since o Hes in Q(1), it satisfies an equation 4 (a) == 0 with a non-zero
Iinear differential polynomial A4e¢S[¥] having I{4)<{ Since a does
not lie in 2(1~—1), we have in fact {(4) =1, and 4 is unigue except for
a non-zero factor in K,. Say 4 =A4+L with T s£ 0. ~ .

Suppose at first that 4(f) = 0. Then n = a—§ satisfies L(y) =0, -

and pg{v(y)) =0 by Lemma 2. So this case is impossible if p, has no
integer root, and w(c—f) = v(n) == 1, where 1, is the least integer root
of pr, if there are such integer roots.

We may therefore suppoge that A(f) £ 0. The element fe £2(1)
satisfies a non-trivial linear differential equation B(f) = 0 with Be S[¥],
with m = [(B) <1 and with A(B) = &(f). Since A(B) 0, the poly-
nomials A, B are not proportional, and B{g) # 0. Now if, say, B = u-M,
then B{a) = B(e)—B(f) = M(a—f) and :

v(B(a)) < v(a—B)+R{M) < v(a—g)+r(B).
So (35) will follow if we can prove that
(36) v(B() > —1h(B)—0'(a).

Hence it remains to prove

THEOREM 1'. Suppose ae (1), a¢ 2(1—1). Then every linear differen-
tial polynomial B with 1{B) <1 and B(a) # 0 has {36).

Now let J = (4, B), and put m = [(B), r =1(J). Since 4,B are
not proportional, r <1 = 1(4). If r < m, let B be the differential resultant
of A,B. If r =m, set R = B. ]_"n either case Re¢ S[¥] and (R) = 3.
‘We cbserve that =

2{E(a)) < 9(B(a)) + (1 —r—1) R(B)+ (m ~2)h(4). _
This follows from A (a) = 0 and the determinant :Eormula, for B if r < m,

and i3 trivial if ¥ = m. Now sinece r 2> —1 and since {(m—r)h{d) < " {a),
Theorem 17 will follow from

LEnwma 8.

'u(R(a)) > {0 . “ff pz'ha:s no integer roots,
min(0, 3 —1) if ¥, is the least integer root of g

To prove Lemma 8, we observe that B is a “constant”, i.e. a poly-

nomial in §[X}, if r = —1. Then v(B(a)) = v(R) > 0. We may thus sup-
pose that r > 0. Write -

E=vtN =vdn,T+o, Tyt ... 49,7,

with N 3£ 0. Since 4¢3 = (R), there is a homogeneous linear polynomial
Qe K[Y] with - i '

(87) 4 =QoR, whence with L =QoXN.
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Consider the following linear differential equation in IR
(38) : N{g)+R(a) =0.

The eonstant term E{a) = 0 since 1(R) < L. Applying @ we see that every
solution # of (38) has - «

(39) Lim) = L{n+A(a) = (QoN)(n)+(QoR)(a) = 0.

By Lemma 2, such an 5 has py(v(s) = 0.

Observe that by Lemma 1, the indicial polynomial p,, of ¥ is & diviser
of the indicial polynomial p;, of L. If p, has no integer roots, then neither
does py. Then (38) has a solution 5 by (the case A = 0. of) Lemma 5.
This 7 hag oz (2(n)) = 0, which is impossible. So the case > 0 is impossible
if pz has no mtegel roots.

If py has integer roots and if fu(R(a)) < {,—1, then p; and hence
Py has no integer root < v(R(a))+1. Since NeS[¥], we have w(N)
> —UN) = —r > —1, and py and py have no integer roots < v{B(a))—
—w(N). Again by Lemma 5, the equation (38) has a solution 5 with 2(n)
= »(B{a)) —w(N). Since again pr(v()} = 0 by (39), we have again a con-
tradiction.

4. Approximation by solutions of general differential equations

4.1. A reduction. et m, 8, e be ag in Theorem 2. 8o « satisfies a non-
trivial equation A(e) = 0 with 4deS[¥] and with T =1(4)>m, but
it gatisfies no such equation of an order less than m. We may suppose
that 4 has the minimal possible value of #(4) (the functional r is defined
in §1.2), and therefore (34/0X;)(a) =0, since #(24/0X}) < r(4).

