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1. Introduction. A second order linear recurrence is a sequence
Gy, @y, ... Of rational integers satisfying a relation

(1) “n+z = Man+l “‘*Na’m 7 ? 0; Eaﬂ1 ‘f“ MLI # 0

where M and & are fixed rational integers.

The problem dealt with in this paper is that of bounding the number
m(d) of times a given integer d can cceur in a second order linear recurrence.
We define the multiplicity of the recurrence (1) to be the supremum of
the m{d) as d ranges through the integers. It may be that the multi-
plicity is infinite; for example, the recurrence

Oppo = Oppy—ly, =0, a =1
consists of repetitions of the segment
0,1,1,0, —1, —1

and so m{0) =m(l) = m{—1) = oo.

If we define a recurrence to be dégenerate when af least one of the
roobs or the ratio of the roots of the companion equation # —Mz+N
= 01is & root of unity, then we see that our example is a degenerate se-
quence, If a second order linear vecurrence is mnon-degenerate, then it
hag long been known that m(d) is finite [123.

In the thirties Morgan Ward conjectured that a non—den‘enemte
second. order linear recurrence has multiplicity no larger than five. This
conjecture is proved in this paper. In addition, it will be shown that in
the special case where the recurrence (1) has coefficients satisfying (2, X)
=1, the multiplieity is either infinite or bounded above by four. With
the same hypothesis, if the recurrence is a Lucas sequence of the first
kind (see (2) below) then it will be shown that the multiplicity is either
infinite or bounded above by three unless it is the exceptional sequence:

Uppp= —Upn—2U,, Uy = 0, Uy=1
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in which —1 ocears exactly four fimes and ne other integer occurs so
often. Finally, an analogue for Lucas sequences of the second kind ((3)
below) will be stated without proof.

These resulty will be proved by Skolem's p-adic method. After recall-
ing earlier results and establishing some preliminary lemmas in Sec-
tion 2, the p-adie argument will be given in Section 3. This argument
is essentfially the same as that given by R. Laxton [7] and D. J. Lewis {10].
Alzo in Bection 3, an idea used by R. Apéry [2]is emploved to show how
the p-adic method applies to prime divisors p of the terms of the Lucas
sequenee {U,}. This is a generalization of Theorem 1 of [1], In Section 4,
the case when (M, ¥) =1 is treated, and the proof of Ward’s conjec-
ture is completed in Section 5.

The amthor wishes to thanlk Professor D. J. Lewis through whom
he originally learned of the conjecture and without whose encourage-
ment, this paper never would have been written.

2. Formulae, earlier results, and prelininary lemmas. The first
systematic investigation of Hnear recurrences was done by E. Lucas in
volume one of the American Journal in 1878. He was interested in Lucas
sequences of the first kind '

(2) Uppo = MU, ,—NT,, TU,=0, U, =1
and of the second kind
(3) Vo =MV, —NV,, TV,=2, V,=M.

These sequences are often expressed in the form

g g
4 UV =
® S

where f; and j, are the roots of the companion polynomial

Vn = ﬁ?"’"ﬁ?

() ' 2 —Mao+ N = 0.

To obtain a formula for the recurrence (1), note that since g, satisfies
(5), we have f1+° = M — Np?; and so any linear combination {4,57%-+
+ A, fz} also satisfies this recurrence relation. In particular, with ¢ = 24, —
—May and D = M*— 4N,

c—f—aol/ﬁ c—anl/r."ﬁ ﬁ"
2VD wp

satisfies (1) and it is ea.Sy to check that the sequence indeed begins
with a, and a,. '

® 4y = B

icm

On a conjeciure of Morgan Ward, I 13

The relation between Lueas sequences of the first kind (2) and general
Sgcond order recurrences (1):

(7) By = Ul —NU 06, mz=1l, nz0
is easily seen by induetion. In particular,
{3) : _ B = Uyt —NU,_16,.
If > 0 and 7> 0, then the subsequence {a.,;} is a second order
recurrence. Indeed the recurrence relation :
{9) efnt2)+i ™ Vr“r(n+1)+i—Nram+i

where V, is given by (3) and (4) is a straightforward consequence of for-
mula (6). : . ‘
Another expression for a, can be obtained by expanding

]

via the binomial theorem and substituting the result into (6). This yields

M\ + DA
o w=(5) Xl cten) ()

i=0

To obtain an analogous formula for the sequence {d,,i., first nofe
that N = B;8, and D = (8, —B.)%; and so the discriminant of the com-
panion equation of the recurrence (9) is, in view of {4), just

DU = (B — i = (B + B —4fify = Ti—4N".

TFurther the quantity analogous to ¢ is 2a..;—V,a; and using (7, (4},
and M = p,+fa, 1t i3 easy to verify that 2_60,.4_;»-17,@,; == [0 Whe-rg
¢ = 2a,,;—Ma;. Comparing (1) and {9) we see then that the analogue
of (10) is

(11) A pi = (VTZ')HZ {

= pr

Ve 7 L£

Several results used in later sections will now be stated. For the most
part, the reader is referred to the original papers t_‘or proofs.

If p ix a rational prime and »* is an integer, we denote by v,{n), .the
number of times p divides n. Part (i) of the next theorem is due to Smiley -
[15] and the rest is proved in Chowla, Dunton, and Lewis [6].

