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T M = 412, ¥ = 3, and r =2, then J'™? — 4N’ = —10 = 0 (mod 5).
Also 5+R since 31U, = U, = +¥2. So 5] M?—4N. By Theorem A (iii)
and (iv), we conclude that 4 (d) < 4. This completes the proof of Theorem 6.
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On a conjecture of Morgan Ward, I
by
K. K. Kurora (Ann Arbor, Mich.)

1. Introduction. This is a continuation of & study [3] of the number
of times an integer d oceurs in a sequence {a,} of rational integers satisfy-
ing a second order linear recurrence relation :

Opyg = Ma’u—:—l""-N“na nz0, jag} +la | # 0

where M and N are constant integers.

The multiplicity of such a sequence is the supremum of the numbers
m(d) as d ranges through the rational integers. The standard conjecture
due to Morgan Ward was that the multiplicity of a second order linear
recurrence is either infinite or bounded above by five. This conjecture
was verified in [3]. In earlier work [1], it was conjectured that in fact
the bound of five could be improved to four, and thiz was verified in the
cage where (M, N) =1, [3]. As will be seen, the general case is more
troublesome and is the main resalt of this paper.

THroREM. The multiplicity of a second order linearly recurring se-
guence of rationdl integers is either infinite or bounded above by four.

Ar in the first part of this paper, the proof uses Skolem’s p-adic
method, the only essential difference being a systematic use of exponen-
tial diophantine equations of kinds studied by Kagell and Tjunggren.
Knowledge of the exact solution sets of these equations allows one to
know the sequences for which certain “good” primes do not exist. Since
the solutions are quite rare, the exceptional cases can be dealt with indi-
vidually. : ‘

The proof is divided info several parts. In the next section, several
teductiony are made and the notation is established. The diophiantine
equations appear in Section 3; and the next two sectiong are devoted to
several special classes of sequences needed in the proof given in the final
section. Becanse we will constantly be making reference to results in [31,
the numbering of lemmas begun there will be continned in this paper;
any reference without a bracketed number is either to this paper or to [31
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2. Preliminary redactions. We establish here notation which will
remain in effect throughout the paper. Let {a,} be a non-degenerate second
order linear recurrence of ratiopal integers satisfying

) Oppe = Utosy—Na,, 020, M, NZ.

Ag In [3], the degenerate sequences arve all easily dealt with, and so it
suffices to show that the mulhph(ltv m(d) of any integer d in {a,} is at
most four.

By Theorem A (i), we may assume that M2 —4N¥ < 6, Also we may
assume{ M, N} 5= 1 by Theorem 3. I d = 0, and a,, = a,, == d with n < My
then by 13, Eq. (9)], we have Uom—mpern = U for all % = 0. But this contra-

dicts Theorem 2. Thus m{0) <1 and 50 we may assume 4 is non-zero.’

Clearly we may assume that ¢, = d and (a,, ) =1, "‘\elt write d = d,d,
Where no prime divisor of d; divides (M, N) and every prime divisor of s
divides (A, N). By Lemma 4, either m(d) <1 or else there is a positive
integer », such that d,la, exactly when r;n. Thus the multiplicity of &
in {a,} is the same as the multiplicity of d, in {tyn/d;}. Therefore we may
assume that every prime divisor of d also divides (M, ¥). Since the recur-
rence relation (1) implies that (M, ) divides @y, for n = 2, we may assume
conversely that every prime divisor of (M, ¥) also divides d.
Let {T,} and {¥,} be the Lueas sequences

Uppo = MUpiy—NT,, Ty =0, U=1,
Vﬂ+2 = MVn-i-I _NVna Vo = 2, V,=1

If Uq = M has an odd prime divisor p which does not divide N, then
ptNd and =0 n({d) <2+ d-+e< 4 by Theorem 2. ¥ M is even and N
is 0dd, then 2+Nd and so m{d) < 4 by Lemma 5. Thus we nay assume
that every prime divisor of M also divides

Ii p is a rational prime and a is a real number such that « is a rational
integer, then we denote by tp{a), the number of times p divides «. If
PUAL, N} and v, (A7) < =, (N) then m{d) =<2 by Theorem A (ii). 8o one
ean assumme that o,( M%) > z,(N¥) for every prime divigor g of M. It follows
that there is a positive real mnnhel R, an integer &7, and areal number M
with

M= IR, N=DNERE, {(M*}N)=1, and B, M N'eZ,

Note that the prime divisors of R? are precisely the same as the prime
divisors of (M M) Also since M 4N = (M2 4N)/R* < 0, it must
be that X' iz positive.

Let {b,}, {U.}, {V.} be the Lehmer sequeneea defined by

i, = R"—.‘lbﬂ, Uﬂ g Lr;“ and Vﬂ = R V;z
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Clearly these sequences satisfy the recurrence relations:
bn+2 = 3'[’1)”.-}—1 —N'by,
Uppe = MU, —N'T,,
Vpoa =MV, ., ~N'V,,
Further, by [3, Eq. {14}], we have
a, =a, 0, —Na, CG,_,,

by = Ray, by = ay,
U;:‘]: U;zla
Vi = AL

T N
Vo =12,

(2)
w = 0 Uy N'Bay U, _;.
Lett P be defined bv
= ([] o/ [T #*)-
ppmmr: llé;nge

By Theorem B {iv), there is a least positive integer r such that P|T,.

Since Pid = @, Theorem B (iii) together with (2) shows that Plb, Hf

P|U, if rin. Let § < @ be sets of prime divisors of 3, Dbe the least

positive integer with (P, [] p)}iT,, and {;fori> —1 be defined by t_, =1
pEQ’

and
t; =1'{Hp)-" dor iz 0.

el
The significanee of the integers r and ¢, is shown by the following
Leamas 7. For each iz 0, the equation
a, = id: T, tfi{n’_
has at most one solution n = 0. .
‘Proof. By Theorem B (ili), the t;for i >
the leagt positive integers such that fupLE}i) = 'in,,(Ui,‘._1

et
pee Suppose that for some fixed value of ¢ the equation in gnestion ha'_.s
a solution and that s is the least solution. Binee 7,.,|s and %13, there iz
% pnme divisor p of (A, X} and in fact one in @ if ¢ = 1 such that 'l‘p(U )
(U, J- By equation (2}, it follows that :

op{d) = vy(ag) = vy (BFHB,) = (¢ —1)0(R) + v, (By)
= (8= 1) 05(R) -0, T)) = (s~ 1) 0, (B)+ 0, Uy, _).

