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General multiplicative functions
by
I. Z. Ruzss (Budapest)

0. Concepts and notations. Here I list (a) some definitions and

notations,

which are wsed in the paper without any more mentioning,

(b} the number of definitions, which are used in more sections.

Pslls Pu
N,Q.R,C
AGQ, MBR

= {@, o)
[
gen K
o{g)
C(n}, C(o0)
C{p™)
C{ co™)

deninf 8, dengup s,

(a)
generally mean primes, p, the nth prime, beginning thh py = 2
the set of natural, rational, real and complex numbers.
structures on these sets. The first letter shows that the oper-
ation is addition or multiplication, the third the fundamental
sef, the second stands for group or semigrenp. MGQ efe. means
the group, got by omitting the number 0,
a strocture on the set & with the operation o.
generally the unity of a structure.
the subgroup, generated by the subset K.
the order of the element g (m a group).
cyclic groups.
quasieyelic group.
a group, isomorphic to AGH.
den §': the lower density, the upper density, resp. the asymptotie
denpity (if exists) of the sequence 8 < N.

{b)

ete, :

The number in the left shows the place of the defmmmn
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(1.1} arithmetical function,

(1.2} G-multiplicative and sirongly G-multiplicative fu.nctmn,
(1.5} M(f] mean value of the funetion f,

(3-1) N(f, K, =),

(8.2} - ds{f, K), ai{f, K),

(3.3} a(f. K3, '

{3.4) density set,

(3.8) denrity class,

{3.6) uniform densify class,

{3.8) concentration complex and coneentration group,
(8.9) concenirated and deconcentfrated fanection,

(7.1) g{fi, fo) and fp—7,

(9.9) superconcentrated function,

(9.10) f/Gy factor-funetion.
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1. Introduction. Multiplicative and addifive fnnctions were inves-
tigated in hundreds of papers. As far as I know, these terms always de-
noted a complex-valued arithmetical function f satisfying

flnm) = f(n)f(m)
resp.

Flom) =F(n)+(m)

for all (#, m) = 1. In this paper we shall show that sometimes it is more
natural to regard them as particular cases of a more general concept.

(1.1) DERFINITION. An arithmetical function fis an arbitrary function with
domf = N. ‘

The most general possible concept of multiplicativity is the follow-
ng.

(1.2) DEFINITION. Let G = (G,'o) be a groupoid and f: N—G an arith- .

metical function. (We must distinguish the structure & from the funda-
mental set @) We call f G-multiplicative if

(1.3) flnm) = f(n)of{m) _
for all (m, m) = 1. We call f strongly G-multiplicative if (1.3) holds without
any restriction on n and m. (Generally we shall write simply ab instead.
ofaod)

Our main interest will be the local limit theorems, that is statements

concerning the number of natural numbers << for which f (n) =g..

For example,

(1.4) TeEOREM. If G 45 an Abelmn group and f is G-multiplicative,
then the sequence {7 (g) has an asymptotic density for oll geG.

Observe that for funetions, assuming only the values 1,1t is equiv-
alent to ‘the existence of the mean valu‘e

(L.5) M (f) = lim ~—2f

T==00
This was conjectured long ago by . Erdos and proved by E. Wirsing [11]
under much more general conditions. Qur theorem generalizes in another
direction.

The following more complicated example gives a better iltustration.
(1.6) CoroLLARY. Lel fi, bk =1,2,..., be complev-valued multiplical-
toe functions, fi(n) 3 0, and ngC a*rbztmry The sequence of the solutions
of the infinite system of equations
_ Jaln) =gy
has an  asymplotic density. '
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The nonzero complex numbers form a group and we can a.pply The-
orem (1.4) to the (complete) direct product of such groups. I note that
it does not remain true if we allow fi(n) = 0 (albeit this does not matter
if we regard only finitely many f,). ™his shows the importance that G
be & group. (See also Section 2.}

At this point it is natural to ask what is the inner meaning of this
theorem, that is, which seqmences are proved to have a density.

{1.7) PROBLEM. Given a sequence § = N, under what conditiens can
one find an Abelian group &, a G-multiplicative f and a g<G such that

§ =gt
Thizs way we get the purely number-theoretic content of our local
limit thecrem, with no “alien” concept as a group. One might hope that
this leads closer to the preof, butf this is not the case. Indeed, {1.7) can
eatily be solved.

(1.8) SrtarEMENT. Leét 8 < N, The followmg three conditions are eguiv-
alent to each other.

{a) There ewistz an Abelian g? oup @, a ge@ and a stronly G-multipli-
cative f such that

¥ =179)-
(b) There exists o Gy < MGQ and a 0 3 g< @ such that
(1.9) 8 =q¢G,nN

(that is, 8 ecomsists of the natural numbers contained in a coset of a subgroup
of the multiplicative growp of the rational numbers).
(e) For sztm'ry EIPIVIUE ST TN AT

(1.10) H ns - Hs /ntieﬁ’

Proof in BSection 6.

It dees not matter that we gpoke of strongly multiplicative functions.
In Sections 7-8 we shall formulate and prove 2 theorem which states
that a set of prime-powers T W11h '

Siew

such as the seb of all p%, i > 2, is always negligible.

Condition (1.10) is no good. T wonder if there will be anybody to
prove directly that every sequence satisfying (1.10) has a density. The
strongly multiplicative function f plays the same role here as the charac-
ters In the proof of Dirichiet’s theorem on the prlmes in arithmetical

progressions.
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There is one more fact emphasizing our conclusion. Erdos [3] asked
_ the following

(.11} - ProprmM. Let § — N be a sequence satistying

(1.12) (515 coosSmy by or 868, [[oi= [ [t5) 2m = n.
What is o
B = sup{densup8)?
pe ’

He proved §=1/e. .
We can reformuldte this question for functions.

(1.13)  SrareMmENT. COondition (1.12) is equivalent to the ewistence of
o real-valued strongly additive (that is, strongly AGR-multiplicative) f such
that

8 < f(1).

Proof in Section 6.

Using (1.13) I could prove § = 1/e (see Section 4). Moreover; I proved
this several years ago (stated without proof in Hrdss—Ruzsa—Sarkozi 47,
but nobody observed that the statement concerning strongly additive
funetions solved (1.11). 8o the real worth of conditions like (1.10) and (1.13)
is that they make possible to deal with functions instead of sequences.

In Sections 2-5 we state other problems and results, and Seetions 6—14
contain the proofs.

2. Algebraic and analytic questions. The existence of the density
of a sequence, defined by a multiplicative function, is a typical analytic
question. On the other hand, we made an algebraic generalization, regard-
ing funetions, mapping into an abstract structure. Present paper empha-
sizes the amalytic aspects (though it does not contain a single sign of
integration), but we must face some algebraic problems.

