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Here using § = $—a—+o0(1), we get with some.computation that for
0 e i+o(l) '

(2.26) G =6(a, p) = Fla) > 6(0) =———>—o(1),

which proves Lemmzu :
Thus we have fmm formulae (2.2), (2.15), (2.11), (2.12) and (2.16)
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The factorization of Q(L(a), ..., L(wy)
over a finite field where Q= ..., )
is of first degree and L{z) is linear

by
L. Carrrrz (Durham, N. C.) and A. ¥. LoN@, Jr. (Greensboro, N. C.)

1. Introduction. Let GF(q) denote the finite field of order g = p"
where p is prime and n = 1. Let I'{p) denote the algebraic closure of
GF({p). A polynomial QeGIP{g; @y, ..., @] Is absolulely irreducible if Q
has no nontrivial factors over I'(p). Throughout this paper, the ferm
irreducible will mean absolutely irreducible.

A polynomial with coefficients in GF{g) of the form

r +
"
- E et

]
is called a linear polynomial. The requirement; that the coefficients be
in GF(q) insures that the operation of mapping composition for linear
polynomials is commutative. Corresponding to the linear polynomial
L(%) we have the ordinary polynomial

= 2 ;5"
=0 _
We shall agsume in the following that ¢, = 0; this aveids multiple factors
in L(x) and insures that there is a smallest integer r such that I{z) divides
¢"—1. We say that [{x) has eaponent r.

Let Q(2y,..., %) = gg@y-+ ... + a2, +1 where [flegal, ey degag]
= s (if aeGF(g®) but a¢GF(¢), 1 <t < s, we say that the degree of a rela-
tive 10 GT(g) 18 s and write dega = 5). We shall assume that {a;, ..., &}
are linearly independent over GF(g); otherwise @(®y, ..., %) can be
reduced at once to a polynomial in m variables by suitable first degree
transformations, where m is the number of elements in & maximal linearly
independent subset of a1, ..., 0. :

In this paper we descrlbe the factorization of Q(L(ml ,L(a:k)).
{We note that it is possible to have Q(L(w,), ..., L(w)) reduce to-& poly-

nomial in fewer than k variables even though {a,, ..., a;} are linearly
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independent over GF(g); see Example 5. 1.) I sfv, we shall show thas
Q( {21), - L(mk)) is absolutely irreducible. If sjr, the character of the
factorizatlon depends on L (). For L{w) = 2% — &, we obtain factors of degree
one, for L(x) = a¢*+a7*+ ... +& we obtain absolutely irreducible
- factors of degree ¢*~l, and for arbitrary L(a) we obtain absolutely irre-
ducible factors of degree ¢"*** where u and j are determined by L(a).
For the precise statement of this result, see Theorem 5.1, For conveni-
ence in Sections 3 and 4, we ghall describe the factorization for @(w, y)
= aw+by+1 and then indicate how the results may be extended to
more than two variables.
The results for the homogenous case

Q@yy ooy Bg) = Gy co 0

are similar. :

The factorizations considered in this paper ate motivated by the
multiple variable factorizations for L(w) = 27 —@ obtained by Long in
[2] and [3] and the single variable results for arbitrary L(x) obtained
by Liong and Vaughan in [4] and [5]. It is inferesting to note that the case
str behaves like a result of FEhrenfeucht and Pelczyniski [1]: The poly-
nomial f{@) - g(y) + k(2) is absolutely irreducible over the complex number
field for any polynomials f, g and k. Flowever in the case of finite fields,
f(@) g +h(z) may indeed factor when s|r.

2. Preliminaries :

Lemma 2.1, Let ® = (@, @sy ..., &), that is let & dencle o 'vector wﬂh
COMPONLTES Byy o0y By Lot Flo) e GF [g, w] For any integer j =1, yi" +flm®
is absolutely irredumble if and only if f(x) is not a p-th power in any ea;te%
sion of GF(q). '

Remark. ¥ j =0, y+f(®) is obwously an abbolutely 1rledu01ble
first degree polynomiad.