The inequality (11) of Theorem 2 which is to be proved says thab

(40) D(a—B) > — gl ) —0

“for fe Q(m', 8} distinet from a. (The constants ¢ here and in the sequel

are not neeessarily equal, and they will depend only on g, m, s.)
Let us first suppose that A(f) = 0. Then n = ﬁ—a has Ala-+x)
=0, or O(y) = 0, wheve O K[Y] i3 given by

(41) C O(Y) = A(a¥).
Writing ¢ = 2-+L--C as in (21), we have 1 = A(a) = 0 and

A .
T (M( ))":rr-x (M (a ))Iq+... +(5—(a))rz‘

0Y v, 3y,

Observe that I depends only on « and that L # 0 since the coofficient
of ¥, is non-zerc. By Lemnia 2 we have either prlo(n) =000 T #0
and v(n) > min{0, w(L) —w(C)). So certainly v(y) = —¢ or v(a—§)
= —c. ‘ - .

€ — Acta Arithmetiea XXXIT,3
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Now a may or it may not satisfy a differential equation 4,(¢) = ¢
of order m. If so, we may suppose A, to be an irreducible polynomial
in P[X,¥,..., X,]. Since certainly a,...,a™ " are algebraically in-
depen(f{ent over F(X) = K,, every polynomial .1106 X, ¥,..,%,]
with 44(a) =0 would have to be a mmultiple of 4,. One sees as above
that o(a—p)= —¢ if 44(f) =0 and § 5 a.

pe Q{m,s) satisfies a non-trivial equation B(f) = 0 with Be §[¥],
(B)ysm, s{By<s and A(B) = h,,(f). Since s{BiB,) = &(B,)+s(B,)
and k(B B,) = &{By)+A{B,;), we may suppose B to be an irreducible
polynomial in F[X, ¥, ..., ¥,,]. Now B(a) = 0 is only possible if the
polynomial 4, above really exists and B, .d, are proportional. Then
Ay(B) = 0, and v(a—B) > —e¢ by what we said above. We may thus
assame that Bla) # 0,

In order to prove (40), we may clearly suppose that o(a
whence that

a~f) < v{a),
v(f) = v(a).

If a monomial P iy given by (5), then P(&) ~P(f) is & sum of terms

(¥ — gWy g% . (%1
' % ((a(i))aim1+ _I.(ﬁ(f))u;-ml) (BN (8%,
5o that
o(P(a)—P()] < v(a—B)+ v(a}{(a+ ... +a;—1).
Hence ' '
v(B(a)} = »(B(a)— Bip) <v{a—@)+h(B)+

Clearly (40) would follow from
v(B(a)) = —(

Hence Theorem 2 is reduced to

THROREM 2°. Suppose m >0, s=1 are given. Suppose « satisfies
a non-trivial equation A(a) = 0 'mth U= U{A4) > m, but satisfies no equation

of order < m. Then every Be S[¥] with HBYsm, $(B)<s and with
B(a) #= 0 has

e—1)h(B)—e¢.

(43) o(B(@) = —o,h{B)—
with '
(44) oy = (9" 1) (r(4) s} -1 1.

. In fact, Theorem 2 for a particular value of m follows from Theorem 2’ ‘
with this particular value of m.
Theorem 2’ will be proved by induction on . NOW if Be 8[¥] has

U(B) = —1 and B(a) == 0, then 1t s a non-zeroc constant, i.e. a non-zero

icm
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polynomial in X, hence has »(B (a)) =#(B) > 0. Hence Theorem 2’
is true for m = —1, with ¢, replaced by 0. Thus our inductive argument
is off the ground, and we may suppose the theorem to he true for m—1.

4.2. An application of resultamts. Let B = B{(Y,...,¥,,}) and E
= BX, Y, ) be differential polynomials in S[¥] of respective degrees
b=>0 and ¢> 0 in Y,,. Clearly b < s(B) and ¢ < s(#). Suppose that
B, ¥ have no common factor of positive degree in ¥, ..., ¥,,. Then if we
interpret them ag polynomials in ¥, with coefficientsin the field (X, ¥, ...
vovy Yooy, they have no common factor of positive degree in ¥,,. Hence
their resultant B == R{Y,..., ¥,_;) will not be 0. (In contrast to §3,
we are now dealing with an ordinary resulfant, not & differential resultant.}
The following facts follow from the theory of resultants:

(45) s(RY < s(Blet+s(E)b—eb < 8(B)s(H).