If ¢ iy any other solution of the equation, then one sees similarly that
0, (@) = (t—1) 2, (B) 0, (U)) > (1) 2y (B) + 2, (T}, ).

Sinee > g, we have a contradiction. The lemmsa is proved.

> 1 are characterized as being
) for every prime
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As a first application. of the lemma, note that if U;® has an odd prime
divisor p which does not divide d, then p+&" and so p+R*dN’ = Nd. By
Theorem 2, the subsequence {a,,} containg at most three occurrences of 4.
By the last lemma, it follows that m{d) < 4. Therefore we may assume
that every odd prime diviser of U] also divides d (and hence R® and (M, N)).

Unless the contrary is explicitly stafed, the notation in this section
is preserved in the rest of the paper; further all of the additional hy-
potheses hich we have seen in this section arve assumed to apply even
though they may not be explicitly stated. Recall that the assumptions
are that {a,} is & non-degenerate second order linear recurrence with
M 4N <0, (M, ¥)#+1, ¢=4, (4g,8) =1, (M*, ¥) =1, ¥'> 0,
R >0, and that if p i a prime (vesp. odd prime), then p|d iff p|( 2, N)
iff pIR* and that p|M if v, (M) 2= v, (N) > 0 (resp. pld iff p|T;3).

3. Some diophantine eqaations. A number of results on certain rather
special diophantine equations are collected here. In the proof of the the-
orem, it will be seen that the searcity of solutions of these and other equa-
tions is reflected in the existence of good primes for the p-adic method.

Lewwma 8. The diophantine equation

9" = 22241, m,z>0

has the unique solufion m =1, ¢ = 2.
Proof. Wehave '
(3" 41} {3™ —1) = 2z

and (3™-4-1, 3" —1) = 2. By unique factorization, it follows that

3®11 =2u? and S"T1 = ¢?

where the signs are ordered, wv = @, {u#, ) =1, ¢ is even, and both
and ¢ are positive. If the upper signs hold, then since # is even, reducing
the second equation modulo 4 shows that m is even. But then the second
equation expresses 1 as a difference of two non-zero squares, which is
absurd. So the lower signs must hold: The first equation ean then be
expressed as : }
-1
B

By a theorem of Ljunggren [5], the only solutions are m — 1, 2, and 5.
But m = 2 and § are not solutions of the second equation. This proves
the lemma.

Leyora 9. The diophantine equation
283" = g2 1, 2, k>0,

m=0 )
has only the solutions (k, m, x)=(3,0,3), (3', l', 5), (4,1, 7), and (5, 2,17).
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Proof. Since k>0, (¢—1,2+1) = 2 and % > 3. Since
253" = (z+1) (e —1),
unique factorization shows that either

4l =2515m 0 471 =2
or else

£l =281 gy o gma

where in each case, the signs are ordered. Eliminating z from the first
set of equations shows that 2°7'8™ = +24.2 which means that m = 0,
k =3, and the sign is positive. The correspending value of 2 is 3. On the
other hand, eliminating = from the second set of equations gives 3™--1
== 2¥=% By a theorem of LeVeque on the Catalan equation {{4], [27), the.
only solutions of this last equation are (%, m, sign) = (3,0, +3,.(3,1, —),
(4, L, +) and (5, 2, —). The corresponding values of # are 3,5, 7, and 17
respectively. This proves the lemma.
Leyva 10. The diophantine equation
2{6® —3y™) = 2%
where & = 4-1,y is odd and posilive, > 1, and = == L1 has only the
solutions (2,1, By ey m) = (2, 1,1, 1,2} and (—2,1,1, —1, n). _
Proof. Since 2{2%, if # 5= £ 1, then @ is even, k> 0, and so 2° 3"
is odd. But then # = 2% So the equation becomes
| ooyt — L.
This equation considered modulo three shows that + ¢ = 1. 8o
(2F+1)(2F 1) = 3"
and (2%41,2%—1) =1. Unique factorization gives
(3) 2811 =384 and 2FF1 =t

where (31, ») = 1, v =¥, v and v are positive, and the signs are ordered..

By Cassels ([2], Corollary 2), the upper signs can only hold if & = 1
orv =1.Butthen & = v = u = y = 1, and we have the stated solutions.
Ii the lower signs hold, then by Cassels ([2], Theorem ITI), the second
equation implies that any odd prime divisor p of = is bigger than %. So if
©>2, then "z >0*> 241, which is absurd. Since p> 0, we
know that » =2 is impossible, and clearly » =1 is not a solution. There-
fore n must be a power of 2, and 50

(PR L) (o —1) = 2F,
k> 1, and (v"*+1, v —1) = 2. By unique factorization,
t41 =251 and Tl -2

3 — Acta Arithmetica XXXTIL1
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where the signs are orderved. Eliminating ™2 gives 27! = 2#2;, and so

k = 3; but then (3) implies that 7 = 34", an obvious %mpossﬂnhty. Thus

the bottom signs eould not have held, and the lemma 18 proved. ’
Lmvaa 11. The diophantine equation

I i -

fas only the solutions (|yi, #,m, &) = (3, 25,3, —&) and (11, —3e, b, &).
Proof. Sinee m is odd,

m> 0 and odd, & ¢ = +1, |@>1,

"+ ¢ gz

e R

g

e

is an integer. So either ¢ = ¢’ or else &£ # ¢’ and # = 2, 3.
If g = —& and # = +2, the equation reads

2™ Lg 2™ Lg

12 ¢  2Fe o

The second possibility is impossible since 342" —1 for m odd. The first

possibiity gives

=9m1] or (2" —1)/3.

Yz =

Wlel =291 and |ylF1=2

where the sighs are ordered. The hottom signs give no solution and the
top signs give Wyl =m = 3. )
If ¢ = —¢ and © = =43, the equation reads

am ’

SE3Fe  3TES _gmiyp o (3714

+3—¢ 3% :
Both possibilities are impossible by a congrnence modulo 8 using the
fact that m is odd. .

If ¢ = &, the egnation becomes
(—-ex)™—1
(—emx)—1 "’

,y‘l

y? = lri>1, ~modd,
which by & theorem of Ljunggren [5] has only the solutions (—e&x, m)
= (3, 5). Thiy proves the lemma.
4 Speecial sequencés. A cerfain number of recurrences do not fib
into the general outline of the proof. In order that these not disturh the
continuity of the proof, the special arguments required for these excep-
tional sequences are given in this section.