TrEoREM A. Let {a,} be o non-degenerate second order linear recurrence
satisfying (1) with (g, a;) =1.
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(i} If M*—L¥ > 0, then the multiplicity of {a,} is at most three.

(ii) If for some prime p, one has 0 < 0, (M%) << v, (N), then the multi-
plicity of {a,} is at most 2.

(i) If M* 4N < 0 and there is o prime divisor p> 5 of M°—4N
which does ot divide M nor 2a, — ay M, then the saltiplicity of {a,} is bound-
ed above by p—1. ’

{iv} If M* —4N < 0 and there is a prime p > 5 which does not divide M
and such thei

V(20 — 0 M) = v, (M? —4N) > 0,
then the multiplicity of {a,} is bounded above by 2.
Although we are interested in proving results about linear recurrences
of rational integers, the proofs involve linear recurrences of quadratic

Integers. Therefore we define a Lehmer sequence to be a ReqUence gy, @y, ...
of algebraic integers which satisfies a relation ‘

{12) Gy = =MPq,  —Na,, nz0

where M and X are fived relatively prime mtionai integers and the sign
1s.const’ant. The sequence {T,} satisfying the same relation but starting
“jlt-h l’?’u =0 and U; = 1 is called the associated Lehmer sequence of the
first kind; the sequence {V,} satistying the same relation as does {a,}
but starting with V; = 2 and V; = -V M is called the associated Tehmer
sequence of the second kind. The verification of the analogues of (4), (7}, (8),
and (9) are left to the reader. The proof of the next result parallels that
of the Lucas sequence analogue; zee D. H. Tehmer [8] and E. Lueas [11].
TreoreM B. (i) U, and V, are prime to N and (T, V1) =1, V3,
or 2.

gll) (U;U U':n) = iUEm,n)]' .

(iif) If for some prime p, we have || Uy, a > 0, and prk, then T
and if p* 2, then p"‘“[lU;mpz. e

(Iv) If p is an odd prime dividing neither M nor N, then p}U,, _ . where
: M M AN
= (—E—) and & = (_p—_) are Legendre symbols. If p is an odd prime
divisor of M, then p|U,,. :

Several lemmas on speeial kinds of sequences follow.

Lo 1. Let {V,} be a non-degenerate sequence defined by

Vipe = ZMV,  ~NV,, V=2, V) = 4k

where M > 0 and N are integers with M®—4AN < 0. Then the only case in
which . :

(Var=1, az0
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has more than one solution is when M = 1 and X = 2. In the exceplional
case, if the sign is positive, then the solutions ave n = 1, 4 with V; = V, = 1;
if the sign is negative, then the solutions are still n = 1,4 but Vi = — TV,
= —1.

Proof. This iz a censequence of the theorem in Chowla, Chowla,
Dunton, and Lewils [5]. For the reduction, see [1], Lemma 1.

In their solution of Ramanujan’s equation 2% =27, Nagell
[13] and Skolem, Chowla and Lewis [14] showed that the Lucas sequence

Uu-:-z = Un+1 _ZUM Uo =0, Uy =1

has multiplicity 3. The next lemma is a generalization of this fact and
was proved in Alter and Kubota [1]. A related result is proved by
Townes [17].

Lienmva 2. Any second order recurrence salisfying

Gppn = Oy —20,, M= 0.

is of multiplicity at most three; any recurrence satisfying

Cppy = — n+1—2a'm az0

is of multiplicity at most four. _
The proof of the next lemma can alzo be found in [11.
LiemmA 3. Let {a,} be a recurrence satisfying

_— —Na.
Opsp = Mayys —Nay,

with N # +1 and (8, a,) =1. Then if M =1, the solutions of a, = a,
with n = O all Ve in the same congruence dass modulo N. If M = —1 and
N £ 11, +3, then the solutions of a, = @, with n > 0 are all of the same
parity. _

Tienema 4. Let {a,} be & sccond order linear vecurrence satisfying

Gy = Moy, —No,, (g, a1) =1

and let @ = d,d, where (d,, M, N) =1, and the prime divisors of d, all lie
amongst those of (M, N). When 1t exists, let v be the least posilive integer
for which U, is & multiple of d, where {U,} is the Lucas sequence of the first
Lind which satisfies the same recurrence as does {m,}. Suppose dyla.Then
for every positive integer n, 4, is o multiple of d; if and only if 7 ewists and
divides . :

Prooi. There is a positive real number R, a real rumber M’, and an
integer N' such that R? is an integer, M = M'E, ¥ = N'E? and (M* N')
= 1. Let {{,} be the Lehmer sequence of the first kind defined by
U, =1.

Oppo = MUy —N'U,, U, =0,
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Then it is easy to verify that U, = U,R*. Now (d;, B? = 1, .and so
4,17, if and only if ¢,|U,,. By (8) and the assumption that d,}a,, we have
a, = &, U, (mod d,). Since also (ay, @;) = 1, dyla, is equivalent to d,|U,.
Finally by Theorem B {ii) and (iil), we have that » exists and divides %
if and only if U, is 2 multiple of d,. Combining results gives the assertion.

3. The p-adic argament. The next theorem is contained essentially
in. Laxton [7] and in Lewis [6], [10]. However, some refinements in the
arguments are needed; so for the convenience of the reader, it is repro-
duced here.