First, if G'is an arbitrary groupoid, very strange things may happen:
the product of two multiplicative functions may not be multiplieative,
or to a multiplicative f we cannot define its “strongly multiplicative

brother” f, by fi(p) = f(®), or maybe that there are no G-multiplicative -

functions at all. To avoid these pathologic cases, except of this section
we suppose the following restriction.

(A} G is a commutative semigroup with unity e.

{2.1)  STATEMENT. Suppose we are given the values T (pY) for every prime-
power (i3> 1). If (A) holds, then there ewists emactly one G-multiplicative f
satisfying : ' S

F8) =F@h, f1)=¢ m
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Of course, this is not true without f(1)= e; for example, if G= MSE
and F(p®) = 0, then f(n) = 0 is alo good. For sake of unicity we always.
suppose

(B) F(1) =e.

Under these natural agsumptions we may — and shall — define a mul-
tiplicative f by giving f(p%) and a strongly multiplicative one by f(p)-

The distance bhetween (A) and the Abelian groups is still enormous.
I cannot decide in which struetures do all the G-multiplicative funetions
obey a local limit law (this simply means the existence of denf{g) for
all ge@), but I have some results in both directions.

- (2.2) TaEorEM. Let D, be the multiplicative semigroup of the numbers O

and 1, D = D7 and 0 = (0,0,...)eD). There ewisis a D-multiplicative
J for which the sequence f~*(0) does not have a density.

Let G satisfy (A), ¢, beG. We write e H b if both the equations az = b
and by = « are solvable in G. H is a congruence-relation, so we can form
the factor-semigroup G, = G/H.

{2.3)  THROREM. Suppose (A) and let G be as above. If in G, every element
kas only a finite number of divisors, then every G-multiplicative funciion
obeys o local Mimit law. _

For example, if f,...,f, are complex-valued multiplicative fune-
tiops (allowed to assume 0) and g;e. €, then the sequence of the solutions
of the system of equations ' -

Ji{n) = g;

has a density. _
There are also some results if we do not suppose (A). T can prove,
that all the results, which were and will he stated for Abelian groups,

- are valid also in non-commutative groups. Or if & is an arbitrary finite

grouypoid, then all the G-multiplicative functions obey a local limit law.

Theorem {2.2) will be proved in Section 6. The other results are put
off to another paper, dealing with the algebraic problems of multipli-
cativity.

3. The lecal lLimit Jaws for multiplicative functions. Let f: N—@G
be an arithmetical function and K < & We introduce some notations.

(3.1) - N K, o) = |{n: n<a, fln)eH}.
ds{f, K) = densupf~*(K),
(3.2)
di(f, K) = denint f~1(K).

(3.3) d(f, E) = den f~1(K) if it exists.
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Most frequently K = {g}; in this case we omit the braces and write for
example 4(f, g) instead of d(f, {g}).

(3.4) Dumnirox. K c @ is a density set for fif d(f, K) exiéts.

(8.5) DmrFINITION. Let ] be a class of subsets of G. We call R a density
class for f if every K eR is a density set for f.

Tn this terms Theorem (1.4) can be formulated as “® = {{g}: geG}
is a density class”. We prove 2 littles more.

(3.6) DmFryriTor. & is-a uniform densify elass for f i the convergence
N(f, K '
ﬁm_’ﬂ Sd(f, K) (K<)

is uniform in K.

(3.7) THEoREM. Let G be an Abelian group. G = {{g}: geG} ig @ umform '

densily class for every G-multiplicative funetion. '

We can give some information about the behaviour of the values
(aif, o).

(3.8} DEFIMTION Let & be a group and f a G-multiplicative function.
We cadl

i
K = {g: 2 — = oo}
. fip)=g »
the concentration comples and
G, = genK
the concentration. group of f.

(3.9) DErFINITION. Let & be a group and f G-multiplicative with the
concentration group G,. We call f concentrated if

i
|G| < oo and - — < 00,

. Jop&y P
and deconcentrated otherwise.

(3.10) TaEmROREM. Let G be an Abelian group and [ G-multiplicative.
One of the following fwo possibilities holds.

{a) f is deconcentrated, d{f, g) = 0.

(b) f is concentrated, d(f, g) > 0 for every geimf and

ydf, =1.

The next regult is & generahzamon of many umforlmty theorems:

{3.11) - UNIFORM DISTRIBUTION THEOREM. Let G be an Abelian group
and T G-multzplwa,twe with the concentration grou;p G, df (fs ) depends
only on the cosel of Gl in whick g lies.
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At last we staie our only non-local result.

(3.12) TorEOREM. Let G be an Abelian group and let P denote the sei
algebra generated by all the cosets of all the subgroups of G. P is a densily
class for every G-multiplicative function.

4. Erdos’s problem -and- the maximuem-theorems .-
(4.1) TmeorEM. There exists a constant ¢ > 0 such that for every Abelian
group G, ¢ # g<G and G-multiplicative f we have '
N(f, g, 0)<a(l—c). _
(4.2) MAXIMUM-THEOREM FOR MULTIPLICATIVE FUNCTIONS. For every
Abelian group G, € 7~ g<G and G-mulliplicative f
a(f, 9 < 3.

Equality holds only in the following coses.

(a) £(29) = g for all 1< i < co; there is o prime q for which f(¢) =g
or ¢ {depending on §) and f(p%) = e for every other prime p.

(b) a{g) =2, f(p*) = g or e for every prime-power and either f(z‘) == g
forall i1 or

. == 0a,
foy=g ?
(4.3) SUPREMUM-THE(OREM FOR STRONGLY MULTITPLICATIVE FUNCTIONS
Let & be an Abelian group, f a strongly G-multiplicative function and
| Py =minfo(g): g6, g €}

(pg 48 @& prime or oo.)
(a) In case p, = 2 we have

a{f, <4
for all g 5= e. Equality holds only if f(p%) = g or e,
v i = 0Q,
f(ﬁa ?
() In case P, > 2 we have for g #¢
a(f, g) < Wy,
where W, is the mazimum of the function
2 pml :
—e N R).
wa(w) =0 ;; T @R

W,

o Can be arbitrarily app%oa,ched. (oo (®) - wé““’, Wy =1fe.)
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Let § be a sequence satisfying Erdos’s condition (1. 12) From State-
ment (1.13) and Theorems (4.1} and (4.3) we have

{4.4) CororrAry. (a} There emislts an absolute comstant ¢ = 0 Such that
for every m :

S{w) < e(l—0),
where
= Hn: <@, neS}.

(b) densup§ < 1/e; moreovér, 8 is contaivied in a sequence which has
@ density < 1je. m

For real-valued additive functions (that is, for the case G = AGR)

Theorems {4.1) and (4.2) were proved and (4.3) was stated without proof
in a joint paper with Erdds and Sirkdzi f4). For Theorem (4.1) the same
proof applies, s0 we shall not prove it here. Theorems {4.2) and (4.3)
will be proved in Sections 13 and 14.