LeuMA 12. One kas m(d) < 4 in eack of the following cases:

(a) ¥V =2, M = £1,r =2 (mod 4),

N =2, M =211,r=4,
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() N =2, = L}7,r =2 (mod 4),
(A) N =2, M" = 1}3,r =2,

Proof. For the first and third sequences, suppose first that 3.
I A" = £1 (rexp. M’ = =¥7), then U] = +5 (resp. +5V7). Since
6{r, Lemma 7 shows that there is at most one oceurrence of 4 in {a,} not
in {ag,}. Since (M2 X') =1 and 3,0}, we know that 57X". Therefore,
if 54d, then 51R'AN’ = Nd and so a, = d has at most two solutions
by Theorem 2. Thus either m(d)< 3 or else 5.4. But if 5id, then by Lemma 7,
all but at most two of the oeeurrences of d in {a,} lie in {@,,,}. But Uy,
= F 11 {Tesp. FI1I¥T)if I’ = +1 (resp. _»j;]/r'«:). Tf 11 4d, then as before,
g, = & has at most two solutions and so m(d) < 4. It 11, then 11{77,

- and Theorem B (iii) allows one to check that 3. By Lemma 7, there iy

at moxt one occurrence of d in {ay,.,| 0 < i< 10}. Since 57|F}, and
VielUsg, Theorem 2 applied to p = 19 shows that {0} contains at most
three occurrences of d unless 19|, But in cases (a) and {¢), #/10 is 0dd;
thus ¥,i¥, and s0 1940, by Theorem B (i). Therefore, in these cases,
if 3ir, then m(d) < 4.

It 34r and M’ = +V7, then since 50} = M?— N, Theorem B (iii)
implies that ¥5+T. Further, 3+’ since (M, ¥') = 1. Thus 5+R*dN"
= Nd, and so m(d) < 4 by Theorem 2 applied with p = 5.

Suppose that M = 41, » =2 (mod 4), and 3+r. Since N’ is even
and M is odd, T, forn > 0 is 0dd and so Vi, = P2 —2N " =V2 - an+l = 1
(mod 8} for w > 2. I 9|V, then 9|T,, = T, I, and so0 3{2r by Theorem
B (iii) and the fact that 3;U,; but this contradicts 3+r. Since 3|V, it
follows that 3F,. We have already seen that V) =1{mod 8) if r > 2;
and xo0, sinee V, is odd and 3F;, it has a prime divisor p > 5. Since
(V. U112, we have p+T, and so pi¥Nd. By Theorem 2 and Lemma 7,
it follows that m({d) <143 = 4. On the other hand, if » = 2, then T,
=0, =M = £1 and so {M,N) =1 contrary to the reduction hy-
potheses of Seetion 2.

Suppose that M’ = +£1 and r = 4. Then U, = T3 and so E and d
have only 3 as a prime divizor, By Lemma 7, there are at most 2 occur-
rences of & in {a,} but not in {a,,}. Since T}, = 4 35, 5+N'dR> = Nd and
50 by Theorem 2, d oceurs at most twice in {ay,,}; so m{d) < 4in this case.

It remains to treat the ease (d) where M’ = -+ V3 and r — 2. Since
U, = U, =M = +V¥3, B and 4 are divisible by no primes other than
three. By Lemma 7, each of the following three equations has at mos
one solution:

a’ﬂnl—!-lzd":
i =1o0r 2,
i=1or 2.

gy 108 = Oy
Oigngr sy = U,
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Now Uj, = +3%19 and so by Theorem 2 applied to p = 19, the se-
quence {a,;,,} contains at most two oceurrences of d. Thergfore, it m(d)>4
then each of the three equations has a solution. Now V3T, and 3%*0U;;
s0 letting s be defined by 3°*[R, and using the fact that the 3-adic orders
Of @op 21y Bgnypais Gipngersyy a0d d ave all equal, we have by (2), Theorem B,
and the definition of the sequence {#,} that

2n4(8]2) == (Bny+27 —1)(s/2)+1/2 = (18n,+ 6 —1){s/2)+3/2.

In particular, s =1 and a congruenee modulo 3 shows that ¢ = L. Sol-
ving for %, and n, in ferms of n,y, we see that

(4) Oign, 165 = Frgmyreire = Hgngrejes = d.
Further since § = 1, the recurrence relation is
By = =30y —0a,.

The recurrence relation together with (4) allows one to solve for @y, 4 q-
The result is ay,, o = 0 (re%p dafg)y it A" = V3 (Tesp. wl/S So by (4),
we gee that d = 0 in hoth ¢ases. By the assumptions made in Section 2,
d #0. 8o m(d) < 4, and the lemma is proved.

LA 13. One has m{d) < 4 in each of the following cases:

(a) N' =3,7 =2 (mod 4), and M = V2,

by NN =8,7 =2, and M' = 42,

{¢) N ==3,r =3, and M' = £1.

Proof. (a) First suppose that A’ = 4V2 and ¢ =2 {mod 4). One-
has U, = +¥2, U, = F2%, U; = 427, and Uj, = 2"°79. Since both r
and R? are even, Lemma 7 with § = @' = {2} shows that for s =1, 2, 3.
and 4, there i3 at most one oceurrence of 4 in the subsequence {a,gn“& ih
T 79|U%, then 79|Tf . = Us = =V2 by Theorem B (ii). So 79U
and so 79+Nd. By Theorem 2, d oceurs at most twice in {a,}. Thus it
suffices to prove that at most two of the subsequences {a, +°S‘1} for
& =1,...,4 contain an occurrence of d.