TumorEM 1. Let {a,} be a non-degenerate second order linear recurrence
sabisfying the relation (1} amd f., fi, be the voots of the companion poly-
nomiel (3). Suppose p 48 ¢ ralional prime which does wnot divide N and = is
a prime element in the completion of the ring of integers of Q(B;) at a prime
ideal p Tying over p. Let q be a positive futeger with

|+

ﬁgzﬂg&l(l}lOdﬂ:”),' x=[p%

where e is the mmszcmoﬂ index of p over p, and where g is chosen minimal
if p = 2. For any rational integer d, consider the equation

gty = a

where i is o fired infeger in the range 0 << i< g. Then this equafion has ai
most two solutions unless p = 3 and at Teast one of (7—1)/3 and (2 —1)/3
. 8 o z-adic unit; i the exceptional case it has no more than three solutions.
If pis odd, thm there is af most one value of i for which the equation has
more thar one solution. If p = 2 and if the equation has two solutions when
=1 and also when & =i, where 0 iy <iy<gq, then g = 2{iy —1y);
in particular, there are at most two values of @ for which the equation has two
solutions.

Proof. Note that even if p iz odd, there is no loss of generality in
assuming that g is the least positive integer with ff = f¢ = 1 (mod 2*).
Following the notation of Laxton [7], let ¢, = % = 1+v7% for § = i,2
where § 2> ». Since the §; are not roots of unity, we may assume § and Vs
chosen so that at least one of the y; is a m-adic nnit. Now 67 is defined
for every p-adic integer x, and logd; is a p-adie integer [3]. In fact, for
2 =1 and 2,

> 25T : 2 Z50r=2)
log 6, = § 17ty Vi (?s+n‘g g (=1 —— )
r=1 ' r=2 ' !

where the second term is & m-adic non-unit by the choice of 8. Tt follows
that for j = 1 and 2, [log 4l < I:s{f with equality holding for at least one
value of j. : '

icm
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By (6), there are conjngate quadratic numbers 4, and A, sueh that
&y = Alﬂ?'l_-d-zfgg}

and clearly 4,4, # 0. Suppese that for some § with 0 < i < Gy ey =4
has a least non-negative rational integer zolution #;. Then letting # = n;-L-y,

= "4-'1 i E | A —d
= @ (By oY+ By &) —d') = o 8¥h,(y)

augn+.,: —

where k = :min(ord Ays ordy Ay, ord,yd), d = 2, and A pFeT =Af B,
for j = 1, 2. Here % was chozen s0 That &’y Ba, and. B, are p-adic integers
not all c].nmlble by z. Further ord, B;; = ord A;—Fand ord, 4’ = ord,d—%
are independent of 4. )
Bxpanding ;(y) In p-adic power series and noting that h,(0) = 0,

we geb
F . N o 6 ’ P Y yr
Rly) = ; {Bﬂ(la T) —d' (log ; )}ﬂ _

rel 2

KNote that the coefficient €, of 4" has p-adic value at most

[ ], < Rl <1
since
e [ 7
ootort =[5 ]2 2 [5]
—(p—2
S
p—1 p1-1fp
- —oc ag r->o00 and iz > 0
p—1
and so R (y) has p-adic integer coefficients and cbnverges for all p-adie
integers g.

“e will apply Strassman’s Lemma [16] to the effeet that if k(y)

= 2 ¢y" is a non-identically zero power series with p-adic integer coef-
=0 '
ficients which converges for all p-adic integers y, then k has at most

M = max {r| ord,e, is minimal} p-adic zeros.

Let B = min(ord,(B,logé,[d,), ovd,(dlogs")). R is independent
of ¢ and is finite since &,/d, is not aroot of nnity and 4, # 0. Let 8" = § —
— 0y,¢ Where 'd,, is the Kroneéker §. Then by the expansion of R (y),

lGﬁ oy, 10, < 2B,

2 — Acta Arithmetica XXXIIT1
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and in general for r = 3,

e < S{r—1) 1.
[,y = 1{By (log 8,/8,) = (log 67}y < o0 il
— §HR+S b l_,.’;S(r—a)+§3_peif} < 15:R+S’E:p

for r> 4 since

e sy . ! _ er
S{r—2)+dy 6 —ery(rl) = ([“H] Tl) {r—2) - 88 ‘ ————P )
+1)¢ ~er —26—2
(e+1)(r—2) —er I =?—"—~—6-—+5gp6>0
= 1 P 7 —1

becanse e = 2. The same est'mate holds for r =3 mmless p = 3 and § =
= e {i.e. (% —1)/3 are p-adic units for j = 1 or 2) since -+ dy, e —evjp(6)v> 0.

By Strassman’s Lemina it follows that if k;{y) = 0 has two solutions,
then o}-d,, .= R+ 8. Suppose thiz occurs for two values of 4, say i zu.nd
j where 0 <4< j< g Written as congruences, the corresponding in-

equalities become

oy . ) , _ 5
A él';llra""log?l —d'log 871 = 0 (mod =7+,

2

- 8 ’
i é?JAlzz“klog?l —d'log 87% = 0 (mod =),
2

Since 8’ > 0, the definition of R and these congruences imply that all
three of the terms have p-adic order R. Bubtracting and dlwdmg ouf
Az 10g6 /85 vields

i n‘—ﬁj é’f" = 0 (mod =)

LT e D AT R s S N

and 50 ﬁ’ t=1 (modﬂfs) sinee 51 —:— 1 (mod =%). ’\Tow the Whole a,rgu-'

ment can be repeated with §; and g, interchanged to show that g~ =1
(mod &5.