Proof. To show mecessity, let f(=x)
for j =1, we }}ave

= [a(x}]? in GF[g,]. Then

y* +f(®) = [y»*} -+ a ()17

The proof of sufficiency will be by induction on j. Let j = 1. I f(=)
is not a pth power, then any factorization of 4®--f() in some extension
field of GF(g) would be of the form

YeHflE) = oly, )y (y, ®)

- where ¢ is an absolute irreducible and  is either irredneible or a product
of irreducibles. If the factorization is nontrivial, ¥ actually appears in ¢
and . We consider separately the two cases.(p, y} =1 and (p, ) = 1.

(2.1)

icm
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(2.8)

- (2.9)
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Case L (¢, w) = 1. On differentiating (2.1} with respect to ¥ we have

(2.2) PPy Py = 0.

Now (2.2) implies that glyp,. Since (¢, 9) =1 we have glg,, which is
impossible nnless ¢, = 0. Similarly ¢, = 0. But @, = 0 implies ¢ = o, (47, 2)
with y* actually appearing. Similarly v, = 0 implies ¢ = v, (4*, ®) with y?
actnally appearing. Consequently the product gy contains a term with ¢
and this clearly contradiets the choice of g and #in (2.1).

Case II. (¢, ») 1. We may assume the factorization in the form
¥ +f(@) = oF(y, %)

where ¢ is absolutely irreducible over GF(g) and % is an integer > 1.
(It 42 -+ f(x) = ¢"yp with (¢ y) = 1, we may apply the argument of Case L.}

If & = 0 (mod p), then y?+f(x) is a pth power and this contradicts
the hypotheses on f{w) since this would imply f(=) is a pth power. Thus
% = 0 {mod p). On differentiating (2.3) we have '

(2.3)

(24) Tt lp, = 0.

Since % s 0 (mod p), and ¢*' £ 0, we have g, = 0. Hence p(y,w)
= 1 (37, ) &nd

(2.5) y*+flx) = eily®, @)

where ¥® actually appears in p,. In order that the degree of  in both mem-
bers of (2.5) be p, we must have k& = 1. Thus ¥4 f(x) is absolutely irre-
ducible over GF(g).

Agsume that the lemma is frue for j = v—1.

- Case L {p, 9} =1. For j =, we have as before
oy fl) = euy”,
Let z = 4” so that (2.6) becomes
(2.7) | 7 L f ()

By the induction hypothesis 27
dueible over GF(g).

Case IL (p, 9) = 1. For § = r we have .

(2.8) x)p(y*, a).
= g1 (2, ) p: (2, ).
guu fl®) = yf’r-kf(m) is absohitely irre~

7+ flw) = ¢ (y7, @)
Again set 2 =P and (2.8) becomes
2" f (@)

which ig-absolutely irreduecible by the induetion hypothesis.

= ‘P;ﬂ(z; x)

7 - Acta Arithmetica XXXIT4
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Lignma 2.2. Let B belong to I'(p). Then a¥ a1+ § is never a p-th power,

Proof. The derivative of @ %+ § with respect to @ is 1; the de-
rivative of a pth power is 0. Hence mqr+m+ﬁ is not a pth power.

Leans 2.3. Let f(o) be a polynomial with coefficients in GF(g®), and
let G(w) be o linear polynomial of degree ¢ with coefficients in GF(g). Iy
Jl@e) =f(z) for all ¢ such that G(c) = 0 then f(@) = ¢ (G(w)) where ¢
18 a polynomial over GF(¢5).

Proof. Using the division algorithm we may write

flo) = X A0 @ (x)

i=0

= f(a@), (2.10) hecomes

(2.10) (deg 4;(w) < ¢’).

Since f(a#+¢)

k&
fley = Y Ao+ 0@ (@)
{e=lf
Bince Gz-+¢) = G{x) it follows that

%
fl@) = Y Ay@+0)6(a).

=0
Since the eoefficients in (2.10) are uniquely determined we have
Ag(w+c) = Ay(a)
for all ¢ such that G(e) = 0. Since deg.d,;(») < ¢’ and degG @) = ¢, we
immediately conclude that A,() is a constant.