5. Unsolved problemis

{5.1) For what structures & do all the G-multiplicative functions O])L‘\'
a local Iimit law?

In this generality probably there is no simple condition. Perhaps
the (most interesting) case when & is a commutative semigroup can be

icm

solved. The result, mentioned in Section 2, is far from being best possible;

it does not contain even the case when G can be imbedded into a group.
I have no plausible conjecture,

(6.2) Let G be a group. Which subsets of & are density sets for all the
G-multiplicative functions?
T cannot solve this even in the simplest non~tr1wa] case G = C( ).

I can show that the sets, given in Theorem (3.12), do not exhaust this
class,

(5.3) Can one formulate and pmve the analogues of the Well known
global limit theorems?

I think nothing can be stated for arbitrary topologic groups. T failed
even to find a reasonable definition for a global limit law. However this
can be done without difficulty for metrie groups. For example, probably
an analogue of the “Ghree-series-theorem” of Brdds and Wintner [5]
is true.

- 6. Inverse image sequences. The aim of this section is to prove State-
ments (1.8), (1.18) and Theorem (2.2). (1.8) and {1.13} are connected
with the inner characterization of sequences of the form F ey (2.2)
is different, but we prove it through a similar lemma.
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Proof of {1.8).
(a)=(c) is trivial.
(¢} = {b). Let

_“

Let 78 be arbitrary. Since with an se§

™ g, by eS} G, = (G, ") < MGO.

s 8
§ =1 o —efdy,
hence
Scr@d,nN.

On the other hand, leb —serGonN. serly=8jre,, so

y oo\ Oy,

s
T, o bieS
Now
Py Oy,
= 8
ST,

by condition (c).
{(b)={a). Let

2: MGOQ-MGO/G,
be the natural homomerphism; f = ¢ly will do. m
Now -we prove (1.13) in a more general form.

(6.1) STATEMENT. (a} Let G be a group, g and I o strongly G-mulfi-
plicative function. If 8 = f7'(g), then

m % .
(6.2) HS*' = Htf’ 8;y 8 =n = m (mod o(g)}.
t=1 Fe=l : :
(In case o(g) = oo we mean equality.) _ '
(b) If & is u divisible Abelian group, g<@ and 8§ « N satisfies (6.2),
then there emists a G-multiplicative f with § < F~(yg).

Proof. (a) is trivial.
To prove (b) let Gy = gen 8, where this iz meant in MGQ @, consists
of the elements of the form .

B =, 8;,T;e8.

Let for this =
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The condition (6.2) just ‘means that this value is unique. ¢,: Gy—6G
is & homomorphism. By a well-known theorem of Baer [1] (see also Fuchs
[6]) a divisible group is injective, that is, this homomorphism can be
extended to & homomorphism ¢: MGO-+G. Since for s<8, we have
¢(8) = @o(8) = ¢,

f=o9lx will do. =

To prove Theorem (2.2) we- need
(6.3) . Lumwma. Let D, = {0,1}, D, =(Ds, ), D = D {complete direc
product) and 0 = (0,0, ...)eD. If § < N satisfies
(6.4) " nim,

then tﬁere ewists o D-multiplicative f with 8 = f~1(0)

The lemma imyplies Theorem (2.2) immediately, since Besicovitch [2]
constructed a sequence satisfying (6.4) and having no density.

Proot of Lemma (6.3). A D-multiplicative f can be given via a se-
qunence fy, fiy ... of Dy-multiplicative functions. Let

1 if k¢S and nlk,
otherwise.

neS=mes,

Juln) =

- This f; is obviously Dj;multiplicative. Ewdenﬂy for sef8 f,(8) = 0, but

i z¢8, then fy(z) =1. m

7. The metric space of multiplicative fumctions. Throughout this
and the next section we shall always speak of multiplicative functions,
mapping into a fixed structure G, and we shall assume conditions (A)
and {B) of Seetion 2, without any more mentioning. '

(7.1} DEFinIriow. Let for the multiplicative funetions fis fe
(12) | olfufd= D> »p*
: M=)

Thig is obviously a metrics (with the exception that it may be in-
finite). Convergence will always be meant in this metrios.
Our aim is to prove

(7.3) NEGLEONMON THEOREM. Suppose o(f,f)) < o and thm: one of
the following conditions holds:

{a) F2%) = £, (2% - for all &,

(b3 - Tl @) = fo(2)f,(2%)  for all k.
| Let ] be @ dass of subsets of &, satisfying. the following condition:
(7-4) ' KR, geG=glKeR,

icm
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where
97K = {h: he@, gheK}.
(i) I f 8 45 a density class for f,, then so is for f.
(if) If & is @ uniform density class for f,, then so is for f.

iii) If @(f,, K) = 0 for all KR, then d(f, K) =0 as well.

The theorem is not true without any condition on f,(2¥). (The counter-
example is complicated.) But it remains true for arbitrary groupoids;
the generalization of the proof presents only some algebraic difficulties,
due to the fact that some auxiliary functions may not exigt.

The theorem will be proved in the next section; here we make some
preliminary investigations.

{7.5) SraTeEMENT. For arbitrary fi,f., £ c & and 0= 0 we have

N(fr, K, ) — zo(f1, ).

Proof. If fl(n) ;ﬁfz(n),'then n must be divisible by at least one p~
for which f,(p¥) # fy(p*). For a fixéd p* the number of these n is [zp~*]. m

{1.6)  SrareEMENT. For every fr,f, and K =@
lds (fy, )~ ds(fa, K)| < o{fr, fo),
|di(fy, K)—ailfy, K)| < e(frs fo)
K) and d{f,, K) ewxist, then
Ay K) —dlfoy D1 < 0(fus fo)- W
{(1.7)  Sraremunt. If f,—f and K = G, then
ds(fp, K)->ds(f, K),
@ (fn, K)—>di(f, K).

{7.8) Srarement. If f,—f, K <« G and d(f,, K
a(f, K) ewists and

N(fS)K:"")Ié

k

and if d(f,

) ewists for all n, then

A(foy K)—d(f, K}. =

(7.9)  SrarEMeNT. If f,->f and 8 is o uniform density class for al f,,
then R i3 o uniform density dlass for f as well.

Proof. We must prove

. N(f: 'Kﬁ m)
a = limsupsup f--———"
oo - K| )

—d(f, K) =0.
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But from (7.5) and (7.6)

N(f, K, |
IM —d(f,K)‘

@&

Ko oy ! |V fu By ) - H U, Ko

e * 2
& (fo, K} —d(f, K)}
] PKf
<R i, ) 2

By the aésumption
¢ 20(fny s

making n—oco we get the desired result. m

The metries ¢ is the most comfortable, but not the best one. For
example, for g(f;,f,) > 1 the statements (7.5) and (7. 6) are vacuous.
For sake of completeness T describe the best possible metrics 5 g for which (7.6)
is frue.