If p iz odd, the factb that 0 < j—i< g and 8 = § give a contla-
diction with the choice of g; %0 at most one equation ¢,,,; = & has more
than one zolution. If p =2 and 5% =1 {mod =% for # =1,2, then

B0 = 1 (mod 7*) and 2¢ = x. Hence ¢[2{j—%) and 0 < 2{j—i) <2¢

and s0 g = 2(j —i). Finally, if p =2 and #{° =1 (wod =f) for £ =1
or 2, then sinee 8’ =8—e>=1, we bave ¢ =2, § =3, and a|fi-t—1
for m =1, 2; but then n*Fii- n_1 and 4> 8 imply 2¢g4(j—1i). Since
0<j—i< g, it follows that ¢ == 2(j—1i). The only possible value for g
is therefore ¢ = 2(j—i). Since there cannot be three values for 4, every
pair of which satisfy this equality, no more than 2 subsequences have
more than two occurrences of d. -
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We know that either ;, or y, is a p-adic unit; vo suppose that the
notation is chosen so that v, = 0 {mod =). Now the congruences ¢, =0
(raod 2%y and €, = 0 {mod =275+ cannot both hold true. For if they
did, then one would have

5 , -
x %R, log-é—l ~a B log 67" = 0 (mod =),

o

5 8 o
51 (:E“RB,-llog 6‘1) —7 5log 871 (=B d Tog 67%) = 0 (mod. ).

By the definition of R, this is a non-tyivial solution of a pair of linear
homogeneonus equations over the residne field at p. But the determinant
of the coefficients is

a
~a%log b + 5 5log—2 = a~Slog 5, = 0 (mod =)
which eontradicts Cramer's Rule. Combining this w ith- the estimates
on [C,], for 7 = 3, Strassmwan's Lemma gives the ascerted bounds on the
nuniber of occurrences of 4 in {ag,,;} for fixed 7. Thus Theorem 1 is proved.
The next two lemmas are corollaries to the theorem. :

Leavna 5. Let {a,} be a non-degenerate linear recurrénce satisfying
"’n+2 =2Ma,,, —Na,, n=0,

where M 0, M N < 0, and 24Nay. Then the multiplicity m(a,) of a,
28 ai most four. It ia no more ﬁmn three provided that 3 is even and N =1
(mod 4).

Proof. This iz Lemma 4 of Alter and Kubota [1]; note that a eompu-
tational error invalidates the proof of the claim made there that m(ay) <
in case M is odd, a, is even, and ¥ = 3 (mod 4).

LEMnis 6. Let {a,} be a sion-degenevate linear recurvence which satisfies
(1) with M and XN both odd. If ¥ =1 (med 4), {8} s of mulliplicity af
most three, and if N = 3 (mod 4}, then {a,} is of muitiplicity ai most five.

Proof. It is easy to verify that the roots g, #s of the companion
polynomial (5) satisfy gf =48 =1 (mod 4) and that if ¥ = M =1
(mod 4}, then 8 = f3 =1 (mod 4). Assuming (ay, a,) =1, one verifies
that {a,} (mod 4) looks like repetitions of fixed constant multiples of

1,2,81,0 it M= N =1(mod4),
'1,1,0,1,3,2 if M = ¥ =3 (mod 4},
1,1,0,3,3,0 or 1,3,2,3,1,2 if 3 = ¥ =1 (mod 4,
,1,20r 1,30 ¥  —# =% =1(mod 4).

The result now follows from Theorem 1 applied with p = 2.
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Theorem 1 gives bounds on the number of solutions of 4, = d in terms
of the least prime which does not divide . The first step in obtaining
a bound independent of the prime is given by the mnext theorem. Note
Lowever that the result requires that in addition te p+¥, one also has
p#d. The proof uses an idea of R. Apéry [2] which appeared in his treat-
ment of a generalized form of Ramanujan’s equation.

ToEOREM 2. Let {a,} be & non-degenerate second order linear vecurrence
satisfying the recurrence velation (1) with D = M*—4N < 0. Suppose p
is an odd prime. Let v be a positive integer such that p|U, where {U,} 18 the
Luecas sequence of the first kind which satisfies (2). Let s be the " multi-
plicative order of V,/2 (mod p) where {V,} is the Lucas sequence of the second
kind which satisfies (3). Let B, and B, be the roots of the eompanion poly-
nomiol (5) and = be & prime element in the completion of the ring of integers
of Q(f) = Q(f.) af some prime ideal p lying over p. Define

.5—1
=10

5= 1 if a6 a,is divisible by p,
0  otherwise.

if p=23and (fF—1)3 for i =1 or 2 is & m-adic unit,
otherwise.

Then, if p+ Nd, then with the possible exception of one vatue of i in the range
0L i< r, the equation

g = d

has at most one solution; the equation corresponding to the exceplional value
of i has af most 2 +¢ solutions. In particular, if p+Na, then

m{d) < r+d+e.

Remark. If psN, then it follows from Theorem B (iv) that fhere
is an r as in the statement of the theorem.