Limvwa 2.4, Let f(ay, ..., @) be a polynomml with coefficients in GF(q”)
and let G{x) be a linear polynomml of degree ¢ with coefficients in GF(q).
If f(ml—.-cl, v Bty =f(@y, .., @) for all o such that G(g) =0,
i=1,..., % then

_ flag, .. .y By) = ‘P.(G’(wl): ceey G(mk))
where ¢ iz a polynomial over GF(g").
Proof. Use Lemma 2.3 and induetio_n on k.

LevwaA 2.5, ILet
floy, ...

) W) = H Y(@rbegy o, Btgp)
€1snestp

where the product is over all ¢;, 1 <4

<k, such that G(¢;) = 0, p is a poly-
nomial over GF (¢,

and G(as) ts o linsar polynomial over GF(q). Then
Slog, .. mk.) = ?(G(ml)’ (mk))
where pis @ polynomial over GF ().

icm
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Proof. This is an immediate corollary of Lemma 2.4,

Lievma 2.6, Let " —1 = l{2)m(z). Let L(z), M (x) be the linear poly-
nomials  corresponding to 1(z), m(w) respectively. If @ (Z(=z), L(y))
= F(®, y)G(z, y), then

Q@7 —z, y" —y) = F(M(x), M(3 (1)) G (I ()

Proof. Since ¥ —a = L(M()}, we have
QU —a, 9" —y) = QL{M (@), L(M () = F (M (w), M ()¢ (3 (), M(y).

Note that Lemma 2.6 can be immediately generalized to more than
two variables. The lemma is of course also true for one variable.

Lavma 2.7, Let G(#) be an arbitrary lmem polyawmml in GF[q; «].
Let

s M(y)).

__P(ml, + g (@ + o) -+ ]

v#) =[] ledorted+ ...

Cisanry OF

where a;, 0 <0<k, are coefficients from GF{¢) and the product s over
all ¢;, 1< i<k, such that Ge)) = 0. For a given Etuple (eq, ..., 0) of
rools of G(#), define the class Cley, ..., o] 0s fol-lows:

OLosy vy 0] = {(yy vy )] G(AY = 0, 1< i < By and ag (g dg) +
« oot dg) +ay = “1(03LT01)+ e Gy 0y) “f“%}-

These classes partition the k-tuples of roots of G (%) and each class has the

. same cardinality.

Proof. If Cley, ...
it follows that

y 6] and Cfel, ..., ¢;] have a E-tuple in common,

o g () .

¢;] and conversely. Hence

(T )+ @ = ay (@ -+ ) -
¢)<Cler, -,
G[G.‘La ey O] = G[G;.: Tery G;c]

Let 0, = C[0,..., 0]. Then (¢, ..., 0) ey if and only if a,e;+ ...
e e = 0. Let ¢ = C[dy, ..., d;] denote an arbitrary elass. For
each (61, ..., ¢5)eCy, we have

Cag{di e+ Fagldytey) = ardy

Thus (d;+6yy ..., dy+e)eCy. Hence |01 = |C,|. On the other hand if
(dy, ..., d)e0,, we have (dj—d,,..., dy—d)eCy. Thus (di,...,ds) =
= (dy+01y ..., dy+¢) for some (¢y,...,6)e0,. Hence |G| <|0,. We

ay (@ )+ .

Thus (¢, ...,

+ aypdy,.

-conclude that [C,] = [Tl

Lrmma 2.8, Let G(x) be alinear polynomial over GI'(q) having degree ¢°. '
Let h{my, ..., %) = 601+ ... ;@GR [ 0y, ..., @] Then the set of
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sotutions {(6y, ..., e} of h(®y, ..., @) = O such that Gle) = 0,4 =1, ..., k,
has cardinality g* where u is an integer = 0. _
Proof. Let W be the vector space of solutions of G(w) = 0 over
GF(g). By renumbering if necessary, let 8 = {4y, ..., a,,} be a maximal
linearly independent subset of {a, ..., a;} over W. Thus for j =1, ..., k,
we may write

"
,__.Zb a"i» (b,‘»jE W-).
i=1
Then
' k m  k
Zajcj = Z(Zbﬁcf)% =0
. F=1 =1 j=1
implies
' &
(2.11) Dby =0 (i=1,...,m)

by the linear independence of S.