(Namely, each of the (b--e)! summands in the determinant of order
b --¢ for B can be estimated in this way.)

(46) R(R) < W(B)e-+ h{E)D < h(B)s(B)+h(B)s(B).
There exist polynomials U(Y, ..., ¥,) and V(¥,..., ¥,,) in S[¥] with
(47) & = UB+ 7D,
having
(48) s{U)< s(B)s(H)—s(B), S(V)QS(B)S(E)-—S(EL
5) W) < h(B)s(B)+h(B)s(B)— h(B),

B(V) < B(B)s(E) +h(B)s(B)— k().

LA 9. Let Be S[Y] be given with 1(B) = m, s(B) < s, and irreducible

as a polynomial in F[X,Y,..., ¥,] Pul
(50) B. = 0B[0Y,,.
Then if a is as in Theorem 2', we have
(51) max(v(B(a), v(B«(a))) > —~esh(B)—0
with '
(52) ey = 2-9™ g (r(4) s -1 = 2sc,(r(4), m~1, .
Proof. Let B be the resultant of B and B = By. Applymg the esti-
mateb on the resultant just given, we obtain
(53) _ s{Ry< 8%, h(R)< 2sh{B),
and B = UB+ VB, with '
s(U),s(Vy=<e,
B ) h(V) < (28 —1)h(B).< 2sh{B).
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It follows that (U (a)) and +(V (a)) are < 2sh(B)+-¢, whence thab
(54) v{B{a)) < max(u(B(a)),_»u(B*(a))}+2sh(B) +e.
Sinee I(R) < m, our inductive hypothesis yields

o(R(a)} > —o,(r(d), m—1, s(R)h(R)—

2 —r(d), m—1, s*}|i{B)—c,

whence by (53), (54),
mx(q;(B(a)), v(Bx(a) ); ~{1+er(d), m-1, sﬂ))(2s)h(B' —¢
= —o(r(d), m—1, s%(2s)h(B) —¢
=

In our preof of Theorem 2’ we may always suppose that 1(B) = m
~and that B is irreducible. For hoth k(B) and 2(B(a)) ave additive functions
of B, ie. R(B,B;) = h(B)+h(By) and v(B,B,(a) = v(By(a))+
+2(By(a)). Since Theorem 2' is certainly true if v{B(a)} > —cgh(B)mc,
we may suppose that

(55) ?(Bi(a)) > — csh(B)—c.

4.3. Manipulations with pelynomials. Tiet m = 0 be fixed. If P is
a differential monomial given by (8), put 7,(P) = 0 if 1< m, and r,,{P)
= Gy F88y s+ - H2I-2m—1)a; otherwise. Y 4 is a differential
polynomial given by (6) with non-zero coefficients m,, write »,,(4) for the
meximum of r,(P,). Write r,(4) =0 if 4 = 0. Observe that 4‘“5(11)
£ r{4) and that
T (AY) < 7 (4) +2.

¥ BeS[Y] with I(B) = m, then as in §4.2 put B,
A(By) < B(B) and s(By) < s(B)—1.

Lenvma 10. Given Be S[Y ] with I1(B) = m, we have

= JB[0Y,,. Then

B — HyY, ., Ypj )+ B ¥ (j = 1,2,...,
where H;e S{Y] with
(56) s(H;) < s(B), h{H;) <h{B),
(57) ) < 2j-2.
 Proof. Observe that B — H(Y, ..., ¥} B, Y s With
H, M%Iﬂr 0B ot +ﬁ€i—1ym.

Clearly s(H,) < $(B) and h(H,) < h(B). Since Y,t1, ... do not ocour in

H,, we have v, (HI) = 0. Finally, since Hle 8 [I"_], the lemms is true

icm
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for § = 1. Assuming its truth for j, we have

BU+) — H; (Y, .o Xpogdb B X in
with ‘
Hy,, = H§1)+B§§) Yoris-
So .
s(Hy) <s(B), h(Hyjn) < h(B)
and

H))-+2, rn(BY) +25—1) <

Since H,, < §[¥], the lemma is established for j+1.