By (2) and the definition of the sequence {b,}, the condition that
{a-zsﬂs se-1y and @ have the same dyadic order is expressible as

(3) 2y(d) =

Using the dyadic orders of the U»s—l Iisted above, we see that if (5) holds
for s = 3 and 4 or for s = 2 and 3 then v,(R) is either only quarter inte-
gral or is an integer. But since M = RM" = +RV2 is an integer, v,(R)
is exactly half integral. Thus, if at least three of the subsequences contain
ocewrrences of d, then these subsequences must be those corresponding
to s = 1,2, and 4. From (5) with 3 =1 and 2, we see that v, (R} = 1/2,

(2%, 257 — D)oy (B) + 0 U;s»-l) :
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and so solving for », and », in terms of n, yields
Gemprs = Qign,q1g = Mgn 415 = G-
Since v,(E) = 1/2, the recurrence relation is
pyo = 20, ,—ba,,

and so

Fygq, 412 = =
At 6 8

£ 25,411 ®16n 415 ( +2— 1) i

Now 3|¥' implies that 3+d; and so, since a4, 413 18 an integer, the sign

must he negative, i.e. M’ = —1'2. But then using the recurrence relation,
one can solve successively for @161z 20 Uyen +11 tO See that

Gign i = 12,

Bince d # 0 and 344, we have a contradiction which establishes m(d) < 4

(b) Supposé next that M* = +2 and r = 2. Since T, = -2, both R?
and 4 have only 2 as a prime divisor. Now ¥, = £2%7, and so 7T4Nd.
By Theorem 2 applied with p = 7, the equation a,, = 4 has at most two
solations. Therefore by Lemma 7, the only way that m(d) could exceed 4
is if there are integers a,, 2, and ny with '

Gonyal = lypyy = lgg,py = d.

Now U; = £2 and U; = F4; so by (2) and the definition of {b,}, the
equality of the dyadic orders of the numbers of this equation is expressible
a8 '

— (At 1)1y(B)+ 1 = (815 3)25(R) 12 = v(d).

The first equality implies that v,(E) = 1, but then the second equality
cannot hold by a congrience modulo 2. Thus m(d) < 4 in this case.

(¢} Suppose that M’ = L1 and r =3. Sinee U, = —2, hoth R
and d have only two as a prime divisor. Now T, = 25 and 34N'dR?
= Nd; so by Theorem 2 applied with p = 5, {a,,,} contains at most two
oceurrences of d. By Lemma 7, each of the subsequences {g@y, . 1 =1
or 2}, {@gpiapy and {#1,,,4 contain at most one oceurrence of d each.
Therefore if m(d) = 4, then there are integers m,, m,, and m, with mmlﬂ
= g, 43 = Grom, 46 md where ¢ =1 or 2. Since 2||U; and 2%V, the
corresponding equality of dyadic orders is

= (Bmy +2)u,(R) -1
= (12mg+5)0a(R) +4 = va(d).

2n,1,(R)

(8my+i—1)v.(R)

From the first equality, sinee v,(E) is an integer, we have v,(R) =1,
and so ¢ == 1 by a congruence modulo 3. Solving for m, and. m, in terms
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of my vields

Tamgys = Mamgss = Flamgtio = d.
Since r3(R) = 1 and £ > 0, we have B =
is
, Byye = 420, ., —1240,.
It follows that

4 2“12m3+9
Tiamgts = 12
=

— ramat 10 +2-1 P
= 5 A

Bince @iy, .5 it an integer and 3+d, the sign must be negative. But then
the recurrence relation al ows one to solve for Cromgtr’ -

—~2(—afd)—d a
a'l2M3+7 = _'—12_'— = _“é";_

which is not an integer. Thus m{d) < 4 and the lemma is proved.

LEMMA 14. If N =17, r =2 (mod 4), and M’ = +£V10 or +V38,
then m(d) < 4.

C Proof. T M = 4V10 (vesp. -V58), then I = —7 (resp. 41)
and Vi = —2°3%97. If U,+d, then since (M7, N') =1, Ui4¥' and so
Ui+ Nd. By Theorem 2 applied with p = 1T;], m{d} <4. By Theorem
B (iil), if T;)d, then 3[r and so 6lr. Since #/6 is Ocld we have Vi|V,. But
then 97|V, and so §7+U, by Theorem B (i). Therefore 97+Nd and 97|0;,.
By Lemma 7 and Theorem 2 applied with p = 97, m(d) < 3. This estab-
lishes the lemma,

5. Some classes of recurrences. In this section, certain infinite classes
of recurrences are treated. The first two lemmas ave analogues of Lemmas 4,
5 and Theorem 2 of [1].

Leyaia 15, If N is odd and v is even, then m(d) < 4.

‘Proof. If in addition 37 is even, then this is a special case of Lemma 5;
80 we may assume that 3 iz odd. I ; and f, are the roots of the com-

panion equatmn 2 —Mp-L N =0, then it is easy to verlfy that for 4 =1
and 2,

= (M — N —9(1f NYMNB,+ (MNP =1 (mod 4)

apd that f —3 =& =1 (mod 4), then
B = M(MB,—N}—NB, =1 {mod 4).

We will apply Theorem: 1 with p = 2 and g a factor of 6. Since r is even,
Lerama: 7 implies that {a,,,;} contains at most one oceurrence of d; and
80 by Theorem 1, at most one subsequence {a,,,;} with 0 <4 < ¢ con-

2 and #0 the recurrence relation .
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tains at least (and hence exactly) two occurrences of d. A straightforward
computation shows that {u,} considered modulo 4 looks like repetitions
of a constant odd multiple of one of the following segments:

0,1,1,0,3,3
1,32 31, 2}
0,1,1,2,3,1 if M= —XN =1 {mod 4},
0,1,3,2,1,1 if M= —N =3 (mod 4),
0,13 0r1,1,2 i —MH=N=1[mod4).

if M= N =1 {mod 4),

The lemmsa is now a consequence of Theorem 1 applied with p = 2.
LeyyA 16. If either 3\ M and 34N or else N =1 (mod 3), then m(d) < 4.
Prootf. Since 3+(M, ¥}, we have 3+d, B, U If 3 divides M but

not ¥, then 3)U, and 3+¥d and so m{d) <2+ 54¢< 4 by Theorem 2.

Suppose that ¥ = 1 (mod 3) and 34¥, then 3|T; = M2~ X and 3+Nd.