(1.10) Dermvrion. Lebt §(fy,f,) be the density of natural pumbers
that are of the form p*m, ptm, f,(p"®) # fi(p").
Well-known elementary methods yield

(711)  STATEMENT. §(fy, fa) caists for every fi and f,, and

ffufd=1-]1- 3 (p—1)p™*). m
? fltzﬂ")zfg(p")

From the definition easily follows that § is really a metncs (7.5}
does not remain vdiid, but '

(1.12)  STATEMENT. For every fi, foy K < G and 3= 0
N(fl: K, m)”—‘-'-'\’T(ffu K: 2)| < m'é(fl:f2)+0(m)’

where the o depends only on @, f; and f, and not on K. m

In Statements (7.6)—{7.9) ¢ can be replaced by 4.
e and § are connected by the following relations, that can be got
from (7.2), (7.10) and (7.11) by an easy computation.

(7.13)  BraTEMENT. For every f, and f,

a(fis Js) "~<-. o(f1, fa),
1—em R < o(foy fo) S L—eme0eR),

§fufal =1 if and only if o(fi,fs) = co. m

icm

(=1
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§. The proof of the negiection theorem
(81) LmwMA. Let f be a multiplicative function, p a prime and & a den-

-sity class for f, satisfying (7.4). If p = 2, we suppose also condition {b)

of (7.8), with f, replaced by f. Let
| MK, ) = fn: n<
(a) For K <& there emists

@, f(n}eK, pin}l.

&(K) = lim m,
) Tr00 &

(8.2)

and we have _ _

Ey = > p~'d' (fip") " K).

_ =0 _ :

(b) If R was a uniform density class for [, then (8.2) is uniform in K K.

Proof. Let n = p'm, p»{’m f{n)eK is equivalent to f(m) ef(p ) K,
80 we have

{8.3) a(f,

(8.4) N(f, B, @) = D M(f(p) K, ap~)
: =0
= MK, &)+ 3 M (f(p) K, ap™).
From (8.4) 7
(8.5) MK, @) = N(f, K, @)~ Y Hifp")K,ap™).

=
Let first = 3 and let
' MK,z
oK) =limsap 280D e X2 ).
: 00 & Z-200 &% - Ke&

Evidently 0 << a(K)<1, 0<
N(f: K: @) = .’Bd(f,'K)—I-O

¢ << 1. From (8.5}, using

{(#) and O M{K,2)<e,

_'we get with an arbitrary »

'—IK —Ix ZP

a(K) < Y a{f(p)
q=1 imen 1
Making n—>o0

a(K) < Y alfp " Elp

i1

10»-1’
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80 ¢ < af(p—1), which implies & = 0, which is (a). (8.3) is clear from (8.4).
(Obgerve that a sum like

o 1
DMK ™)

={
must be uniformly convergent, sinee it has the numerical majorant Y p~*).
To prove (b) let
b{a)

b(w) = sup|M(E,»)—ed (K)] and b= ]imsupwa:—.

EeRt T+

From (8.5) and {8.3) we have
| M(K, )— md’(K)l

< V(f, K, 2)—ad(f, K

N+ ZIM(f

Taking sup and applying the fact that & was a uniform density class, we
KeRt

‘1K ap~) - ap~td' (K)].

get
< Yblap™) +o(a).
=] .

Smce evidently [b(z)| <@, we have with an arbitrary «

b(m)sgb(mp"’wm( 3 priro).

fe=n 1

" From the definition of b

< Sws 35

i=n+41

- making n—co we get b < b/(p—1), that is b = 0, which is (b).
If p = 2, then by condition (b) of (7.3) we have simply

U, K, o) {7, 12, 7).

which implies (a) and (b) immediately. m

(8.6) Lemma. Let all the letters mean the same as in (8.1). If we SupPose
(8.1({a)), resp. (8.L(LY), then & is a density class, resp, o uniform density

class for f. (Here we do not auppose (7 3(b)).) The numbers 4(f, K) satisfy
(8.3).

This foilows directly from (8.4). =

Proof of the theorem. Let

_F@h, p < pa
fn{p Y D> Dae

M(E,z)

Ful®)

icm

- {fy, K) = 0 for all KR we first get d(f,,

: 1
(9.3) M) =lim=— >'p(n)
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First we show our statements for f,, by induction. For f, this is the assump-
tion. Going from f, to f,., we first apply Lemma (8.1} for f = f,, P = Ppess
then Lemma (8.6) for f = f,.1, 9 = Py, (Sinee f, and f,., are equal at
all the prime-powers, except of the powers of p,,,, their M-functions
are the same.)

Here the only eritical point is # = 0, p, = 2. Bub in this ease either

J1 =171 (ease (7.2(a))) or {7.2(b)) holds, which justifies the application of

Lemma {8.1).

Evidently f,—f, 50 we get (i) from (7.8) and (ii) from (7.9). In case
K) =0 by (8.3) and (i) by
(7.8). m

9. Concentrated functions., In this section we prove the local limit

" theorems for conecentrated functions. We begin with the case |G| < oo,

We have

9.1y | N(f, g,

=@ Z" 2 (fim),

Where ;}: runs over all the characters of G.

p(n) = x( f(n)) is a complex-valued mult}phea,twe tunction, as-
Summg only the values ¢*%T, 0L k< T—1, T = |G]|. Therefore we
can apply the following result of Wirsing [11] (Satz 1.2.1 and 1.2.2).

9.2) LA, Letyp bea coﬁplewmlued multiplicative funclion, lp(n}] == 1.
tuppose that there is an arc of the unit civele which contains no w(p). Then

here ewists .
o0
- [T >4
k=

n<T »

M) = 0if and rmly if either p(2%) = —1 for all k or

1
(9.4) 25 - Rew(w) =

b

(9.5) LmmwmA. Let G be o finile Abelion group, 1G] =T, and let | be
G-multiplicative. d( f, g) emists for all geG. If the concentration group of f

is G, then d(f, q) ——foa all ged.

Prootf. (9.1) and (9.2) Jmply that d(f,¢) exists and

a(f: 9 TZI ﬂfl’(f
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To prove the second statement let us observe that the principal character
%o =1 gives 1/T. We prove that for y £ y, we have M(y) = 0, where
y = x(f). If no, then, since y(p) = 1 implies

2
1—Reyp(p) > 1~cos —T—> 0,
using (9.4) we get

—< 00,

wim)=1

This means
_< w,

Sip)ékerx P
that is, if K denotes the concentration complex of f, we have K < kery.
Since kery iz a subgroup, :

kery o genK =G, z=x.1

(9.6) LemwmA, Lot & be an Abelian group and f o concentrated G-multi-
plicative function.
& = {{g}: g6
8 o wniform density clase for f.
Prooi. Let & be the concentration group of f and

Fh) i FpMeGy,
¢ otherwise.

fl(_’Pk) =

We have g(f, fi) < co s0 we can apply Lemma (9.5) and the neglection
theorem. (In a finite group uniformity is fulfilled automatically.)