Proof. If a, = d has no solutions, there is nothing to prove. If there
is at least onme solution, we may assume without Ioss of generality that
@y = d. Since pj¥,, Theorem B (i) implies that pﬂ’ By (11), we have
since piU, that

V n
{13} Cppps = (T’) a; {mod p).

Since pra, and p+V,, we see that for each fixed 4, there is at most one
value of j; in the range 0 <j;<s for which ay ., =0d = @& {modp).
-Further every ocemrence of d in {a,,,;} must lie In {@e 1,44} -

Using {4), it is easy to verify that for each =,

L, B2 = Val2 (1P U2

icm
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In particular, 55 = V,/2 (mied p) and 57 =1 (med p) for k=1 and 2.

S0 Theorem 1 applies to tke fequence {#,,,.} which proves the first as-

sertion.

Suppose pla, for some m. Choose 4 with 0 <C 1 <  and m =14 (mod 7).
Then by the congruence (13), we see that since p+ T, we have pla, implying
plog. Since p+d, {¢,, ;) contains no occurrences of d. Hence at mostr —1 -6
of the sequences {a,,,;} contain occuriences of d. By the first assertion
of the theorem, we have therefore that

m{dy < (r—1+8+1+e=r+d4¢
which completes the proof of the theorem.

Remark. Tn a similar way, using (10), one can prove Theorem A (ii)
and (iv). '

4. The relatively prime case. In this seetion, Theorem 2 will be nsed
to treat linear recuriences catisfying (1) with (M, N) = 1. This case wap
studied in Alter and Kubota [1] wheve, in particular, it is shown that
non-degenerate second order linear recurrences with (M, ¥) =1 have
multiplicity at most five. In that paper, it was conjectured that five conld
be improved to four, and this is the case:

THEOEEM 3. Let {a,} be ¢ non-degencrate second order linear recurrence
satisfying

8nyy = HMa, ,—Na, with (M, N})=1.

Then {0,} has multiplicity af mosi four.

CoroLTARY. (i) If (M, N} = 1, then any second order linear recurrence
satisfying (1) has either infinile mﬂlhphcet’t/ o7 maﬂizphﬂty bounded above
by four.

(i1) The multiplicity of any Lehmer sequeice of fwst or second kind is
eilker nfinite or bounded above by four.

Proof of Corcllary. {I) If the recurrence is degenerate, then the
corollary follows by M. Ward’s characterization [18]of degenerate recur-
rences. The non-degenerate case is the theorem.

(ii) If the Lehmer sequence satisfies (12) and i M is a square, the
assertion is a special case of asseition (). If M is not a square, then [28
(vesp. V) is iriational if and only if n is even and n > 0 (resp. # i 0dd).
So one need only hound the multiplicities of {Unp /M, {TUgpin} {Vinh
and {Vi,,./M"}. Bub these are rational integer linear reeurrences, and
#o the first assertion applies.

Proof of Theorem 3.1. By Theorem A {i), it suffices to consider
4N < 0. Let d be an integer. We will show thab
m(d) < 4. Clearly we may astuvme without loss of generality that a, = a
and {ay, a,) = 1. Tf 4 = 0 and 4, = a,, = 0 for some m > 0, then a,, =0
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for all » = 0 by (9). But then {a,} is degenerate by Theorem 2. If 4 3£ 0,
apply Lemma 4 with d;, = d and d, = 1 to prove that every oceurrence
of d lies in a subsequence {a,,}, every term of-which is divizible by d.
Replacing {a,} with {«,,/d} we are reduced to the case where d = 1.

3. If Uy = M or Uy = M*— N iz divisible by a prime p >
m{l) < 4 by Theorem 2. If M iz even, then since (M, N} =1, we have
that ¥ is odd; so Lemma 5 implies that m (1) < 4. If A is a multinle of 3,
then Theorem 2 implies that m{l) <r -+ 5+e< 4 Thus we may assume
that ¥ = £1and M N = &/2°3* where 8,10 and & = 1. Solving
for ¥ vields N =1—¢2°3". Since M*—4N = —3+2°F237 <0, we
must have & = —1.

3. Suppose t>0; ‘then 3{U;=M'—N, N =1(mod3), and
M = +1{mod 3). If ¥ = 1 (mod 3), it is easy to check that the requence
considered modulo 3 congists of repetitions of segments all of which look
like one of the fellowing '

1,1,0, -1, —1,0 or 1, —1,1, —1,1, —1.

For the fivst kind of sequence, Theorem 2 applied with » = 3 shows that
m(1) < 4. For the second kind of sequence, we can replace {a,} with
{tty} OF {Gsppi}- By (9), we see that the new sequence. satisfies a
recurrence relation with coefficients M amd N satisfying M = —N
= —1{mod 3).

For any such recurrence, the sequence considered modulo 3 iooks
Like repstitions of one of the following segments

1,i,tor —1, —1, =1 or —1,1,0 or 1, —1,0.

Note that 0 = A —Mp,+¥ =41—26,+1(mod3), for 4 =1 and 2.
S0 8, = 1 (mod =) where = is as in the statement of Theorem 2 with p = 3.
But then § =1 (mod 3x) for 4 = 1, 2; so the parameter ¢ in Theorem 2

is zero. By that same theorem, it follows that m (1) < 4. Thus we are reduced

to the ecase where {.= 0.