A straightforward computation shows that the sequence {&,} considered

modulo 3 looks like repetitions of a constant non-zero multiple of one

of the following segments:

:“1:0

1,1,0, —1 . _

1 —1,1, ml,l} it M _1(p10d3),
1L,1,1,1,1,1 e —
1, —1,0,1, —1, 0 it M= —1{mod3)}. ‘

Theorem 2 appled with p = 3 to the first or last kind of sequence vields
m{d) < 3+e< 4. For the second kind of seguence, all occwrrences of d
appear either in {m,,} or else all occor in {#.,,,}. By [3, Eq. (9)], these
subsequences satisfy a recarrence relation with coefficients Vo == JM*~2XN
= —1{mod 3) and X¥* =1 {mod 3). Thus we are reduced to considering
seguences of the third kind. But in this case, the roots 8, and f, of the
companion polymomtal #?— Ma+ N = 0 safisfy :

0= ﬁ‘i_—hrﬁa - A *131, 2801 = (ﬁi_l)g {(mod 3)

and so f2 =1 (mod 3=) for { = 1,2 where = is as in the statement of
Theorem 2. By that theorem, it follows that m(d) < 3--5 = 4, and so
the lenuma iz proved. '
The next three resuits are concerned with some cases in Whlch ¥
is small. .
C LEaA 17 Ifp =2, T = +£25 and M’ 2 2 (mod 1), then m(d) < 4.
Proof. By Lemma 15, it suffices to treat the case in which N is
even. Now U} = M?— ¥ is odd: In fact, if W™ = {T,) is odd, then R?
is 0dd and so N*is even; and if M™ iz even, then v, {M"?) = v,(N') and
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$0 X' iz odd. In both cases, 24— X', If 3|2 — N’ then 3+H? since
{(#?, N) = 1. Since }/51‘[7; = M, we have 3+F and so 3|H®—N and
34 Thus ¥ == 1 (mod 3) and m{d) < 4 by the last lemma. Tf T; = M7 —
—N" has a prime divisor p = 3, then Vp /Py M = U, and p1N'; so p+Nd.
Applying Theorem 2 with thiz prime shows then that m(d) < 4. It follows
that either m(d) <4 or else

ME—N =&, g= 1.

Since also
M?-2N" =F, = L2k
we have '
¥ =eFa% and "= 9 F ok,
Since /" £ 2 (mod 4), it must be that & =0 or 1. If ¥ = 1, then since
N'>0, NV =52 and H™® =212 Nowse= —1 corresponds to a de-

generate recurrence; and so, if & =1, then
e=1, N =3, and

If # = 0, then sinee N' > 0, ¥’ = 1+1 = 2 and M'® = 3. By Lemmas 12
and 13, m{d) < 4 and so the lemma Is proved.

Izvva 18, mid) < 4 in each of the follomng cases:

(8) # =4, N even, M odd, and V, = 9%

{(b) r =4, N even, and V’ = 4.3,

Proof. Begin by reducing to the case where U; = 1. Nobe that
Uy = M2— N is odd. In fact, it M = MW’'R is odd, then JL[”’ and R?
are odd, and so N' = N/E? is even. On the other hand, if +2 = V| =
M — 41['22\7’ F2N?, then M is even, o, o{ 3% = 0,(N) and 80 N’ is odd.
In either ease M —N'is odd. If p is an odd prime divisor of 7, then
Theorem B (iii) shows that VptU; = UL, and so VprRAN' = N4 It
p = 5, then m{d) <4 by Theorem 2. ¥ p = 3, then Vp+BM' = M and
50 piUR? = 1P — N implies ¥ =1 (mod 3). Bv Lemma 16, it follows
~ that m(d) =< 4. Thus we have reduced to the case where

’l[~\v'-;?:'3—a, g = +1.

M = 42,

s

It follows that ]
Vi= M — 402N LaN? — (M2 NP
— 1 _ 28[,.1.?‘ _'_-N'rﬂ-

¥V, =

. 2‘7\71(4711‘12 __N.r) __N:z

WEs, & = 1, then solving for N' vleldg .
N = V31—,

Since ¥’ > 0, we have (s, &', ¥') = (1, —1, 1) {
The corresponding values for M2 = '+

-1, 11),or( -1, -1, 3).
e are 0, 2, and 2 respectively.

icm

On a conjecture of Morgan TWard, IT _ 41

Now the first two cases are degenerate; in the third case U, = — 2V2
and U = F 472 which, by the definition of », excludes the possibility
that r = 4. So this case does not oeccur.

It M is odd and X is even, then ¥, and s forbiori V. is odd for all
5 > 0. Bo Vi=6=211.THe = —1, then solving for N' gives N = —g-
+ ]/3 which is impossible since X is an integer. Therefore & — 3, and so
N = —2¢" =2 since N" = 0. Also M = ¥N' 2 = 1, But then midy < 4
by Lemma 12. This completes the proof of the lemma,

Leyoea 19, The multiplicity m{d) of d is at most four if

1_:_228-'{»1
Jfl=i17 N :----3—.’ 1‘13, 8= 0.

Prooi. The ease s = 0 is a degenerate sequence, and the case § = 1
has already been proved in Lemma 13; o we may assume § > 1.
1) Suppose first that d iz odd. bmce B must then also be an odd
integer and N’ =3 (mod 8), we have ¥ =3 (mod 8). Also, since

V; — .-'L{’(JI’z—SN’) —
By [3, Eq. (9)

F 2% = 0 {mod 8},

we have 8{T;. 1 it follows thas

U3ip 49y == Daag, (mod 8).

Therefore at most one of the subsequences {a,,,} and {#1216; and at most
one of the subsequences {a;s,,,} and {a,,,,,} can contain an occurrence
of d.

If 1 —4*" = £3™" then the sign must be megative and m = 0 -
by a theorem of TeVeque ([4], [2]). But then s = 0 contrary to hypotesis.
Therefore, since

. Vi = M2 N = (14513

is odd, there is a prime divisor p 2= 5 of V,. Since p|U, = V,T;, Theorem
B (iii) shows that p+T; = U,. Thus psR*IN' = Nd and so by Theorem 2,

‘none of the subsequences {a,,,;} where 0 < i < 4 contain more than two

ocemrrences of d and at most one contains more than one occurrence of d.
Buf then the same must be true of the subsequences {@,,,,,} Wwhere
0 i< 4 Bo by the resulb of the last paragraph, {as,} contains at most
three occurrences of d. By Lenuna 7, it follows that m(d) < 4, and the
lemma is proved in the ecase where d is odd.
2} Suppose now that 4 i3 even. As in part 1) of the proof, the dio- -
phantine equation 1 —4° = +3™* has no solutions with s> 1. Hence
7; = 2(1—4%)/3 has a prime divisor p > 5.
In order to see that 3+¥,, first note that 3]T; if 5 = 0 (mod 3),
31U, if 8§ = 2 (mod 3), and 34U, for n > 0 if s =1 (mod 3) (since 3|’ in
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this last case). Now if 3|V, then 3|V}, = V, U, and so in particutar
s = 1{mod 3). ITn the other cases, we would have 3|Up,s = U; =1
and 3|Upq = Uz = £1 respectively. So 34V,.