TEMMA 11. Let m, m, 1 be integers with m= 0, n =1 and m+-n =L
Let B with W(B) =m and A = A(Y,..., X;) be differential polynomials
in S[Y], and let r =, (4). Then ‘

(88) BiAd =D(Y,..., ¥;)+0,(F,

T (Hy1) < MEX {1, 2.

Ypit) B+ .o+
b Cu( Ty ..y T)BW,

with polynomials D, Oy, ..., 0, in S[Y] having

8(D) R
(59) £(0,9) ] <r(s(B)—1)+8(4) = (== 8, s03),
h(D) -
(60) B, BY) ' < rh(B)+h(4) (= hqg, s03).

Proof. We proceed by induction on =, and note that a degenerate
version of the leroma is true for » = 0. Let (s, s) be the seb ((;f
expressions of the type of the right hand side of (58), with D, Oy, ..y

in §[¥] having
t ' max (s(D), s(C B, ..

E o 3(CpBM) < e,
max (A(D), h(C1BY), - <

&
h(0,B™) < R.

Then we have 0 show that B A lies in (s, ). Since A(s,, Zfaa) is closed
under addition, it will sutfice to show that for every “monomial”

M =0T, .., Y )L, X

with (e 8[Y] having 2(0) <h(4) and s <s(A)—app1— . == ay apd
with 7, (M) = g+ ... HE—2m—1)G <7 the pmduct B M lies in
A (sq, ). Obgerve that

B = Brmoc |

1=l

(BE Ty ™
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Clearly
(61)  Bym00 < Uy —r,, (M) (s(B) 1) +5(0),
We shall show that for ¢ =1,..., %,

(62) BY Y, e U((20—1) (s(B)

Now since

(r— 7 (M) R (B) +1(0)).

—1)+1, (2i —1)h(B)).

Wisy, h)U(s2, ha) S WA(sy+ 89, Ay -+ 1),y

i.e. the product of elements in %(s,, ;) and in A (sq, hy) lies in W(s,+
+ &4, By -+ ha}, it will follow from (61), (62) that By M e W(s,, kg). I 0 > 1,
then (62) for i =1,
fice to prove (62) for '5 = #. By Lemma 10,
BYUY,,, = BPTUBY — By
The first summand on the right lies in
A((2n—1) (s(B)—1) +1, (2n—1)h (B)).

But so does the second, by virtue of .7, (H,) < 2n—2 and our induction
on 7. The lemma is proved.

4.4. Two cases, As in §4.1, let satmfy A(a) = 0 with A.¢0,
A e STY], and let it-satisfy no equation of order less than m. Since s(B, B,)
= 8(B,)}-+5(B,) and h(B;B,) = h(By)+h(B,), it will suffice to prove
Theorem 2 for irreducible polynomials B with I(B) = . In what follows,
B will be such a polynomial. As usual, put I = Z(A)

Now either

(i) m <, so that I =m-+n with n>1. Then set » =r(4) and
construct D(¥) = D(Y ,-Y,) as in Lemma 11. Or

(ii) m = 1. Then put D A.

Tn case (i), the polynomials €; of Lemma 11 have s(G )<
< 7(A)R(B)+h{4) < r(A)h(B)+¢, so that v{0(a)) <
since 4 (a) = 0 and since »(B%(a)) < v(B(a), (58) yields
{63) ¥(D(a)) < o(B{a)) +#(4)h(B)+e.

We also;note that.by (59), (60), o
(64) - s{D)<r(4d)s(B) hD)<r(4
Both (63) and (64) are trivially true in case (ii).

Again we distinguish two casés. Either B‘I‘D ie. B=08 (X
iy m} ‘does not divide D = D(X, ¥, ¥,). Or B|D.

4.5, Thé case B 1 D. SBince B was Jrredumble, the polynomials B, I}
have no common factor. We form the resultant of B and ¥ = D, ag ex-
plained in § 4.2. The equatlon (47 ) becomes

(65) R = UB+ VD.