Let V be the vector space of solutions of (2.11). Then {V] = g"for some
integer v = 0. The set of rolutions {(c,, ..., ¢,)} of (2.11) such that Gle) =0,
t=1,..., k ix the vector space W V. Since |[W| = ¢¥ and |V| = ¢,
we have |WN V| = ¢* for some integer u = 0.

3. The factorization of go(2% —2)+bw¥ —y)+1. Let Qxz, y)
vam-i—byﬁ—leGF[q”, 2] Let [dega, degh] =s. We also require that a
and & be linearly independent over GF(g); if not, @ (@, y) can be written
a8 @ polynomial €,(2) in the variable z = o+ ¢y for some ¢e(GI(g), and '
it is well known that the one-variable polynomial Ql(z'f—z) has firgt
degree factors over I'(p). If si#, we find that

(31) Qa”—a, 4% —y) = a(e¥ —m) L b(y7 —y)+1
= (aw+by)fl*-(m+by)+1 =[] (aa+by+2)

2

where the product extends over all 1 sat1~.fv1ng i1 =0, Thus we
have

TrworEM 3.1 {[2]). Let Q(, y) = an - by+1 where [dega, degh] ='s
relative to GF(g). If sir, then Q(a¥ —ao, y” —y) factors into first degree
fuctors over GI( r)

The proof for the homogeneous case iy the same except that the
product in (3.1) extends over all 1 such that 1€ — 1 = 0. We have:

THEORDM 3.2 {[3]). Let Q(m, y) = g+ by where degh = s relative to

g ). If slr, then Q(a7 —u, y¥ —y) factors indo Jirst degree factors over
Bl )-

where W .= aw+by, X = [f(a)] @, and ¥ =

The factorieation of Q{L(m), ..., L(ag)) 4313

We now show that if s{r and if ¢ and b are linearly independent
over GF(g), then Q(a¥ —u, ¥¥ —y) is absolutely irreducible of degree ¢'.
Since s47, at least one of {dega, degh} does not divide r. Consequently
we may write

(32) a = o¥ +f(a},
with at least one of {f(a), g(b

b =07 +¢(b)

)} non-zero. Thus

~) +b(y% —y) +1 = (aw+by)¥ —(az-+by) +1+f(a)z? +g(b)y?
=W/ ~W+41+ X4+ 37

[g(B) 1y

(8.3}  a(a?

Let T = X-+¥. Then (3.3) has the form
(3.4) T (W W),

By Lemma 2.2, W& —W 41 i3 not a pth power. Hence (3.4), and there-
fore (3.3), is absolutely irreducible by Lemma 2.1. We have proved:

TumoreM 3.3. Lel Qa,y) =av-+by+1 where [dega, degd] =5
relative to GF (g ) cmd a and b are linearly independent over GF(g). If sir,
then Q(a —m, 4% —1vy) is absolutely irreducible.

The proof for the homogeneous case is fhe pame exeept that, with
the same notation as before, we nse Lemmas 2.1 and 2.2 to show that
T+ (W7 —W) is absolutely irredncible.

We have: :

TEHEOREM 3:4. Let Q@ (2, y) = o+ by where degh = s relative to GF(g)
and 1 and b are linearly independent over GF (). If s{v, then Q (@7 —z, 47 —y)
ie absolutely irreducible.

We note that minor modifications in the proofs permit Theorems
3.1-3.4 to be extended to more than two variables.

Exampre 3.1. This example illustrates Theorem 3.1. Let Q{w, y)
= ag+ a?y 1 where a? = ¢+1 generates GF(4). Let L(w) = #*—uz.
Then s =2 and r = 2, so that sir. Let W = ax+ «®y. Then

.- 3
Qa*~a, ' —y) = W'+ W+1 = [[(W—§)
. =0 ‘
where B* = g+ 1 generates GF(16).
Exawmere 3.2. This example illustrates Theorem 3.3. Let Q &,y
= aw+a?y+1 where o = a+1 generates GTF(4). Let L(») =a2'- 2.
Then § = 2 and # = 3, so that s{r. Thus o

Q@' —a, ¥’ —y) = ar® + oy — o — fy +1

- i8 absolutely irreducible.
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4. The factorization of a{L(x))+d{L(y)}+1 where I(z)=a? "4
—f—mgr_g-}— ... +a. This substitution is of special interest since T(®) is the
trace function of GF{g"} over GI'{g). We note that the exponent of the
corresponding ordinary polynomial I(z) is either » or r—1. The value
r—1 oceurs only when p =2 and r =25 in this ease Lig) = 2%—5
and the factovization is described in Section 3. Consequently we shall
exclude the case p =r = 2, so that the exponent of I(z) is r through-
out this seection.