4, If s =0, then M = £1and ¥ =2. 8o m(1)< 4 by Lemma 2.
¥ s=1, then M = 41, ¥N =3, and U, = M(M*>—2N) = T 5. When
M =1, the sequence considered modulo 5 is a succession of repemtwns
of a non-zero multiple of one of the following segments

1, 13,0 or 1, 2,4, 3 0r 1,4, 1, 4.

By Theorem 2 Wlth p = 5, we conclude that m(d) <{ 3. When M = —1,
then ail solntions of m, = 1 except possibly # = 0 have the same parity
by Lemmsa 3. Again by Theorem 2 with p = 5, we have that m{1)<< 1+
+3 =4 ' '

5.1 s> 2, then & =1 (mod 4}. I 3 = 1, then the sequence con-

§, then
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sidered modulo 4 looks like repetitions of segments of the form
1,1,0,3,3,00r 1,3,2,3,1,2 (mod 4).

Also 3 = MB; N =g;~1(mod 1) for i =1,2. Bo gl =4i—-4; = ——1
{mod 4) and g5 = 1 (mod 4). So the parameter ¢ of Theorem 1 with p =

is 6; it follows that m{1) < 3. If M = —1, then the sequence CODbldeI'Ed
modulo 4 looks like repetitions of segménts of one of the following forms

1,1,2 or 1,3,0 or 3,1, 0.

Also =‘—ﬁ, 1{mod{) and so B = —fF—p; =1(modd) for i =1
and 2. Theorem 1 with » = 2 and g = 3 then shows that m(3) < 3. This
completes the proof.

The general outline of the last proof ean be used to show that better
bounds apply to certain more restricted classes of linear recurrences.

The next result is a good example of this:

TEEOREM 4. Let {U,} be a non-degenerale Lucas sequence of the first
Eind which satisfies (2) with (M, N) = 1. Either {U,} has muliiplicity at
most three or else M = —1 and N = 2. -In the exceptional ease, —1 occurs

" ewactly four imes and no other integer occurs so aflen.

Proof. Part 1 of the proof of Theorem 3 can be carried over withont
changes except that we no longer transate the first oceurrence of d to
zero and that the reduction is only to 4 = £ 1. Part 2 can also be repeated
exeept in the case where M is even; note that in applying Theorem 2,
the parameter ¢ is always 0 and so the bounds of four are reduced to three.

Suppose that M is even. The sequence U, redunced modulo 4 consists
of repetitions of the segments '

0,1,2,1 if 2(|M and N =3{(mod4),
0,1,2,8 # 2)M and ¥ = 1(mod4),
9,1,0,3 # 4M and ¥ =1 (mod4),
0,1 i 4| and ¥ = 3 (mod 4).

Bince Theorem 1 with ¢ = 4 in the X ==1 (mod 4) case and g = 2 in the
4|M, ¥ = 3 (mod 4) case shows that m{+1) <2, we may suppose that
21 M, N = 3 (mod 4), and henee that m{—1) =0 and that 1 does not
oecur in {U,,}. If U, is divisible by a prime greater than 3, then it follows
that m(1) <3 by Theorem 2. Since § = 0, the same conclusion can be
made by Theorem 2 if U, {resp. {'y) is divisible by a prime larger than 2
{resp. 3). Thus, we may assume that U, = 3 = £2, and that U, and U,
are not divisible by any primes greater than 3. Since T, = M*—N is
odd, either U, = 41 or 3|U;. In the first case, ¥ = M*F1 =3 or 5.
In the second case, 34U, by Theorem B (ii). Since U,2H = M*[2 — l\’
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iz odd, it follows that M*2—N = +1 and so N =2F1L =1 or 3.
But ¥ = 3 (mod 4), and so both cases reduce to # = 12, ¥ = 3. The
sequence {7} reduced modulo 9 begins with 6,1 and continues with
repetitions of the segment

+2,1, F 4, —2, =8, 4 (mod 9).

Since {U,,} does not contain 1, % follows that U, can be 1 only when
n =1orn = 3 (mod 9). Finally, since Uy = T 10, we can apply Theorem 2
with p =5 and r =6 to conelude that 1 occurs at most twice in the
subsequence {Ug,.s), and so m{l) << 3. This completes the case where M
iz even.

For part 3 of the proof, first suppose that I =1 (mod 3). Then
0= —Mp+N =(8;+1)*(mod 3). So §f =1(mod3=) for j=1,2.
I the sequence consists of repetitions 0£ 1, 1, 0, —1, —1, 0, then Theorem 2
with p =3 and ¢ = 0 gives m(--1)< 3. Since a, = 0, the second kind
of sequence does not oceur. The proof in the case M = —1 (mod 3) carries
over; ¢ =0 and @, = 0 imply that m{L1)<3. |

Part 5 of the proof carries over without change, and in part 4 with .

§ =1, the only change is to note that a, # 1. Finally, if s =0 and
M =1,thenm(+1) < 3 by Lemma 2. If M = —1, note that the sequences

Upso = = Uppa—20,, Ty=0, U;=1
and s
T, =1
are related by U, = (—1)""'U,. The solution of Ramanujan’s equation
given by Skolem, Chowla, and Lewis [14], consists of showing that

U=y = —Oy= U, = —0yy =

ﬁn-!—z = ﬁn-{-l_gﬁﬂ? Z_In =0,

and that U, s --1 for all other values of #. It follows that U, = —1
- has exaetly four solutions and that » = 1is the unique solution of U, = 1.