Y, ooty Toaa)

e and k()
r(AVR(B)+e¢ Now

and Yh(B)-}6

,n—1 is true by induction. It will therefore suf-
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The polynomials U, ¥ have

(66) s(U)<o, #(M<o

by (48), (64), and

(67) " W(U) < W(B)s{D)+h(D)s(B) < 2r(4)s(B)h(B)+¢,

(68) h(V) < 2r(A)s(BYA(B)+ ¢ |
by (49), (64). We have o{U(a)) <kh(U)+e¢ and »(Via)) <h(V)+e

by (66). So by (63), (65), (67), (68), we obtain -

(69) v(Rle) < max(@(U( a)} +v(B(a)), v(V(a}) +o{D( ])
< v{B(a)) +3r(A)s(BY(B)+o

Also note thatb

- (70) s{R) < #(B)s(D) < r(4)s*(B).
by (45), (64), and that .
(71) h(R) < 2r{A)s(BMB)+c

{712}

by (46), (64). . . -
Now I{R) <m. We may therefore- apply our induction hypothesis
to R and we obtain

fv(R(a)) > —eh(R)—e,

with ¢ = ¢,(r(4), m—1, s{R)} < e,fr(4),
with (69), (71), we obtain

o(B(a) >

m—1, r{4)s%. In. conjunction

— o h(B)—¢
with . .
6y = 2r(A)s(B)e;+3r(A)s(B) < Cr(r(4), my8).
4.6. The case B|D.We now have D = GQ(Y, ..., ¥,)B, so that (58)
becomes

oy Yo )B4+ L+
+0,(X,.

W o= 0(X, ..., Ym)B'JFOI(Y’

., Y B,
This is certainly true in case (i), iLe. when m < 1. In case (i) we have
D = 4, sonow B divides 4, and (72) reduces to By 4 = CyB. In1 the poly-
nomial identity (72) we substitute a--¥ for ¥, le. a-+ Y, oW+ X, ...
for ¥, ¥,,... We obtain

(73) B’(a»i—Y) (a+¥) = Op(e+Y}B(a+¥)+ ..

The dﬁferentza.l polynomials on both gides of this equation are in K[¥]
but not necessa.rﬂy in S[Y]

A0 (a+Y)B€’5>(a+Y).
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Write the polynomial on either side of (73) as
v+ N-E,

with the same conventions as in (21). Since 4(a) = 0, we have » =0,
Moreover, & is Bj(a) times the linear part of A(e--¥). If we write, as
in (41), (42),

_r{od  {0ATE _
A(a+¥) =L+0 = [(ﬁ(a)) Y+... +(6‘_Y,(a)) YI] +0,
then
(74) N = EBi{e)L.
Thus ¥ 0, since I # 0 and since By{e) # 0 by (5b).
In the notation (21), write .

Cile+¥) = Ci(a) +L/z+6£:
B(a+Y) = Bla)+Lz+B,

where of course Cy(a), B{a) are constauts {ie. elements of K), where
L;, Lg are linear, and Cj, B contain the non-linear terms. Now BY(a-+¥)
= (B(e+Y))¥, so that - S

BY(a-+¥) = B®(a)+L¥+ B9,

Further N, being the linear term of (73), may be written as

{75) N =N+ ¥,

with.

(76) Ny = Op{@) L+ Co(@) Z§+ ... + 0, (a) LY,
(77) N, = B(a)Ly+Ba) Ly + ... +B"™(a)L,.

In view of (74), w(¥) = 10(By(a)) + w(L). (The functional w was
defined in §2.2). Here L and therefore w(L) depends only on a, and
(B« (w)) may be estimated by (55). So

(78) w(N) > —r(d)e,h(B)—¢.
On the other hand,
o 601: 30.;
I = (ayw)ﬂ +(ﬁ-(a)) ¥,.

By (59), (60), we have 5(0;) < ¢ and h(0,) < #{A)h{B)+ ¢, whence

(000X ,) (@) < r(A)h(B)+e, and (L) < r{A)h(B)+o.
" So by (77), | - o

w(N¥y) < v(B(a) +r(A)h(B)+c.

or
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Now either w(N,) > w(N). Then by (78),
2(B(a)) > —r(4){e+1)h(B)—e> —e;h(B)—c,

and (43) is true.
Or w(&;) < w(N). Then by (7b),

() = w(),

and N, N, have the same indicial polynomial p, . Looking at (76) we see
that

N, =QoLg

withQ = Op{a) Y+ ... +0,,(a) X,. So by Lemma 1, the indicial polynomial

Pr, of Ly is a divisor of the indicial polynomial py of N;. Moreover,
'u(G,-(a)) < ?(A)h(B)+_c, whence w(@) < r(AYh(B) ¢, and
(79) w(Lp) = w(Ny) —w(Q) > w(N)—r(A)h(B)~c.

