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Therefore we may assuine that 32 —38" = 13"
and {7), we see this can be written as

£ 3725 =
¥
The sign surely must be negative; and so by a theorem of LeVeque (£, 2D,

we have (v, k) = (2, 2), {1, 1), or (1, 0). We have already seen that % > 2.
8o k =2 and the corresponding values of ¥ and M’ are

M = +V6.

But then ¥; = 236 which is divisible by 59. If V59|07, then V58 |(T%,, U))
= Uyl = | M|, But then since 59|V = {M'(M?—3N"))— 2N, we
have 59/ N' contrary to (M’ N') = 1. So 59+Nd, and Theorem 2 shows
that {am} contains no more than two occurrences of d; therefore m(d) < 4.
The only remaining case is that in which 3| By (7), we see then
that ¢ = { —1)** and =o

M® =22 4 (—1P*)  and

If & = 2, then m(d) < 4 by Lemma 13. For & 2= 3, the result follows from
Lemma 20, and so the proof of the theorem is complete.

Using & = {—1)*

— 1)+,

N =5 and

_N‘t - 2k+(_1)k+1-
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Proper solutions of the imbedding problem
with restricted ramification

by

OrA¥ NmuMANY {Berlin)

Let k be a field, % its separable algebraic closure with the Galois
group ® = Gal(Z/k). An imbedding problem is defined by a diagram

&

(1) v
¥
B} d——G—>F—— {1}

where A,@, ¥ denote finite groups. All arrows are group homomor-
phisms and the horizontal sequence is exact. We assume ¢ surjective.
Hence, the kernel of ¢, ®, = Kerg, determines a finite normal extension
K[k with Gal{E %k} o F. A solution of the imbedding problem (1) is by
definition & homomorphism y: GG satisfying the condition joyp = ¢.
w is ealled a proper solution if and only if it is surjective.

Let & he a global field, ie., a finife algebraic number field or an al-
gebraic function field of one variable over a finite constant field. By kg
we denote the maximal normal extension of % unramified outside the
given set of primes 8. Let ®g be the group Gal(kg/k). I § contains all
ramification points of the extension K[k ocewrring in the dlagra,m (1),
we ean factorize ¢ through the group Gg:

@""’L (ﬁs .
(13) -7 B . 7y

Qs d—r G e (1}

We say (1) admits a solution y unramified outside § if and only if (1g)
admits a solution pg: Gg—>G with jowg = g5 and yp = yy0mg Where mg
denotes the canonical epimorphism ®—»Gg.

The main result of the present paper is the following
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THEOREM. Suppose & is a global field, K[k is o given finite normal
extension with F = Gal(K k), A « finite P-module with charkcard 4.
Then every imbedding problem (1) with at least one solution admits o proper
solution unramified oulside & suilable finite set of primes Sudgy, coey Q)
Here 8 depends only on w = exponent of 4 and on the ewxtension I ( Cn)ﬂ (L,
denotes @ primitive n-th voot of unity). The sei {Gry -1 Q) 18 disjoint to 8
and consists of m different primes fotally decomposed in the extension
k{4, 5,)/k, m being the length of ¢ F-composition ser ies of A. (By k{4, 5,)/k
we denote the field k(4)(Z,) where k{A) is the field corresponding to the fix
group of 4.} :

The theorem constitutes a strengthened version of results of Tkeda [3]
and Iikhanov [4]

For the proof of the theorem, we introduce the following notations:
k, — the p-adic closure of k; k, — a separable algebraic closure of Kﬂp, k-
the maximal unramified extension of k, contained in k,; T, = Gal(k,[kL");

i (k,, 4) = Im[inf: H* (K" /k,, 4 ") —+H1( oKy, A) L

The following key proposition is denved from Tate’s global duality
theorem ({97, [2]).