TeroREM 4.1. Let Qz, ) = cw - by+1 where ' [dega, degh] =g
relaiive to GF(q) and a and b are lincarly independent relative to GT{g).
Let .

L) =a® a7+ . .
Let the corresponding ovdinary polynomial l{a) = o™+ o™+ ...
exponent v. If stv, then Q(L{x), L{y)) is absolutely irreducible.
Proof. Suppose -tha.tQ(L(m), L(y)} = F(e,y)G (2, ¥). Then by Lemma

+1 have

2.6, :
Q@ 2, y¥ —y) = Plo®—a, y"—y)G(a"—, y'—y).

This factorization is in eontradiction to Theorem 3.3 since s17v.

Remark. The condition of linear independence over GF(q) for o
and b rules out the possibility of using a ehange of variable to fransform
@(L(z), L{y)) to a polynomial in one variable when L(s) is the trace
funetion of GF(¢") over GTF (g).

The proot of Theorem 4.1 also ajpphes to the case where Q{a,y)
is homogenous, We have:

THEOREM 41.2. LetBQ( y¥) = o+ by where degh = s relative to GF{g).
Let L(z) = o +a? "k ... -+ Let the corresponding ordinary polynomial
Ho) =o'+ o+ ... +1 have ewponent r. If str, then Q(L{z), L(y))
8 absolutely drreducible.

TaeoREM 4.3. Let Q (2,
If sir, then Q{L(x),

ree g in @ and y. 7
' Proof. Let X =a?—g and ¥ — y?—y. Then, as in (3.1},

(1) QIIT), L(Y)) = Q(af =[] (w0 +-by-2)

A

¥), L{w), (%), s and r be given as in Theorem 4.1.
L{y)) s the produet of ¢"* absolute irreducibles of deg-

—a,y" —y)

where the product exfends over all i satisfying A7 — 141 = 0.

" Consider & fixed factor aw+by -+ 4, of {4£.1). Let ¢ and 4 independently
satisfy the equation #7—a = 0, that is ¢ and belong to GF(q). Since
and b are linearly mdependent the factors ‘

(4.2) al@+e)+bly+d)-+2, (¢, deGF(g)

icm
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are all distinet. Furthermore they are all factors of Q (L{X), L(Y) )). Wenow
form the product of the factors (4.2) and obtain the polynemial Plw, y)
of degree ¢% in & and ¥:

(4.3) Plw,y) = [afe+0) + by +d) + 4,].

a,deGF{a}
By Lemma 2.5
Pla,y) = Pie’—a, y"—y) = P(X, ¥,

and P, (X, ¥) is & polynomial of degree ¢ in X and Y.

We now show that P (X, X) is absolutely irreducible. Tf not, there
exists a nontrivial absolutely irreducible factor of Py (X, ¥), callit R(X, Y).
Replacing X by &% 5, and ¥ by y?—y, it is clear that R(a7—z, y7— )]
|Py(%?—a, y?—y); this implies that R is a produnct of some of the firgt
degree factors (4.2). If we suppose that one first degree factor divides R,
then it follows that all p* factors in (4.2) divide R. Hence R(X, ¥) is
identical with P,(X, ¥).

‘Thus the factors of (4.1) are grouped mto g"~* products of the form
P(x, y) in (4.3). Bach P(z, y) has degree ¢®in # and ¥ and can be written
as an abgolute irreducible of degree g in X and ¥.