Now in the reduetion done in part 1 of the proof, the new sequence
{a,,} watisfies the recurrence relation (9). So N" = 2 in thisx cage. Thus
# =1, and %0 the only non-degenerate Lucas requence of the Tirst kind
with multiplieity four is fthat with f = —1 and ¥ = 2, Further —1
is the only integer which oceurs four times in this exceptional sequence.
Thiz completes the proof.

There is an analogue of Theorem 4 for Lucas sequences of the second
kind. The proof can be construeted using Theorem A (iv) and the ideas
of this section. We omit the proof.

TEEOREM &. Let {V,} be a Lucas sequence of the second kind satisfying

-the -recurrence relation (3) with (M, N) = 1. If the multiplicity of {V,}
is finite, them it is bounded above by two cxcept when M = +2 and N = 3.
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In the exceptional cases, 2 is the only infeger which occurs three times,
and mo integer occurs more often.

5. Proof of Morgan Ward’s conjecture. The conjecture is true in the
degenerate case [18]. In the non-degenerate case, we prove

TomoREM 6. No infeger occurs more than five times in a non-degener-
ate second order linear recurrence.

Proof. Let {a,} be a non-degenerate second order linear recurrence
gatistying the recurrence relation (1), and let 4 be an integer. We will show
that m(d) < 5.

By Theorem A (i), it saifices to consider the case where IF —4N < 0.
By Theorem 5, we may assume (A ;s N> 1. By Lemma 4, it suffices to
treat the case where all prime divisors of @ are divisers of (3, I). Also
we loge nothing In assuming that a, = 4 and that (a;, a,) = 1.

By Lemmas 5 and 6, we may assume ¥ is even. Suppose 3+%. Then
3¢@ and at least one of Uy =M, U; = M*—N, and U, = (A —2N\M
iz divisible by three. Hence by Theorem 2 applied with p = 3, either
m(d) <5 or else 3|M* 2N and § = 1. The second possibility does not
occur since if 3[M®—2N and 34N, then M = 41 (mod3), N = ~1
{mod 3), and it is easy to verify that all sequences considered modulo 3
look like repetitions of segments of the form :

1,1, —1,0, —1, —=1,1,0 if M =1 (mod3)
or ’
' 1, —1, —1, 0,

—1,1,1,0 if M= —1{mod3).

Thus we may assume that N is a multiple of three.
Buppose that U, = M has an odd prime divizer p. If p does not’
divide ¥, then p+d and so by Theorem 2, m{d) < 24 ¢+ &< 4. Thus we

. can assume that every prime divisor of M divides N. Further if for some

prime p, we have 0 < v, (M?*) < v,{¥N), then m(d) < 2 by Theorem A (ii).
S0 we can assume that o, (M) > v,(N) for all prime divisors p of I
Finally by the recurrence relation (1), évery prime divisor of (A, N}
divides @, for every m > 2; 50 we may assume thatb every prim.e diviser -
of (M, N) divides d

There is a positive real number R and real numbers M’ and N’ satis-

fying
M= MR, XN
Tt {5,} be the sequence defined by @, = E*b,, so that
by == My —N'by, by = R,

= ¥R, (M2 NY=1, and BN ,6 M2Z.

by ==y,

Let {U.} (resp. {U,}) be the Lehmer (resp. Lucas) sequence of the firsh
kind which satisfies the same recuirence relatmn as does {b,} (resp. {a,}).
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Then U7, = B"1U,, and by (8) we have
. y = 0 Uy —NayU,_,,

(14}
by = a,U, —N'Ra,U,_,.
Let
P={ ] 2}/l ]I V2)
shime AR

Sinee (P?, ') = 1, Theorem B {iv) gnarantees that there is a leagt positive
integer r with P|U,. Let ¢ =+ [] p). By (14) and Theorem B (ii)
i

X _‘pgl'ime .
and (iif), we have PJb, if and only if P|U,, if and only if »|n.

- Now there is at most one solantion of @, = 4+ d with #4n. In fact,
let s be the least index with 715 and a, = +d. Since r1s, we have Pibg;

so there is a prime p with o,(P) > v,(d,). We have
vp(d) = Uy {a;) = v, (Ra_-lb V= (s— )Q’F(R)“i'@p(bs)
< (8 —1)0p(R) + 0, (P} < su,(R).
Therefore, if s’ > s, then

%w)m%m“%)>m—n(m svp (B) > 0, (d),

and 20 @4 = 4+ 4 for any ¢’ > s,
By Theorem B (jii}, ¢ is the least positive imteger such that o (U;)
> v,(T,) for all prime divisors pof M. There is at most one solutlon of
= Z:d, rin, t1n. In faet, if s < ¢’ are two, then

{Slﬁl)”p(R)”l'v_ﬂ(bs’) = :p(as') = p(as) = (S—-l)ﬁ?p(R) '}_@p(bs}
and s0 v,(by) < #,(b,). Chooging p so that o (1) > v,{8); we have by (14),

Op(Be) 2 0 (Us) 2 0 () = p(b;)
which is a contradiction.
Let {V,} (vesp. {V,}) be the Lehmer (resp. Lucas) sequence of the
second kind which satisfies the same recurrence relation as does {b,}

(resp. {a,}). Then:V, = R"V,. Xow V3+V., V;. In fact, if 3|M, then
3/(M, N) and so V3|0, U, and the assertion follows by Theorem B {i).
On the other hand, if 3+M, then 34V, for any = by the recurrence relation
(3) and the fact that 3/¥. A fortiori, V3+V., V).