PROPOSITION (see [6], Behauptung). Under the aesumptwns of our
theorem there exists a finile set of primes 8 eontaining all ramification poinis
of K|k and depending only on n = exponent of A and on the ewtension
K (L)% such that for any finite set T of primes disjoint to 8 and any finite
F-module A with charktcard A the eanonical mop

D) H Ry, A)[Hy (i, 4)

pel’

- H'(kguplk, 4)—~

8 suuectw :

In the paper [8] the author deseribed a class of sets § qa’maf*ymo the
conditions of this proposition. :

Proof of the theorem. We fix a diagram (1) with at least one
solution. Suppose that the corresponding group extension is given by
the cohomology class e H*(F, A). Let be ®, = Kerg = Gal(k/K). Tt
ijs well-known that the existence of a scohution of (1) amounts to the exist-
ence of a certain element y<H'(®,, 4)¥ going over vis the transgression
map H (G, A)~HF, A) into the given class e H*(F, 4). The whole
set of all solutions of (1) is described by the sums x4 wsHl(fﬁo, V¥ where

= Resa, ac B, 4), Res: H'(B, A)—aﬂl((ﬁe,A) (cf. Neukiveh [5],
§1 The analogous facts hold for the solutions of (1g).

By results of Tikhanov [4] and the anthor [6], there exists a finite
set of primes S with all properties requived in our proposition such that
our soluble imbedding problem (1) has a solution, v (say), unramified
outside §. Starting from this zolution we proceed by induction on m
{=length of the F-module 4). Choose the F-submodule 4, of 4 such
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that 4[4, is an frreducible F-module == {0%. Obviously, 4, is a normal
subgroup in @, and the canonieal epimorphism G—6/4, vields a new
imbedding problem:

G2 6
!
d LYk
IS —— G, F {1}.

Every sclution y of (1) gives us a solution ¢ of (2).

Let g, =q be a prime of the gronnd field % totally decomposed in
the extension k(d4, {,)/k and different from all primes lying in S. By
the well-known facts (see an elementary proof by Dress [1]), such & prime
ideal always exists. Set I, = kq(?f'/:zq) where 7, denctes 2 prime element
for q. Lk, is & totally ramified eyclic extension of degree n. Let a<d be

an arbitvary element of 4 with a¢.4;. If we map a generator of Gal (Lq[Rq)
onto the element 4, we get a non-frivial homomorphism

9t Gal{Lyfh)—~ A

whereas the composition with the eanonical map 4—4 /A1 is still a non-
trivial homomorphizm

fg: Gal(L/k)—A/4,.
By the choice of g the group Gal(k,/k,) acts trivially on 4, and we get
elements
) 77q€H1'(7"'q:A): "?q!"‘H:}wU"q: A},

ﬁqEHI (k‘q: 414} ;fqéﬂilu-(kq: Afd,)

By the proposition stated above, thers is an element o from H*( Gsuggy )
which localizes at q just to the given class

Ng = Hgmod Hru(ky, ) = a'.

Set 6" = Ggum: Oy = Gal{kg u/E). To the solution v of (1) unrami-
fied outside & corresponds a solution pg of (1g) and we can associsbe

to wy an element ygeH (kg/X, 4). Then

w' = Res (@' —+6p) o' e H (kg /K, 4)F
and '
zg = inf (H' (kg/K , A)F—H( (som/E, A)Y) zs
give a new solution ¢’ of (1) corresponding to yg+ o <H*( (Bgum K, A
and a solution ' of (2) romespondmo 10 (xg+ o) e H (kgou K, 4457
Thus we have solutions 3 resp. ¢ unramified outside §w{g;}. This la,st
solution induces & proper solution of (2) because localization at q and the
map Ad—4]/d4, show that the fixed field, L (say), of the kernel of (y5+ o)
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does not eoincide with K. On the other hand, Gal(L/K) is a F-submodule
of AJA,, henee, in virtue of the F—nreduclbﬂlty of A/4,, it must be
isomorphic to A/4,. In this way, the solution  defines a third imbedding
problem:

//6
v J{E
‘(/
(3) {1} A,—> @ G4, = Fy—— {1}
}——sA—¢ > F—s {1}

F, acts via the canonical epimorphism F,—¥ on the F-module 4,. The
F.length of the Fy-modnle 4, is not greater than (m —1). Now by induc-
tion the proof is complete because for the new module 4, the field k(4,, {,)
is contained in the field k{4, {,).