. The same proof applies in the case where @(z,
We have:

THROREM 4.4. Let Q(x, ¥), Lz}, L{a), s and » De given as in Theorem 4.2.
If slr, then (L(m), L (1)) is the product of ¢ absolute irreducibles of degree g
m o and y. . ‘

Theorems 4.1 and 4.2 can be extended without modification to more
than two wvariables. Theorems 4.3 and 4.4 requmire a slight change. We
state only the theorem corresponding to Theorem 4.3; the homogeneous
case is essentially the same.

THEOREM 4.5, Let Q{wy, ..., &) = ay@, + ... -+ age, + 1 where {dega,, ...

.y degay] == 5 relative to GF(g) and {ay, ..., a,} are linearly independeni .
relative to GF(q). Let
L@ =27 " e T L ta.

Let Uz) = 4™ Fa" %4 ... -1 have emponent v. If sir, then Q(L(ml),

oy D)) 18 the product of ¢~ absolute irredusibles of degree F inmy, ..., 4.

Proof. We first note that the condition of linear independence

on {a;,..., a;} insures that s>k and hence ¥ = & For if we consider

GF(¢*) as a vector space of dimension ¢ over GF(q), a maximal linearly
independent set of elements in GF(g°) has cardinality s.

The procrf ir the same as that for Theorem 4.3 except that (4.1) beconzes

7--_':L(Xk)) **n (o2, ..

»

7) is hoemogeneous.

(4.4) QLX) .+ 11
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where the product is over all A such that 1% —4+1 = 0. Thus (4 3)
becomes

('15) "P(mlﬂ LRRS] ‘T’k) = [al(ml+cl) T+ +a’k($k+cic)+ﬂ']
01,.. CEGF(g)
=Py (X, .. Ay
where X, = af -p, for 1<i<k As before, it can be shown that
Py(X,, ..., X;) 15 absolutely irreducible of degree ¢*~' in its variables,

—* guch absolute irre-

and the factorq of (4.4) are partltloned to form ¢
dueibles.

In the preceding theorems we have assumed that the coefficients
of the variables are linearly independent relative to G (g). We now de-
seribe what oceurs if this is not the case. We illustrate with the general-
ization of Theorem 4.5 where slr and we also describe the case when sfr,

THEOREM 4.6. Let Q(@y,...,d,) = @@, 4. .. + a8, + 1 and, by renumber-
ing if necessary, let {a,, ..., a,} be & mavimal lincarly independent subset of
{a1, ..., &} velative to GF(qg). Let Lix) and 1{x) be given as in Theorem 4.5.
If sir, then Q{L(xy), ..., L(mk)) is the product of ¢~ absolule irreducibles
of degree g™ in &y, ..., 2. ' :

Proof. By writing the coefficients .., ..., @, as linear combi-
nations of {a, ..., a,} over GF(g), we may use first degree transformations
of the variables @, ..., @, to rewrite @ in the form @ (¥, ..., ¥,) = @1y, + ...

o Yy 4 1. The result follows from Theorem 4.5 since {a,, ..., a,}
are linearly. independent over GF( ) and Q(L(yy), -.., Llun)) = Q(L{wy),
L(mk)) ' '

TeroreM 4.7. Let the hypotheses of Theovem 4.6 be sabisfied. If str,
Q{L(ay), ..., L{wy)) is absolutely irveducible unless all the. ratios ol
1<j<k are in GF(g). In ihal case Q(L(wl}, ...,L(mk)) i8 the product
of first degree factors.

Proof. As in the proof of Theorem 4.6, we have a polynomial
Q(L( s L(mk)) which may reduce to an  m-variable polynomial.
Now m —1 1f andonlyif a;/a; belongs to GF(g) for 1<j<< k. If m>1,
Q(L(ml) vony Lmy,) ) is absolutely irreducible by Theorem 4.1 or its gen-
eralization, If m =1, {irst degree factorization is always possible.

- Exawpre 4.1, This example illustrates Theorem 4.1. Let §(w,y)
= a@-+a?y+1 where a* = o1 generates GF(4). Let L(w) = o*+o° + 2.
Then s = 2; » = 3 and st%. Thus

Qe+ 2+, P+t +y) = art 4 a2yt oo+ o'yt b o+ Py o+ 1
is absolutely irreduecible.