Sinece M and N7 are both odd, it is easy to verify nsing Theorem B (iii)
that 2|V, if and only if 3)n; so in particular ¥, is odd. Since M’ = ¥} = 41,
Lemma 1 shows that ¥V, s 1. Therefore there exists a prime
divisor g =5 of V,. As before, if g|U; = Uy, then ¢|Uj 4y = Uy =1.
So g+, and hence g+ R*dN' = Nd. By Theorem 2 applied with the prime g,
it follows that @ oceurs at mest twice in {a,,,}. Since 2p[d, the integer d
oeeurs at most twice in {a,|2prtn} by Lemma 7. Thus m(d) < 4 and the
lemma is proved.
of d is ot most 4 if

M =225
{mod 4).

Leaxia 20, The multiplicity m(d)
— :}:2"” N = 2k+(__l)k+l’

k}.?;, and 17 =2

_1)k+1)5

© Proof. The sequence {V,,} satisfies a linear recurrence relation whose
characteristic polynomial [3, § 21 has discriminant _
UR (M —4N") = 27 —2513 1 (—1)%).
Since % == 3, the last factor has a prime divisor p = §; #o {V3,} has multi-
plicity at most two by Theorem A (iv). Also V; = M —2¥' is even,
* =2 (mod 4), and V, = +2*% By Theorem B (iii), it follows that 2%V}
and hence that 2%|Vy, ., for all n > 0. '
Suppose that for some odd integer m, we have T, = £2¥ where
& = £1. Then since 2%1 = (—1)* (mod M'*/2), we have
Vim +28™ = 2{e8%7 4 2% 4 (—1)™}
=2{e( -1 + (3 ~ 1)+ (—1)}
= 3(—1)f(e+1)™ (mod M),

7i:
Vs

But alse wince m is odd, M' = V1|V, and so V72 = 0 (mod M"?/2). Now
32 % 41 and is odd; combining results, it follows that & = —1.
Since 3{3" and 3+H"% we also know that 3+V,? for all u > 0. Therefore
for every # > 0, either there is a pume divisor p =35 of Py, or else
Visg = —2"

Now suppo:e that there is an odd prime divisor m of_ UZ I mfr,
then ViV, = +2* and so by the last paragraph, Vi, = "’“. I mir,
then again by the last paragraph, either Vf,m = —2% or else ¥, has
an odd prime divisor p > 5. Now p+N” and if ¥p{U,, then Vp, Cloamy = U
= M’ by Theorem B (ii}. But ¥ = ¥i|V,, and Vi, = V.2-2§™,
$0. we have p|[N' which we know to be false. Thérefore V}jfﬁ;_ahd 20
PTN'Rd = Nd. Since p|Vi, Ui B™ ' = U,,,, Theorem 2 implies that
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{®imn} contains at most iwo oceurrences of d. By Lemma T with # =
and @ = {2, m}, there are at most two occurrences of 4 in {a,} not con-
tained in {@y,,}; and so m{d) < 4. We have shown that if m is an odd prime
divisor of U2, then either m(d) < { or else V3, = —2%

Since ¥V, = M7 —-2N" = —2* and V,, is of multiplicity 2, the last
paragraph shows that m(d) < 4 if 2 is divisible by at least two distinet
odd primes. Now " = 2 (2% +( .1+ ix divisible for k>3 by an
odd prime, say m. By the minimality of , either r= 2 or else T is divis-
ible by some odd prime not dividing 3™ Therefore, we may assume
r=2 and MN? = 2m".

Suppose that ¥} is divisible by an odd prime p s m. Since 3|N*
and p+T,’ = M"”, we have p > 5 and p+Xd; thus by Theorem 2, d occurs
at most twice in { la'.,,,m 3. Lemma 7 applied with v = r and @ = {m} shows
that there are at most two occurrences of 4 not in {a,,,}, and so m{d) < 4.
Assume therefore that T2 is divisible by no primes other than 2 and m.
By Theorem B, m" iU, = U Ve and miUo; so w372 Similarly,

2V, Thus

T = £2m""* = em2l?. &= +1.
By the third paragraph of the proof, we may assume that V3, = —2%
But then
-2 = Y = V228" = em? 2N,

and so by the definitions of ¥’ and A",
2F™ L (=1 = (em® +1)M".

Since 2m"” = M = N’ +{ — 1%+, this gives
< 2({2mY (= 1 (1) = 2N (-1
= (em?+DM? =2em? 1) m" < 4m¥F2,
Since w = 1, this gives m™ 3 g 7rrz.""’(""‘”‘2 <4 and s0 m < 5. But m was

an odd prime divizor of M™%, and zo m = 3. This contradiction proves

~ the lemma.

6. Proof of the theorem. The notation and assumptions of Section 2
are retained. Suppose that there is an odd prime p with ]/fJ V,. Since
(M7, N}y =1, we have l’par\ Alzse ?/_”p'ff,. since (U7, V1)i2 by Theorem
B (ii); and so 54N 'dR® = ¥d. By Lemma 7, there iz at most one oceurrence
of @ in {a,} which does not lie in {a,,}. If p > 5, then, since p!T7.U R
= U7y, Theorem 2 implies that d occurs no more than three times in {a,,,}.
So m({d) < 4. Thus we may assume that 7, = 253" where 2k and 2m
are integers.

Next we treat the case where m > 0. We have seen that this 1mphes

_ that 3+¥d. By Lemma 16, we may assume that 3+ and that ¥ =2
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{mod 3). The sequenee {¥,} congidered modulo three then looks like
repetitions of the segment

2, M, 0, M, 1, 234, 0, 2 M ;

o that r =2 (mod 4) and V3+F,. Since I = 1 (mod 3), one can
verify that {e,} considered modulo three looks 11Le repetitions of the
segment

1,1,2,0,2,2,1, 0;
and so at most three of the subsequences {@,.;}, ¢ << 8 contain occur-
rences of d.