Suppose there is a prime p > 5 such that Vp ¥, (resp. V;). By The-
corem B (i
B (if), we ]mow that p does not divide R? and 4. Furthermore, since Vpr,.,
we know 1/—1; ". Thus prd s P Uspy Ugs. By Theorem 2 2, it follows tha#

)y Yp1T. (resp. U)): and so by the choice of r and by Theorem
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{8,,} (vesp. {a,}) contains at most three occurrences of 4, and so m(d) < 4
{resp. B). Thus we are reduced to the case where

r ak - :
V, =28 and V) =e'0

where ¢, ¢/ = +1 and 2k, 2u<Z.

It M is odd, then since N iz even, the recurrence relation (3) implies
that ¥, is odd for all # > 0, and so ¥, and Vj are both -1 which contra-
dicts Lemma 1. Thus M Is even, 2{{M, N, and 2itjr. By (4) and the
fact that ¢/2r is odd, we have T,V So F,, = &''2™ where meZ and
g = +£1, Also by (4), Vo = (1) —2X7 and s0

L

?

V7 and so k> 0 since V2T

By (4), (f1—Fa) U, 426, ==

Therefore m = 1
and we have ’

Eur:zm—l — 22?:—1 T,

Sinee 2|(4f, N), by the choice of R, we have N’ odd. So either m =1
or k =1/2, and we have a solution to the Catalan Equation: # & 9™ = 1.
By a result of LeVeque [9], [4] and the facts that » > 2, we see that the
only possible solutions are given by the following table:

EF=12 m=1 " =1 Nr=0

k=1/2 =3 =1 N = —1
k=12 m=4 ¢§" =-1 N =3 7= 2
E=1 m=1 " =1 NT=1

F=2 m=1 &"'=-1 XN =3 r =2

The first two and the fourth cases are impossible gince they imply
that the discriminant VE, —4N* = R(4™ —4N'*") of ¥ is non-negative
contrary to assumpfions. The third case also does not occur since on the
one hand V' = ¢'¥2 and on the other V. = V, = M2—3N'¢Z. In the
fitth case, &4 = V.= Vi = M*—2N = M*—6 and s0o M’ — £V2 or
410, :
If M' = +V10, N’ =3, and r = 2, then 10+|¢. So there are at most
two occurrences of d in {a,} which are not in {#y,,,}. Using (3), one can
verify that Vi = Vi, = —236 = 0 {mod 58). Now {ay,,} satisfies

Gronan) = V10%Fro(n1y — N5,

and 594N since N = 3 and U. = UL = M’ = 4-¥10. Also 59 Uy = Vg Uso-
Applying Theorem 2 with p = 59 to the sequence {a,} then shows that
there are at most three occurrences of @ in the sequence, and therefore
m(d) < 5.
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T M = 412, ¥ = 3, and r =2, then J'™? — 4N’ = —10 = 0 (mod 5).
Also 5+R since 31U, = U, = +¥2. So 5] M?—4N. By Theorem A (iii)
and (iv), we conclude that 4 (d) < 4. This completes the proof of Theorem 6.
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On a conjecture of Morgan Ward, I
by
K. K. Kurora (Ann Arbor, Mich.)

1. Introduction. This is a continuation of & study [3] of the number
of times an integer d oceurs in a sequence {a,} of rational integers satisfy-
ing a second order linear recurrence relation :

Opyg = Ma’u—:—l""-N“na nz0, jag} +la | # 0

where M and N are constant integers.

The multiplicity of such a sequence is the supremum of the numbers
m(d) as d ranges through the rational integers. The standard conjecture
due to Morgan Ward was that the multiplicity of a second order linear
recurrence is either infinite or bounded above by five. This conjecture
was verified in [3]. In earlier work [1], it was conjectured that in fact
the bound of five could be improved to four, and thiz was verified in the
cage where (M, N) =1, [3]. As will be seen, the general case is more
troublesome and is the main resalt of this paper.

THroREM. The multiplicity of a second order linearly recurring se-
guence of rationdl integers is either infinite or bounded above by four.

Ar in the first part of this paper, the proof uses Skolem’s p-adic
method, the only essential difference being a systematic use of exponen-
tial diophantine equations of kinds studied by Kagell and Tjunggren.
Knowledge of the exact solution sets of these equations allows one to
know the sequences for which certain “good” primes do not exist. Since
the solutions are quite rare, the exceptional cases can be dealt with indi-
vidually. : ‘

The proof is divided info several parts. In the next section, several
teductiony are made and the notation is established. The diophiantine
equations appear in Section 3; and the next two sectiong are devoted to
several special classes of sequences needed in the proof given in the final
section. Becanse we will constantly be making reference to results in [31,
the numbering of lemmas begun there will be continned in this paper;
any reference without a bracketed number is either to this paper or to [31