4.7. Solving a differential equation. Consider the following differential
equation for #: :

(80) B(a+1n) =0,

B(a)+LB(ﬂ)+B(ﬂ)_ =0.

Now w(EB) < h{B)-}¢, so that _
min = min(w(Lz), 2w (L) —w(B))

has
min > — {2, +3)r(ADVR(B)—¢

by (78), (79). Now if min < »(B(a)), then (43) of Theorem 2’ helds. If
not, then condition (28) of Lemma § holds. So there is a solution # of
(80) with o(y) == v(B(a))—w(Lz). Putting § = a+7 We have

B(fy =0
and, by (78), (79},
(81) w{a—B) = v(n) < v(B(a))+ (6 +1)r{4)h(B)+ 0.

Now obviously the right hand side of (72) wvanizhes if we substitute g,
and hence either A(f) =0 or B«(p) =0. If A(f) =, then v{e—f)
> —¢ by what we said in §4.1, and (81} implies the desired (43) of The-
orem 2. ' o

There remains the case By(f) = 0. Then R(§) = 0, where R .is the
resultant of B, B constructed in the proof of Lemmsz 9. Since UR) < m,
it follows from the case m —1 of Theorem 2 (which follows from the case
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m—1 of Theorem 2'), that _
(a—B) = —es(r(A4), m—1, s(R)h(B) —ec
= —c(r(A), m—1, 5%)2sh(B) —
by (583). Together with (81), and observing (52), we obtain
v{B(a)) = —((1+e)r(A) -+ MB) —c = —c,h(B)—c.‘

We finally remark that we threw away the solution § of B(f) =
in going from Theorem 2 to Theorem 2'. Then at the end we had to con-
struct a solution § of B{f} = 0. This may seem a wasteful argument.
But in our inductive argument, we may have to replace B by a new B
with a smaller value of m = I(B). Ih other words, the solution # with
B(f) = 0 gets lost in the inductive argument.
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Large values of Dirichlet polynomials, IV
by .

M. N. Huxiey (Cardiff) and M. Jotrna (Turku)

1. Introduction. This paper continues [4]-[6], [8], [9]. Our object
is to estimate the size of a set of pairs (s, y) at which a Dirichlet polynomial
F(s, x) can be large. A precise statement is given in the next section
where the notation is introduced. Our main tool is the reflection argument
of [47], which we use in a simplified form due to Jutila [8], [9] as Lemma 8
below. It relates Dirichlet polynomials of length N to those of length
about D/N, where D measures the range in which the pairs (s, x) can lie.
It is useful to have a peak function which iy itself a Dirichlet polynomial:
we use the H series diseussed in Sections 8 and 4, which are modified
Dirichlet L-functions. It is sometimes possible to use F(s, z) itself as .
a péak function, as in Lemma 10 below. The L-functions can be approxi-
mated by H series of length D' (the so-called approximate functional
equation), as in Lemma 14 below. Lemma 14 iz implieit in the literature;
we sketch the proof out of duty. Jutila [97has a new lemma (our Lemma 7)
in which F(s, y) is raised to an even integral power, and obtaing sharper
results than those of [6] when F(s, g} is very large, for instance when
the exponent a of (2.23) is 4/5.

Tn thiz paper we explore the consequences of Jutila’s new lemma.
Our arguments are purely combinatoric {except Lemma 14). To make
the work. accessible, we have summarised the main ideas of previous
papers as a-sequence of lemmas, stressing thé combinatory rather than
the analytic aspects. Our result is Theorem 2 of Section 5. It enables us
to improve the zero-density theorems for Dirichlet L-functions. Fer
ingtance we extend the range of the density hypotheses. Let N (a, T, x)
be the number of zeros g4y of L(s, x)in = a, [y| < T. Then

wy 3 Fia, T, 5) < (gLr

ymodg
hiolds for a > 4/8. Let an asterisk denote a smm over proper characters.
Then

@ 3 SN, < @1

gt xmodg