(9.7 LeEMMA. Lét f be a concentrated function with the concentration
group Gy. If f(p¥) Gy for p = p,, then a(f, g) depends o'nly on the coset
of Gy in- which g lies.

Proof. Indunetion on n. For # =1 thls is contained in (9 5). Suppose
we know it for n—1. Let

if P = Py,

f (p¥)  otherwise.
We know the statement for f,. Setting -

Mg, @) = [{m: m <o, f(m) =g, p;im}|

i (?k) =

we have

(g,w) N{fi,g,0)— (fug,mp;l)

icm
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and

Nifrg,9 = X Migfipky™, ap¥).

Fowal)
From these formulas

a(f, q) = WZd (51 @D 23%,

E=0
and the right-hand side depends only on the coset of Gy, containing g. m

{(9.8) LEMMA. If f is concentrated with the concentration group Gl, then

a(f, g) depends only, on the coset of G, containing g.
Proof. Let
f (:pk) —— é if }?2}9“ and f(:pk)¢(;13
" F(p®  otherwize.

Obviously f,—f. Tf g, and g, are in the same coset of G, then by (9.7)
and (7.8)

a(f, 91)—8(f, go) = im (d(fo, g2} —@(fur g2)) = 0. m

(9.9) DrrFmrrIon. Let & be a group and f G-mulﬁphcatwe We call f
sugperconcentrated if
2 % < 0o,

HpF)e

We can reduce the mvestlgatlon of concentrated funections to super-
concentrated ones.

(9.10) DnFINITION. Let & be an Abelian group, G; < G and
p: GGG,

the natural homomorphlsm We define the factor-funciion of a G-multi-
plicative f with respect to G, as .

_ f1=f/G1:¢(f)-
(That is, f;(») is the coset of Gy containing f(n).)

(9.11)  STATEMENT. If f is concenirated with the concentration group Gy,
then f/G is superconcentrated. m :

By (9.8) we have

{9.12) STATEMENT. If f is concenirated with the conceniration growp G1
and f, = f{Gy, then for all g@

a(f, 9

1
: s 4) ="1G7d(f1=9G1}- l.

" 2 — Acta Arithmetica XXXII.4
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(9.13) LEmMMA. If [ is superconcentrated, ﬂim

(a) d(f, 9)>0  for all geimf,
(b) Ddlf, e =1.
ged

Proof. Let geim f, that is, § = f(n,) with some #,. Let @ be the set
of prime-powers p"* for which either f(p*) == e or pin,. Obviously

%‘%@:.

The well-known inequality of Heilbronn [9] and Rohrbach [10] easily
implies that the sequence § of numbers which are divisible by no element
of § has a density

1
dend > (1—w-)>0.
Bince ny8 < f~'(g), we have

den S

&f, 9= =0,

L I
which is {a).
To prove (b3 let @ be the set of prime-powers p* for which f( e
and let ¢, be a finite subset of @ satisfying

(9.14) 2 L.

2N 1Y g )
Let K denote the set of elements of @ which can be written as

Flgr o )y Qe g # 45-
and d(f, G\K). I
kG =HP¥": f(ﬂ)?’E:

X is finite, so there exists d(f, K)

then we must have

AT AN N
for at least one 4. _
. Now because of (9.14) we have

Af, GNE) <5,  Q(f, K)>1—e;

& was arbitrary, which implies (b). m .

icm
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Combining (2.12) and {9.13) we get
(9.18)  SraTEMENT. Lemma (9.13) iz true for every concenirated function.
10, Deconcentrated functions. Let & be an infinite Abelian group.

By a character of & we mean a homomorphism

(gl =1.

The group of characters will be denoted by char G.

If @ is infinite, we cannot express N{f, g, ) by a finite combi-
nation of characters, but we can do the following.

Leb x4, ...y % be arbitrary characters and

1 GMGC;

(10.1) #n) = | X non(fm)f.
J=1
Obviously ‘
=m* if f{n) =g,
(10.2) - o) [ =0 otherwise,
henee we have .
(10.3) N(f, g, 2) <m™ > H(n).
f L]
‘We have to estimate
(10.4) Bla) = X Bny = 3, op D, varln),
ST k=1 nEL
- where
e = Ti(9) i (9)
and '
(10.5) _ va(n) = L ()7 (F () -

is a multiplicative funection satisfying

tps(nd] = 1.
 8Binee |egl =1, for every ¢
(10.6) N gy <m? 3| My
ik=1 n<z

We shall estimate 3y (n) using the theorems of Haldsz. The main diffi-
culty will be to find suitable characters, which yield a good estima,te.



' ®
332 _ I. Z. Ruzsa Im“

Haldsz [7] proved
(10.7)  LmMwmA. Let g be o complea-valued mulliplicative funciion, jp(n)] =1
Do) = Y pn).
nRET
One of the following two possibilities must hold.
(a) For arbitrary real h

2 i; (1 —Be(p~™p(p))) = oo,

»

¢

D(x) = o(x).
(b) There exists exactly one h = h(p), for which

23«(1 —Re(p~"p(p)}} < co.
) P ' ]
In this case

B (x) = ex' " L(loga) +o{x),
where L iz a complex-valued function satisfying

Diw)
Z{w)

[ L(#)] =1,

uniformly if uv—oo and < u, < 2u.

{10.8)  Liemwma. If h(p) and h(y) ewist, then so do h(p) and h{pyp) as well,
and ' :

h(g) = —h(p),
hpy) = h{g)+h(y).
Proof. The first is trivial. The second is due to the inequality
| le] = bl =1=1—Reab < 2{(1 —Rea)+(1—Reb)). m
(10.9) Lewoma. Tn (10.%(b)) |

ol <

Vi+he
Proof. Summation by parts yields (in virtue of L{u,)/L{w)—1)
D p(myn~™ = cL(loga) (1 +ik)a+ o (a),
nsx '
and the lemma follows from

J Zqo(n)n“"hl' <2, M

n<T
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We need a lemma, which will be proved in the next section.

(10.10) Lewmwa, Let G be an Abelian growp and f a deconcentrated G-maulti-
plicative function. FEither there is a characler y for which h{y(f)} ewisls
and differs from 0, or there is an infinile sequence ¥y, ..., Yn, --» Of charac-
(ers such thai :

R {x;(F) Z )
never emists if j+#*k
$10.11) LiEmmA. If f is deconcentraied, then

N(f,g,m)
4]

-0

wwiformly in g when x—oo.
Proof. We distinguish two cases according the previous lemma.
Suppose first that y is a character for which there exists

h = Rh(y(f)) #0.

