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Introduection. In his paper [2], Selberg gives a procedure for caleu-
lating the optimal value of the parameter §(k) which arises in the combi-
natorial sieve of Barkley Rosser. The procedure works when 2k is a posi-
tive integer; when 2k is odd Selberg shows that g(k) iz algebraic, and
remarks that 8(1) and £(2) are also algebraic. In this note I prove that (k)
is algebraic for all positive integers k.

For the sake of brevity I have extracted from [2] only the infor-
mation neeessary for this purpose: for more details see [2], and Halberstam
and Richert [1].

Rogser’s method leads to a differential difference equatlon which
may be solved by Laplace transforms. The transform K(z) is regular
at 2 =0, and satisfies the ordinary differential equation
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“and ¢, i8 a constant which can be determined from the boundary behav-

iour, once 8 = B(k) i known. For our purpose, its value is immatberial.
To determine 3, we differentiate (1) » times for each », 0 <Ly < 2k —1,
and put # = 0; this is valid since K is regular at z = 0. This gives the

system of simultancons eguations
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and we notice that the terms involving K**~1(0) cancel in the laste quation.
We may eliminate the unknowns K®(0), 0<{v<{2k—2 from these
equations, arriving at a linear relation, with constant factor ¢, between
the numbers U$(0), 0 < » < 25—1. This gives an equation for f. -

Selberg’s description of the procedure, which immediately follows
ed. 5.7 in [1] is slightly different since he differentiates 2% times. The
reason for this is not clear to me.

Next, we earry out the elimination. Multiply (3) by A{») and add
(where the numbers A(0), 4(1),..., A(2k-—1) are to be determined).
Weget
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We select any non-zero value for 4 (2k—1), and determine the re-
maining 4’s from the equations '

2k~1
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This gives
2k—1 2R—1 2k—1
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8= Fm=g
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- ;0 A(v)g; (—1) (ﬁ) Te-1(0) = 0

I view of {4) and (5). If we choose 4(2k—1) =1, the numbers 4 (»)
are rational functions of %, over Q. Moreover, if % is an integer, U®(0)
I8 a rational function of 8 over @ except in the case s = k1 when it

involves logarithms. However, the term involving U§~(0) drops out

of (6}, so that (k) is algebraie for all positive integers k.
I am very gratefu! to the referee for pointing out that S(k)—1 is
in- I”_aci: the largest real positive root of the polynomial
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This is useful for computing # since the coefficients 4(s) ean readily be
found from (5). Notice the g(2) is the unique monic polynomial such that

(8) {29(2)Y = k{g(z) +g{z+1)}.
Now we prove that g(f—1) = 0. From (6), we have
2%—-1 ¥
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by the definition {2) of ¥,{2). Writing this in terms of g, we obtain
B+1
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using (8). This completes the proof. Finally, I have computed g for
k =2, 2.5, 3. The polynomials are

28— B2® 4 92 —8/3,

A 10251 307 85 55
i T T

& —152*+ Th2® — 1452 + 902 — 18 /5.

When k = 5/2, this agrees with Selberg’s calculation. I find that 8(2)
= 4.833 ... and f(3) = 7.919...; my value of 5(2) is slightly larger than
Selberg’s.
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