T would like to thank H.-J. Fitzner (Berlin) who critically read a
preliminary version of this paper.

References

[11 A.Dress, Zu einem Satz aus der Theorie der algebraischen Zahlen, J. Reine Angew.
. Math. 216 {1964), pp. 218-219.

{21 K. Haberland, Der Tatesche Dualifdtssatz aus der Galots-Iokomologie iiber Zahl-
Lorpern, Dissertation, Berlin 1975.

[3] M. Ikeda, Zur Existens eigenilicher galoisscher Korper beim Binbettungsproblem,
Abh. Math. Sem. Univ. Hamburg 24 {1960), pp. 126-131.

{4 B. B. Umxanos, Jadava nozpy»cenus ¢ ozpanwienwmss semezenuem, Wasecrms AH
CCCP, cepra mMaTem. 36: 4 (1972), pp. 742-T48.

[5] J. NWeukirch, Uber das Einbetlungsproblem der algebmzschen Zahlmtheo'rw,
Invent. Math. 21 (1973), pp. 59-116.

{6] O. Noumann, Uber das Hinbetiungsproblem fiir globale Korper bei beschrankter
Verzweiguny, Math., Nachr. 71 (1976), pp. 147-152. '

[7]  G.Poiton, Cohomologie Galoisienne des modules finis, Paris 1967,

[8] J.-P. Berre, Ushomologie Galoigienne, Lecture notes in mathematies 5, Berlin—
Gottingen—Heidelberg 1964.

[9] J.Tate, Duality theorems in Galois cahomology over aumber fields, Proceed. Intern.
Congr. Math. Stockholm, 1962, pp. 288-202.

AKADEMIE DER WISSENSCHAFTEN DER DDR
ZENTRALINSTITUT FUR MATHEMATIE UND MECHANIE

Berlin, PDR

Received on 28. 7. 1975 {(747)

icm

ACTA ARITHMETICA
XXXIIT {(1977)

A new equidistribution property of norms of ideals
in given classes

by
k. W. K. OponI (Exeter)
0. Introduction. ¥n. [4] the author obtained. the following theorem:

Let K be a finite extension of Q, the rational field. If (€} 15 any
non-emply collection of narrow ideal classes of K, then the number of natural

numbers < @ which are norms of integral ideals in | ¥; is asymptotically

feJ
(0.1) DK, Ty (loge B {1 4 OK,J(log-:l?)_c’(E"n},

where D(K, J) and C{K, J) are positive and E(K) is the Dirichlet density
of the set of rational primes admitling in K at least one prime ideal factor
of residual degree wunity.

Owing to the great comyplexity of the proof of (0.1) it was not feasible
in [4] to attempt a discussion of the relations between the D(E, J), as J
varies. It is natural to expect that DK, J,) equals D(K, J,) if J; and J,
are singletons, since the weighted sums

(0.2) | P!

ne, Nas{r
are well-lmown to be asymptotically the same for all classes ¥. However,
the unweighted sums in (0.1) are much more difficult to handle. In this
paper, we shall prove the following results:
THEOREM 1. For singletons J,, D(X,J;) = D(E, J,).
TewoREM 2. If K /O is normal, then all but a proportion '

: OK((luglogm)A(K)/(logw)E(K))

of the imtegers < x which are norms of integral ideals in & given dass € are
norms of integral ideals of each class in the cosel % H, where H is the group
of narvow classes containing fractional ideals of norm wnity. (The constant
B(E) is pogitive.)

We remark that if n = Na = Nb, where ae% and b2, then ¥9~'<H,
s0o ¥H = 2H, and this indicates the strength of Theorem 2. We also
prove