"Apply (10.6) with

1=
HE j =k, we have the trivial estimate

| X vutm| <o

neT

Tf § + &, then by (10.7(b)), (10.8) and (10.9)

: & &
Ig%k(ﬂ)iiw -kﬂ(w)ém‘—%o(m).
Summing up we get o '
N < - 1 '....1_ o(®);
(fy9, m)\ﬁ( + I_kl)ﬂ‘—ro o);

since m was arbitrary, we are ready. .

Now suppose the second possibility and apply (10.6) with the y’s
of Lemma {10.11). In case j = k& we have the trivial estimate. In case
j#k by (10.7(a)

D) valn) = o(a),
NRE

s0 we get again

Nif, g, #) <——+o(a). m
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1. Random characters. In this section we prove Lemma (106.10).
We shall define a probability measure on the set of characters and then
prove that if we choose y; at random, then with probability 1 either one
of them satisfies the first possibility, or the whole sequence satisfies the
zeeond.
First we define a topology on charG. Let the subbase of y consist
of the sets

K (g,8) ={p: wlo)—zxlg)l <&}, g<G, >0,

This makes charG a compact Hausdorf! topological group. (The space
of all the functions, bounded by 1, is compact, and the characters form
a closed subset.) '

Now we can regard the (normed) Haar-measure. (See, for example,
Halmos [8].) This measure — which we shall denote by P — is known
to be invariant under multiplication.

(11.1) Staremenr. Let geG. If o{g) < oo, then

( (g) = ex _,mk) 1
Pl o{g)

for all k. If 0(g) = oo, then y{g) is uniformly distributed in the unit circle. m

(11.2) StaTEMENT. For ge@G

if g+e,

0
E(Z(g))zll if g=e. M

{11.3) LumwmA. Let f be a deconcenirated G-multiplicative function. | We
have with probability 1 ‘

D= —rezlr) -

P

Proof. Introduce the notation

f)=g

We must prove

Rexlg)) = o

Malgfi—

geG

with probability 1.

icm
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. It is easily seen that the condition that f be deconcentrated is equiv-
alent to that
(a) either there exists a g, with o{g,) = oo and a{g,) = oo,

(b} or
D) Bly) = oo,

geid

Blg) = min{l, a(g).
In case (a)

D alg) {L—Rexlg)) = algo) (1 —Rey(g) = oo

unless ¢(g,) == 1, which has probability 0 by (11.1).
In case {b) we use a second-moment method. It is sufficient to prove
that

P(Y8o)(1—Rextg) <¢} <
for every ¢ and ¢ > 0. Choose a H « G~ {e} finite subset such that

B =Y 8
geH

be large and let

= > p(g){l—Rex(g) = B—L(z)-
el

We shall compute E(L*(y)}.
Since
Rez = $(24+3), Rez Bez, = L{zz+25452,+%2),
and
2y = z2(g™h),
we have
E(Rexl(g)Rex(g:) = 1B (x(g192) + x(91927) + (97 92) +
1 if g, =¢g,=e,

=13 i

x(gilgz‘_‘))

§19: = € OT 1 = (s, but g1, g # e,
: . 0 otherwise.
Theretore
B(12(2) -=%r(2 B+ Y BB < Y B)
g, 0 1eH geH

(We used the fact f{g) < 1.)
From Tshebyshev's inequality

B B
S} <r(mwi > 7)<

Since B can be arbifrary large, we are ready. ®

bu_i S

P(B(x) <

»
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Proof of Iremma (10.10). Observe that Lemma (11.3) just means:

- that the event

“h(X(f)) = 0°
has probability 0. If there is 2 y with
h (Z(f)) #0,

we are ready; if not, we know that the event
“h(x(f)) does not exist”

happens with probability 1.
Now we choose y, at will. If we have chosen xy, ..
to find a y, such that

1 () 1)

should not exigt. But — sinece the measure P was invariant — this re-
quirement is fnlfilled by almost all y.

12. Completion of proofs of Theorems (1.4), (3.7), (3.10), (3.11) and
(3.12). The first four theorems are ready, we only have to gather the
details. For deconcentrated functions they all follow from Lemma (10.11).
For concentrated functions (3.7) and its weaker form (1.4) follow from (9.6),
(3.10) from (9.15) and (3.11) from (9.8).

To prove (3.12) we regnire & lemma. (We leave the easy proof to the
reader.)

(12.1)  LemMA. Let A and B be two classes of subsets of a set X. Suppose A
is closed under intersection and B is closed under proper difference ond
disjoint union, thal is

-y Xn—1; We have

AI<i<n—1,

) A,BEQ[=>_A.(\BEQ[,
(4,BeB, A o B)»A\BeB,
(4, BB, ANB = @)=~ 4 UBeB.

If B o U then B contains the set algebra generated by N (if XA m

Proof of {313). Let G be an Abelian group, f a G-multiplicative
funection, A the class of all cosets of all subgroups of G and B the class
of all density sets for f. % and B satisfy the conditions of Lemma (12.1),
5o we are ready if we can prove B > . That is, we must prove that a coset
is a density set for f. But let Gy < G applymg Theorem.. (1 4) for the
factor-function

. _ fi =fi6y-
(see the definition in [9.10}) we get the desired result. m

icm
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- 13, Proof of Theorem (4.2). Becanse of Theorem (3.10) we may
suppose f concentrated. Let ifs concentration group be G,. By the uniform
distribution theorem (8.11) we have for all ge@

(13.1) &Uf ) <oy
equality only in ease imjf = §,.
It [(hi =3, we are ready. If |Gy} = 2, then in (13.1) equality must
hold, that is, imf = @,, which iz contained in possibility (b).
- Remaing the case of superconcentrated f. Tn this case f,—f, where

o p< P
fn<p*>=|f(p) Lo
e it p>9p,.
Furthermore '
1) - o
(18.9) U 9) = (1) Doy S50 )"

R k=0
Introduce the notations

Sﬂ =D13;Xd(fn, g): Enzmax‘l(fnag)'
&

: ge
(13.2) implies

Sn = Sﬂ-l’ .