BXAMPLE 4.2. This emmple illustrates Theorem 4.3. Let Q(m )
=an+a?y-+1 Where a* = a-+1 generates GF(4). Let L(x) = o®+a*+

%
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+a*+®. Then § = 2, r =4 and s|i. Let W = ap+- a2y and £ = @2+ 92
Then if f* = f-1 generates GF(16), we have

(4.6)  Q(L(a), Liy)) = (Z+W‘1+W)4+(Z+WZ+W)-L
— ] —H[a 7 — )+ (3"

it
i=0

qm=
Tach factor in (4.6) 15 absolutely irreducible, and thus Q(L(z), L(y)}
is the prodnct of 4 absolute irreducibles of degree 2.
Exavere 4.3. This example illustrates Theorem 4.3. Let Q(z,y)
= @44y +1 where 13 = A+2 generates GF(3%). Let L(z) = ¢°+2°+ =
Then s = 3, + =3 and sjr. Let Z = 2¢®+4*+ 24z 2.

= []1z +(23"] = {Z+2A][z+2z+i][z+2/1+21

=0

—y 1

) Q{L{=x), L(y)

where each factor in the right member of (4.7) is absolutely irreducible
of degree 3.

Exawerm 4.4. This example illustrates Theorem 4.6. Let @(w,y, 2)
= @4 ay -+ a?2+1 where a* = o1 generates GIN(3%). Let L{») = a®+2.
Then § = =2 and s|r. Now if we let w = ¢-z and » = g%, we have

Qa,y,#) = (@+a)Faly+e)+1 = wtaotl.

The coefficients of w and v are linearly independent over GF(3), so that
m = 2. Theorem 4.6 predicts 3° = 1 ahsolute irreducible of degree 3' = 3.
We have

QL (@), L(y), L(z)] = Q{L(w), L(v))

an absolute irreducible of degree 3.

= Wi+ w+ a(v®+0}+1,

5. The factorization of a, L(#)+ ... +apL(x)+1 where L(z) is

an arbitrary linear polynomial

THEOREM 5.1. et Q (#y, ...y &) = 048+ ... + 0,41 where [degay, ...
oo, degayl = s over GF(q) and {a, ..., ay} are linearly independent over
GF(q). Let L(x)eGF g, @] be o lincar polynomial with corresponding ordi-
nary  polynomial 1(x) = by+by @+ ... b 0 <o <... < e, belong-
ing 1o the ewponent r. Let g(z) be defiﬂed by Hm)gl{a) = o _—1 and suppose
that g (@) has degree j. Let G(w) be the linear polynomial corresponding to g{w).
Let ¢* be the number of solutions {¢;, ..., 4} of i

(8.1) a0+ o g, =0

where Gle) =0, 1<i< k.
If str, then Q(L(ml), .
sle;, 1 <<a <, then Q{L(w,), ...,

. L(wy)) 4s absolutely irreducible. If sl and
L)) is the product of first degree faciors
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over I'{p) {end H?(Zé’(‘d over G (g")). If s|r and s{e; for at least one 1, L < ¢ < 1,
then Q{L{wy), ..., Lim)) is tke product of 7" absolute irveducibles
of degree _qju"‘l)‘”.

Proof. ¥ s{r, the proat of Theorem 4.1 applies. Tf s|rand #le;, 1 < £ << 8,
then Q(L(m]), ...y Lia)) can be written ag a polynomial in one variable #
where z = a;#;+ ... +a,®,. We therefore have firgt degree factors over
I'{p). The factors actnally have coefficients in GF(¢") by Corollary 3.2
of [47.