Ruppose that there is a prime p 3 5 with Vp|V,. If Vp|U., then by
Theorem B (i), Vp{T., Uy = | Tl = 10, = |2’]; and since Vp|Vi
= M*—AMPN' 2N we also have VpiN', which contradicts (M, N')
= 1. Therefore ¥p+ T, and so Vp+d, B. Also since Vp|V, and (M™%, N') =1,
we have p ¥’ and 50 p+dR*N" = Nd. Since also p}V, TR = U,, Theorem
2 together with the last paragraph shows that m{d)< 4. So we may
assume that no prime p == 5 divides ¥,

Since we have already seen that V31V,, we must have V, = 2%
wheree = - 1and ueZ. Since #/2 is odd, we have V3|V, and s0 ¥, = &' 2™
where ¢’ = L1, k', m'<Z. We have
(6) 2% =Ty = V7 —2N"? = 4¥9™ — 2§,

If 4 =0, then &' = 0 and the equation considered modulo 3 shows
that either m' > 0 and ¢ = 1 or elze m’ = 0. In the second case, the fact
that ¥ > 0 shows that s = —1, N2 =1, and ¥i = £1; but thiy is
impossible since by [3, Eq. (9)] it follows that the sequence {a,,} and
therefore {a,} is degenerate. By Lemma 8, the first case occurs only when
#' =1 and ¥’ = 2. Buf then since M*—2¥" = T, = 3¢, we see that
M = J_ﬂ/? or +1; so mi{d) < 4 by Lemma 12.

¥ % =1, then ¥ > 0 by (6). If m’ > 0, then reducing (6) modulo 3
shows that ¢ = —1, If m' = 0 and %" > 2, then reducing (6) modunlo 16
shows that N' is odd and ¢ = —1. If finally m’ =0, ¥’ =1, and ¢ =1,
then ¥*=1 and V,=2¢ which means that {s,,} and so {an} iz degener-
ate. Thus we may assume that & = —1. By Lemma 9, the only solutions
of (6) are then (X',m', ¥') = (2,0, 3) and (3,1, 17). The first solution
does not apply since we have 3+N’. Using M —2N' = V| = 2%3™
to solve for M, shows that the corresponding values of 3 are +V10
and +V58. 8o m{d)< 4 by Lemma 14

- Tfu>1,then (6 ) implies that &">0 and ¥ is even. But then 2] 2%3™ +
+2N = = M"* which contradicts (M', N') = 1. Thus the
argmuent of fhese last six paragraphs gshows that we may assume that
m =0, ie. V,= 2%

V:,—r..z
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The next part of the proof iz eoncerned with the case where r is odd.
Simce r is odd, V1|V, = 22%; and so, if ¥ = 0, then we would have a con-
tradietion with Lemma 1. Therefore & > 0. In particular, it cannot be
the case that ¥ is even and M is odd, since thiz would imply that ¥,
iz odd for all # > 0. Also if both ¥ and ™ are even, then (M, ¥) is even
and so U,* must also be even. But then since U7 = M ig even. Theorem
B (ili} shows that T is even exactly when # is even; so it follows that »
ecannot be odd. Finally if N is odd and ¥ is even, then m{d)< ¢ by
Lemma, 5. Thus we may assume that if r is odd, then both M and N’
are odd. ,

Now ¥ iz even exactly when 3{n; so 3lr. We have by [3, Bq. (4)],

V;-IS(VTM ~3N ”‘15) = Vr =4 2%,

Here % is an integer since V,,/M’ is an integer and V213", Now Vi
is an integer, and so this last equation implies that ¥}, is also an integer.
By Lemma 10, either r = 3 orelse ¥' =1 and V) = 2. By [3, Eq. (9],
the second possibility implies that {a,} and so {a,} are degenerate con-
trary to hypothesis. Thus r =3, and so ¥V, = M’ =& where & = 1.
Solving for N’ gives ¥’ = (17 s2%)/3. Since N’ > 0 i3 an integer, it must
be that F ¢ = 1 and % is odd. But then Lemma 19 shows that m(d) < 4.
This eompletes the proof in case r is odd.

Therefore we may assume that r is even; by Lemma 15, we can also
assume that N is even. Suppose in addition that 3 iz odd. Then V¥, for
a0 and a fortiori V.2 are cdd; so V, = 1. I 2%, then #[2° is odd,
and so V|V, = +1. By Lemma 1, it follows that 2° = ». We have

V32N =V, = +1.
If s> 2, then ¥, is an integer and so reducing the equation modulo 8
and uzing the parity of ¥', we see that the sign is positive. If 5= 3, we
therefore have a solution of the diophantine equation ¥2 = 2z*--1, which
by a theorem of Mordell [7] has (z,y) = {0, £1} as its only solutions.
Sinee N7 # 0, this ease cannot ocenr. Therefore s =1 or 2, and som(d) < 4
by. Lemmas 17 and 18. _ '
Assume from now ou that r, A, and N are all even. We first freat
the case where 2 IV If r i not & power of two, then r = 2mu where m
is odd and greater than one. We have

745 Ny ot o«
Vi —2N™ = Y = 2e,

V9N = Vi, =2 or &

where &, & = +1.

First consider the case where Vi, = ¢’. Since N and V) are odd,
it is easy to check by the recurrence relation that ¥, iz even precisely
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when 3in; therefore 3im, Vg |V, = 2¢ 2|V;,, and hence V), = 2" with
g’ = 4 1. But then '

D¢l — V:Su = 'V;u(véi_Si\wu) — 8’(1-—347_‘!7!1:);

. and so N'™ = (1 —2¢'¢")/3. Since ¥'* is an integer, we have &'¢’ = —1
2T : o
and N m_l. But then since Vi, = & = £1, the sequence {ay,,} and
hence {a,} is degenerate, contrary to hypothesis.
. y ] ¥p
Now consider the case where ¥y, = 2¢'. Since m is odd, V.|V, and
2 ? x - - * ’
a = Vip/V, 1s a rational integer. Using the above equations to solve
for a? gives
: (i\r’u)m+6
AT"!L_{__SI

[ j—

13

Since N > 0, Lemma 11 shows that either N' = 1 or else (¥, o, Wy Uy & £
=(2, £3,3,1,1, —1jor (3, £11,5,1, —1, —1). If ¥ — 1, then ¥/, = 0
or £2;and so by [3, Eq. (9}], {a,,) is degenerate contrary to hypothesis.
In the other cases, 2&' = V,, = V; = M"*—2N" ean be solved for M2y
and so we have

N =2, M'=2¥2 o N =3, M =12, r=10.

The first case does not oceur since (M’ﬁ,'N '} =1, and the second ecase
also does not oceur gince ¥, = Vj, = —482 = 4 2% Thus, if 2{F,, then r
must be a power of two. In particular, since N is odd, 2|V, and 3+r; it
must he that M’ is even. Using [3, Bq. (9)], it is easy to verify then that
2|V, for n3=0. .