% n

1 - 1 1
(13.4) s8,< (1—-—-)(s,,_ ! S ;’ﬁ) =(1——)sﬂ, et
| s ng 1P P 1 » 1

‘We prove s, << 1/2 by induction. It is true for » = 0. If 5, ; <1/2y
then
Sﬂ—l = mafx(sﬂ.—l ’ d(fn-—l: 6)) = Illﬁ:X(-S‘ﬂul, l_sn—l) = 1_Sn—-l'
From (13.4)

1 1
LIS (1 ""”'2';_) gn—l'{”'?g" (1- 'gn-l)

% n

1+(1 2)8 '<'1+1(1 2)_1
P Pl T | 2’
S0 in case g F# e

a(f, gy = Hmd(f,, 9) <

Now we have to defermine the extremai functlons Suppose aif, gy .
=1/2. We haive

2 d{fn, 974,
80 by (13.3) 8, = 1]2 for a,ll .
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Regard first the case that f assumes not only the values e and g.
Tu this case :

d(f, e) < 4,
80 for # >

A(fn, &) < 4.
This implies §, = s,; since 8, =1/2, 5, < 1/2, we have
By =8, =% (n>n).

Since (f,, g)->1/2 and d(f,,e)—>@(f, ¢) > 0, hence for §' # g, ¢ and n > n,

W fpr §) S L=A(fs 9) — & fns 6) <},
§0 8, = 1/2 implies )
_ & far ) =%
Summing up

n>n>df,g) =% Al <t (7 #9)-

(This #, is the grea.ter of the previous two — different - ,’s.)
F01 n >y in (13, 4) equality must hold, and this is possible only
if f(pky = ¢, k = 1,2, ... This means that the sequence stabilizes. Let n

be the greatest suffix for which f, 5= fa_1-
H »n =1, we are ready. If n>2, p,,,>2 hence equality in (13.5)

holds only under the condition

-1 %!
- and in (13.4) only if

(13.6) d(fn—lsf(?b'—lg) = ‘%‘, k=0,1,...
Setting & =0 we get
a(fo1, 9 =+

Let % be such that f(p%) # e (such a k must exist, otherwise f, = f,_;)-
We have

AotV =%, ¢ =Flo)7'g #14.

g # ¢ would imply (since d(f,.,, €) > 0)

D Afa B> 1
he T

5 contradiction, 50 g = e. This means thab

flpR) =eorg, k=1,2,..
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We got
A for &) = Hfu1s 6) = %-
Therefore im f,_, = {e, g}. There can be only one prime p for which f,_; (9%}
= e, sinee
Faa#) =faal@™ =9, P #4q
would imply
fad G =g # ey g.

{If g% == e, then j, would not assume values different from e and g.) Let

this prime be q.
1 2 1
Wt =(1-5) D ¥ =3

; Tn—i@=0
is possible only if ¢ =2 and f,.,(2%) =g, k¥ =1,2,...; this 18 case (a).

There remained the ease imf = {e, gt}

If there is only one prime for which f(p*) = e, we get no new sol-
ution. If there are more, we have again g* = ¢. Without loss of generality
we can restrict ourselves to the case ¢ == —1, ¢ = <1, f multiplicative
in the usual sense. Now

af, 9 =1

D fm) = o(a)
nex

By Wirsing’s theorem (see our Lemma (9.2)) we have for some p

f

is equivalent to

k=3
This is impossible unless p = 2, f(2") = —1, k=1,2,..., which is
contained in case (b).

14. Proof of Theorem (4.3). This proof will not be a beautiful one.
It is full of routine calculations, which I shall never detail. A sign (RQ)
is used to denote where such details are omitted. The proof of the most
complicated lemmas is leff to the next section. _

First we settle the trivial cases. The case p, = 2 follows from The-
orem (4.2). Suppose pe= 3.

" If f is deconcentrated, we have nothing to prove. If f is concentrated

" with the concentration group G; # {e}, then by p, = 3 we have |G| = 3,

s0 (13.1) gives d(f, ) < 1/3. Since
W, 2wy (1) = 1/e > 1/3,

we are ready. Remains the case f is snperconeentrated.
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(14.1) LeMwma, Let o(g) = n, n & natural number or oo, P a set of primes
- and
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ming = M, — = 2.

peP v P

Let F denote the stronly multiplicative function defined by

g if Db
1o = l e if péP.

We have
(14.2) (7, g wa(a)] <7

with an absolute constant c.
Proof in the next section. This lemma shows that W,
arbitrarily approached.

(14.3)

cap. be

Levwma, Suppose we know
afp<W,

Jor stroagly C(p™)-multiplicative functions f and elements g of order p, p
prime or oco. This implies Theorem (4.3). '

Proof. Let G be arbitrary, ¢ = g«G and f strongly G-multiplica-
tive. Let n == o(g) and p, a prime divisor of nif # << o0 and o if n = .
Let g,¢C(7), o(gy) = p;. By (6.1) there exists a strongly C(»7)-multi-
plicative f; such that ‘
g = fUg-

Now we. have _
Q(fy ) < Alfry g1) < Wy, < Wy

sinee p, < p; and W, is decreasing (RC). m
B‘y now on we restrict ourselves to groups C(py’) and elements

olg) =

Fu-st we rega,rd functions with f(p) = e with the exeception of a finite
set of primes, P. Let

(14.4) - F =F(P) = {J: flp) #e=peF},

where it is o be ipvolved that fis strongly G-multlphcatlve, Gl is a group
of type C(p5),

r(f) = l{p: p<P, fp) = e},

$(f) = {p: P, f(p) = g},

where g is the invéstig&ted. element of order p,.

(14.5)
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{14.6) Lmmma, Lel feF At least one of ﬂw Sfollowing three passzbdztws
must kold.

alf, <13,
(b} #(f)+s(f) = 1P|,
(¢) there emists an f*<F, for which
a(f*, g) > alf, 9,

Proof in the next section.
{14.7) Lemma. If

r(f*) > r(f).

s%)d,(f, g) > 1/3,
then there ewists

maXd(f: [
fel

and it iz reached only af funciions satisfying r(f)+s(f) = |P|.

Proof. Start with a function fy, for which d(fi, ¢) > 1/3. Tterating
Lemma (14.6) we get a sequence of funetions fy, f,, ... such that both
d(f,, q) and #(f,) are strictly increasing. Since »({f,) = |P|, this sequence
must terminate. The last function f* satisfies

H{f)+s (") = 1P

since there are only finitely many such functions, we can select the ones
with maximal d(f, g) from them. m

(14.8) TLmmwmA. Let P be a finite set of primes and feF the function for
awhich :
g if peP
oy =1 ’
e f péP.
Suppose

a(f’, k) < d(f, g)

jmr every e 7 he@ and f = f'eF. Then there exists another _fzmte set Py
of primes. for which

91=minp>%iminp
pePy peP
and
ad(f, @) > d{f, 5’)-5'10—34_0—27
2vhere .
[ ?,f j]e.P
Rl =17 Y
e if P,
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Proof in the next section.
{14.9)  LieMmMa. For the funetion f of Lemma (14.8)

a(f, g) < W, —107%g;2.