Now assume that slr and sfe, for at least one 4, 1 <

QLG (), -, TG (=)

t =t Now
r r
= Q(ﬂ’:‘? =&y, ’@i _m/.:)

= H(a1m1+ vee Fage, 4+ A)
A

where the product extends over all 1 satisfying 19 —441 = 0.
For a fixed A, consider the product

(3.3)  Ploy.oo) = [] [mlote)+ . +alaota)+i]

ClavensCl

where (/{¢;) = 0. Binee the roots of G(#) are in GF(g"), it follows that
the factors of (5.3) occur in (5.2). Although {a,, ..., a;} are linearly inde-
pendent over GF'(g), they may not be linearly independent over W, the
subspace generated by the roots of G{@). Thus there may be repeated
factors in (5.3). By Lerauma 2.7 and 2.8, each distinet factor appears with
the same eardinality ¢* where % > 0. By Lemma 2.5, we then have

(5.4) Play, ... ) Gl

where P,(@{=,),...,G(x,)) is absolutely irreducible of degree g¢/*=D-*,
The total number of such absoclute irredunecibles formed from the factors
of (5.2) is ¢"*** ginee (5.2) is of degree ¢ in the variables G{a), ...

oy Gay). (Note that each factor P (G—(ml) ...,G(m,c)) appears exactly
once in the factorization of (5 23)

COROLLARY 5.1. For the case sl and ste, for at least one i, 1 <4 <4,
of Theorem 5.1, if {a,,..., a;} are linewly independent over W, the vector
space of rools of G(x) =0, then Q(L{my), .
absolute irredueibles of degree ¢/,

Proof. Under the hypothesis of linear independence over W, (5.1)
has only the trivial solution (e, ..., ¢) = (0, ..:, 0). Consequently the
cardinality of the veetor space V of "\011111011\ of (5.1) is 1, and therefore
IWNV] = ¢" =1 (see Lemma 2.8). We conclude that % = 0.

Remark. In Theorems 4.1, 4.3, 4.5, and 4.6, G(@) = a?—2. Thus

the hypothesis of linear independence of the a.i over GF(g) in these the-
orems insures that » = - 0, '

y i) = |[P(G e, ...

oy Dlay)) is the product of ¢

icm
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In general, » is a function of #, 8, k, and the degree of linear depen-
dence of {ay, ..., @} over W. Thus it does not appear convenient to give’
an algorithm for ecomputing u. The following example shows that values
of # >0 can be obtained.

Examern b.1. Let 6 be a root of 2”21, an irreducible of degree 9
over GF(2), so that & generates GF(2%). Let § be a root of a®+a--1,
an irreducible of degree 3 over GF(2); S generates GF (2%, Let Q(xy; 5,)
= Om,+ B0z, +1. Let L(w) = @ oL with corresponding ordinary
polynomial {(#) = a*+a®+1. Mere k =2, r =9, glz) =a%—1, j =3,
and G (w) = g% —p. Since s = fleg?, degfff] = 9, we have sir. But s
does not divide ¢, = 6 and e, = 3. The vector space W of roots of G{z)
is GI(8). Bince Ocy -+ Bley == 0 implies ¢, = —fe,, each element ¢, of
GF({8) determines 2 ¢;<GF(8). Hence ¢, -ffc, =0 has 2% golutions
{(e,, €y)} where ¢, and ¢, are roots of G{#) = 0. We have u =3 and
Q(L{ay), L(m,)) | factors into g = 98 ahgolute irreducibles of degree
qj(k—l)—u = 1, )

We observe that the polynomial can be written

Q(L(ml}}

where X = @, - f2,. Since {5.5) is a polynomial in the single variable X
it is the product of (absolutely irreducible) first degree factors i
and #,.

1]

(5.5) D)) = 6X* 4+ 037 0X +1

loroLLARY 5.2. If Liw w‘z"“l—;—geﬂr "2+ . +x¥+ 2 has correspon-
ding ordinary polynomial I(a ) with egponent v in Theorem 3.1 and slr, then
Q(L(®y), ..., L(wy)} is the product of g% absolute irreducibles of degree g

Remark. Note that Corollary 5.2 is the same as Theorem £.5.

Proof. Since G(z) = #?— », the coefiicients ay, ..., a; of @@y, ..., &)
are linearly independent over W, the vector space of roots of G(z) =0,
by the hypothesis that {a,, ..., a,} are linearly independent over GF(g),
If s = 1, this hypothesis insures that & =1 and we have ¢ =1 first degree.
factors’ of Q(L(@,), ... L@} .

Tfs > 1, then s{el = 1 since the term #7 appears lnL{ 1. Congequently
Corollar v 5.1 is satistied with § =1, and we hive g —* ahsolute irreducibles
of degree g**.
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