Suppose now that, in addition, we have 8}r. Then with z — Vinl2,
we have

2 =V, = V3 —2N'™ = 4p° 9 (Nt

where = it 0dd and ¢ = -1, Reducing modulo 8 shows that ¢ = 1, and so
we have a solution of a diophantine equation

4 = Q2
Y1 = 27,

which by Mordell [6, p. 18] has solutions only when 22 = (W82 =1,
‘But then N"® =1, and Vy, = £2; 50 the sequence O} 1s degenerate
contrary to hypothesis. Thus, if 2)|¥,, we must have r =2 or 4. If » = 4.
then m(d) < 4 by Lemma 18. If # = 2, then M2 = V2N = 0 (mod 4;
and so m(d) < 4 by Lemma 17. Thus we may assume henceforth that two
does not exactly divide V); and so ¥, = +9* with & > 2.

Next we show that V23", T H'2 were 0dd, then since N' is odd and U2
is even, we have 3|r. But then 6]r, and so 2V2| Uy by Theorem B (iii).
By Theorem B (ii), it follows that V2. On the other hand, if 2} 3, then
since ¥ ’_ is odd, we have V,, =2 (mod 4) for all 42> 0. Tn either case,

icm

On a conjecture of Morgan TWard, 11 ) 47

we have a contradiction with the assumption made at the end of the last
paragraph. Therefore we have V2'M'.
Let us show that 2|y and 34r. Since Ty = ™4 MV 28" =2
(mod 1) and N = 1 (mod 4), we have by [3, Eq. {(#)] that
Vf;(m,-z) =2 r;(n.a.z) — Vin{mod ).
Since ¥y =V, =2 (mod 4), it follows that

Vi =2 (maod 4)

So 447 as asserted: It follows that #/2 is odd and so if 3)r, then V¥V, = 4+ 2%,
But it is easy to verify that

V) = VLA —4M N+ N7 = Vip,

for all n=0.

and y =5 (mod 8) sinee V2|’ and N’ is odd. Since no factor of 2%
is congruent to 5 modulo 8, we have a contradiction, thus proving that 3 4.
Now we can reduce to the ease where Uy = 1. In faet, Ty = H” —
—XN"is odd; and so in the eontrary case, Uy has an odd prime divisor p.
Since {M™, ¥'} = 1, we have p+N'; and since 347, Theorem B (iii} shows
that p+U,. Therefore p+tN'Rd = Nd and p|U;R* = U,. If p>= 5, The-
orem 2 shows that m{d) <3 =<4 If p =3, then N =1 (mod 3) since
3| M~ N = BHM?—~N") and 3+M = RM’; therefore m{d)<<4 by
TLemma 16. Thus we may assume that 2 — N =& & = 1. _
Since 2|, ViV, = £2% Now V, = M™—2N' is divisible by 4, and

50 Vi =&'2™ where 2<m<k, & = £1. Also, VoM’ = U, and so

V2|0 by Theorem B (iii). Therefore 277U, T, = U, and 2*'%|U, Vs

= U,,. Since 4!2r, Theorem B (iil) shows that m~-1/2 = k+1/2. Thus
Vo = &'9% — M"—2N'. Since also "N = ¢, we have

(1) N =e—e2*=g+2% and M =2(e—&2"") =2(+2"7)

where one has ¢ = —1 becanse N> 0.

Suppose that 3+¥". Then & = (—1)% and so 3|M* =.U;. There-
fore ¥3|U. and so 3|R? d. Since d is even, Lemma 7 implies that there
are at most two occeurrences of d in {#,} which do not lie in the subse-
quence {@g.,}. Since 2ir, we are reduced to showing that d oceurs at most
twice in {@,,, ). I there is a prime divisor ¢ = 5 of M2 — 3N, then ¢+ M", N’
sinee (M™, ¥') =1. Also qU; = U,V = U,M' (M= -3F"). 1§ VqU,,
then by Theorem B (ii), ‘ '

Val(TL, Tf) = Upg) = U4 = 1]

which is a contradiction. Thus Yq+U. and so grR*dN’ = Nd. Since g U,
Theorem 2 shows that d oceurs at most twice in {ag,}, and so m(d) < 4.
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Therefore we may assuine that 32 —38" = 13"
and {7), we see this can be written as

£ 3725 =
¥
The sign surely must be negative; and so by a theorem of LeVeque (£, 2D,

we have (v, k) = (2, 2), {1, 1), or (1, 0). We have already seen that % > 2.
8o k =2 and the corresponding values of ¥ and M’ are

M = +V6.

But then ¥; = 236 which is divisible by 59. If V59|07, then V58 |(T%,, U))
= Uyl = | M|, But then since 59|V = {M'(M?—3N"))— 2N, we
have 59/ N' contrary to (M’ N') = 1. So 59+Nd, and Theorem 2 shows
that {am} contains no more than two occurrences of d; therefore m(d) < 4.
The only remaining case is that in which 3| By (7), we see then
that ¢ = { —1)** and =o

M® =22 4 (—1P*)  and

If & = 2, then m(d) < 4 by Lemma 13. For & 2= 3, the result follows from
Lemma 20, and so the proof of the theorem is complete.

Using & = {—1)*

— 1)+,

N =5 and

_N‘t - 2k+(_1)k+1-
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Proper solutions of the imbedding problem
with restricted ramification

by

OrA¥ NmuMANY {Berlin)

Let k be a field, % its separable algebraic closure with the Galois
group ® = Gal(Z/k). An imbedding problem is defined by a diagram

&

(1) v
¥
B} d——G—>F—— {1}

where A,@, ¥ denote finite groups. All arrows are group homomor-
phisms and the horizontal sequence is exact. We assume ¢ surjective.
Hence, the kernel of ¢, ®, = Kerg, determines a finite normal extension
K[k with Gal{E %k} o F. A solution of the imbedding problem (1) is by
definition & homomorphism y: GG satisfying the condition joyp = ¢.
w is ealled a proper solution if and only if it is surjective.

Let & he a global field, ie., a finife algebraic number field or an al-
gebraic function field of one variable over a finite constant field. By kg
we denote the maximal normal extension of % unramified outside the
given set of primes 8. Let ®g be the group Gal(kg/k). I § contains all
ramification points of the extension K[k ocewrring in the dlagra,m (1),
we ean factorize ¢ through the group Gg:

@""’L (ﬁs .
(13) -7 B . 7y

Qs d—r G e (1}

We say (1) admits a solution y unramified outside § if and only if (1g)
admits a solution pg: Gg—>G with jowg = g5 and yp = yy0mg Where mg
denotes the canonical epimorphism ®—»Gg.

The main result of the present paper is the following
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