Proof If d(f, g) <1/3, we are ready (W, = 1/e). If not, we define
a sequence f,. Let f; be the funetion, given by Lemma (14.8). Given f,,
let
(14.10) - Pp={p: fulp) # e}
and apply Lemma (14.7) for F = F(P,). Let f, be one of the extremal
functions with maximal #(f,). Now apply Lemma (14 8) for f = f,; the

‘produced function will be f, ..
These funetions satisfy

A fas 9) S Afns §) < d( (Fatrs g)a
4(f1, 9) > d(f, Q')‘f‘l_O_BQD—z:

a(frg) < d(f,, 9 —1073 g%,
On the other hand,

therefore

Bm{ min ¢) = oo,
n  fplo)se ’

f0 by Lemima (14.1)
. V N T l -
limd(f,, g} = limuw, (fg)#z) < an. |
Compleuon of the proof of the theorem. Let f be strongly maltipli-
cative. If d(f, g} < 1/3, we are ready. Tf not, let
[f () #  p<p,,
£ p>p,

lfn giv?n by (14.10}. Applying Lemma (14.7) for ¥ — F(P,), we get a func-
tion fueF(P,) with maximal d(f,,g) and the greatest possible #(f)).
Lemma (14.9) yields

(14.11) Ufn: 9) S A(fns 9) < Wy ~1074 g5
with
¢, = min q.
To(@)e
Obviously

Lo=fy e, 9)—~4(f, 9);
if g,+>o0, this and (14.11) immediately imply the theorem.
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If g,—o0, then f,—F, where E(n) = ¢, s0

a(f, g) = limd(f,, g) = limd(f,, g} = 4(E, g) = 0,
a confradiction. m

15. Proof of Lemmas (14.1), (14.6) and (14.8)
Proof of Lemma (14.1). First let n < co. We can assume

2w
g = expw—,'-%m. Then we have

59, = 22 7ap =—2 Z‘fk-(j),

k=0 i<z
Fo aeeordmg to Lemma (9.2)

R ()

k=0

-1

srom (15.1), using
1 gk - gk”—l s
log {1 —— (1__,) =——t0{p7)
((3f-5) - row
we get (RO) '

1 a1 :
15,0 =5 D e —a+0 Dp~)
=0 peP

Now we get (14.2) using the formulas (RC)
n—1

D =0(MY), N grexp(ff—1)z = nw,(@).
pel

k=0
In cage # = co we have to start with the formulas

- df, 0 = ”(1—»—)2— log_(lmi) :; —%—Hﬁ)(p‘ﬂ). n

peP
Proof of Lemma (14.6). If (b) does not hold, then there is a g<P
such that : : : '

=f(g) #e,9.

Now . let _
flgy i g+¢
fulg) = I . v
¢ g =g,-

Tt there exist_é_ a g e@, ¢ + ¢ such that
a(fi, 9) > af, 9),
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then let % be an endomorphism of G such that 7g’ = ¢. (Such an endomor-
phism must exist, since G was a group of type ¢(p7) and o(g) = p,.)
Now f* = nf; satisfies (c).

If there is no such g, regard the following equality:

at

(15.2) af, 9) = (1—qi") D) grtdlfs, gh7).

i=0
If d(fy, gh~") < d(f, g) for all ¢, then equality in (15.2) cannot hold unless
a(f1, gh™) = d(f, ¢) for all 4. ITn this case

A(f; 9) = 4@(fi, D+ A1, A7)+ A1 gh7) < 3,

sinee the elements g, gh™", g5~ must be different because o(k) = p, > 3.
This is case (a). o

Remains the case d(fy, gh ™) = d(f, ¢) for some {. Above we asserted
that this implies gh™? = e, that is,
(15.3) d(f1, €) > a(f, g).
- Let . .
' a=d(fi,e), b=2d(fi,g), ¢=1-—a—b.

Let ¢ = o{g) and let j be the least natural number with & = g. Now we
have '

=a H 4i=j+kt,
A(fr, gh~NH1 =0 it i =k,
Il <e otherwise.

~

Substituting into (15.2) we getb

b ag;? ( 1
R

(15.4)

14-g77%
alf, < (-0 il

Using the conditions _
at+b+e=1,

from (15.4) we get (RC) d(f, ¢)
(a). m _

Proof of Lemma (14.8). Let
flp) i p &g,
e it p =g

a>d(f,g)=bh
)<< 1/3, that is again we got the possibility

folp) =
We have, with the notation ¢;' = =,

{15.5) a(f, ) = (L—a) D'ad(f;, g
i=0 .

icm
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Now, if
d(fy, ©)+2d(f;, gy < 1.01,

then (RC) d(f, 9) < 0.34 and we are ready. Suppose

d{fos €)+-2d(f,, g) > 1.01.
T h# ¢, g, then

a(fy: ) +a{fy, g)‘f‘d{fa: Ry <
30

&(fo, h) < d(fo, g) - 0.01.

It d(fy, e) < d(f, g) Were then, sinee d(f,, k) < d(f, g)
(15.5) would 1mplv d(f, g} < a(f, g)- So we must have

d(fo, €) > d(f, g) > a{fo, 9)-

Samming up, for h = é, g we gdt
d(fos €) > dify, 9) > d(fy, k) -+ 0.01.

Now choose a finite set of primes ¢ such that

o Z—”J, iy @ < 8.

= mm_q > maxp,
gel}

for h # e,

(15.6)

Let
g if pﬁPUQ\{Qn}s
e  otherwise,

Filp) = |

We have, by a (RC), similar to Lemma {14.1),

fl:g =€ 2 f07g--1,)____!_0(
0 .

o

- de,g‘

Since ¢;'-+ & ean he made arbitrarily small with a smtahle @, it is suf-

ficient to prove
& e"” s
Z — (1L —a)at} > 10732,

7= Zd for 8

t
3 — Acta Arithmetica XXXTIL4

e
“)i—!—}—O(g;‘-;-é)._

(15.7)
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@
icm
We have [R()

{15.8) ot >0, 3, <0,n=2,3,..., 2&:0,

Tttt < 0.

We shall estimate using (15.6). In case ¢ = 4 and i > 6 we use

a{fo, 91—‘-) < a(fy, €)
In case i =2, 3,5 we have ¢ ¢, sinee
o(g) =_P0T1, 2, 4.

Furthermore in case ¢ = 2 we have '™ = g~ # g. So from (15.3), (15.6)
and (15.7) '

= Ld(fo, 9) +4d(fy, 6) +1; (d(fn: g)—0.0l) “+

Htatt) Ay 0+ 34, o
7
= (g +ta -+t 1) (d(for g)—a{fy, 3)) _0-01tz

S

[
5 ) > 10732,

= —0.011{; = 001 xz(l—w—

inee <<1/2. m
At last I propose one more problem: to find a proof of the half lenght.
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