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On character sums and the non-vanishing for s> 0 of
Dirichlet L-series belonging to real odd characters

by

8. Cmowna (Princeton, N. J.), 1. KussLER, and M. LIvINGSTON
(Bdwardsville, T11.)

1. Iniroduction. Let y be a real non-principal character modk. I

(1.1) - Malmy=0  for all 3

=l

it follows by partial summation that

has no real zeros in the inferval 0 <s<C1,

1.2 L, = D B

=1
and

(1.3) L(1,%)>¢ where ¢ is some positive absolute constant > 2/8.

At the present time it is not known if there are infinitely many real primi-

tive characters y for which (1.2) helds. On the other hand, it has been

— {1, 4
ghown that if  is a real primitive character mod k then lim—(—’i)
1o loglogk

"> 0 ([2], [8]), but it is unknown if the k% for which (1.3) holds have & non-

zero density in the sequence of positive integers.

The results of our numerical investigations concerning the primes
p =3 (mod 4} for which (1.1) holds suggest that these primes possess
a positive limiting frequency in the sequence of all rational primes =3
(mod 4). Our results in this connection are presented in Section 2 of this
paper. In the third section we have given & brief account of related recent
work and open problems on character sums. The final section ¢onsists of
tables displaying pertinent computational Tesults.

2. In this section we assume x is a real primitive character mod &,
where % is prime, and thus we may take yx(m) to be the Legendre sym-

“n
bol l—].
O(k)
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o0
Lo

First, we note that if & = g is prime and ¢ = 1 (mod 4) then (1.1}
cannot hold becaunse of the identity '

TW KL ¢ l;
PACESS
pal [

We investigated the condition

i . —1
(2.1} Z\}E)zo for w:1,2,...,q2 :

n=1

for primes ¢ = 1 (mod 4) and found that (2.1) does not hold if ¢ < 43000
exeept for g = 5,13, 37. Elementary eonbidela,tlons and the identity

,\_1 (q—b) =0 for

q

™
(f) =@ for O=<m=<g-—1.

2 g = 13 (mod 24)
L<n<qi6

due to Johnson and Mitehell, [T], show that if (2.1) holds for ¢ then

B BB

Tt would be interesiing to determine if 37 is the last prime =1 (mod 4)
for which (2.1) holds.

For the remainder of this section we let p denote a prime = 3 (mod 4)
and we concern ourselves with those p which satisfy (1.1). Let |4] denote
‘the cardinality of the set A, let z(y; 4, 3) be the number of p <y and

get
Bly) = {‘PI p<y and ( ) 0 for all m}
and
B
PO = g4, 3)

Our computational results on f#(y), summarized in Table I, have led us '

to propose the following conjectures:
ConyuzoruRE 1. Hm |B{y)| = -+ oco.
YD

ConIRCTURE 2. img(y) > 0.
Y0

It would be interesting to determine even if ljm ﬁ ) exists.

Although we have been unable to obtain any lower bound for lim ﬁ y)

y—»oo
other than zero. we can more rea.dﬂy obtain a non-trivial upper bonxid as
the next theorem shows.

icm
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. TeEEOREM 2.1.
limpB(y) < .44.

Y00
Proof. Let r <r.<..<r, bhe all the primes <<z, Ileot
g={(&1, gy ..~, &) Where & = +1 for 1<Ci< k, and for n = rylp ... 73%%

an integer <{ 2 we define y (n) = &1ed2...

such that (;;) =g forl<

efk Note that if p is a prime
b
Z. then x,(n) = (p) for » < . Now, set

Wk‘ﬁ {E m(gl, Egg reny Ek)] & = :]:1 fOI‘ 1 ;u 3:11(1

5’/; (n) =0 for all m< m}

n==1

and

P.ly) = {pi p <y and there is an ¢ in Wy sueh that

s .
1—9 = g for 1§m€k}
m »
={1’[ p<y and 2(1—3)20 for ?ngm}.
Nl

Cleaxly then
RB{y) = P.{y) for all y and %
and

Iim 8(y) < 1'm——-—i x(9)! for all k.
Y00

e (Y54, 3)

It follows from the prime number theorem for arithmetic progressions,
the Chinese remainder theorem, and the law of quadratic reciprocity that,
for each ¢ in Wk,

I{pl p=<<y and (P) =g for 1gi<k”

—1 1 1 :
'_I]t )(m&amn.u>kéy+”(kéy»

=2

and hence that
defl_ [Erly}l P ()] Wy
—_ 2T = lm — =—
yroo (Y54, 3]y w(y; 4, 3) 2
Now u, for any specific value of &, provides an upper bound for lim Blyy;

Y0

the larger the & the better the bound since {u.} is monotone decreasing.




84 8. Chowla, I. Kessler, and M. Livingston

Computation of the g;’s is more readily accomplished in terms of the #’s
below.
Let
i

m
Tp(m) = {s i Zz,(-n) =0 for isLm—1 and Z;{,(%) < O}
n=1 n=l
and set
Logmim) = T(m} = where m(m) is the number of primes < m.
Thus, for example,

&)l & = £1 for 3Li <k},

T3y ={(—1, =1, 8, ...,
rm={1, -1, -1, -1),(-1,1, ; =1},
and
reh =6 for 1=0,1,2,...
‘We have
&
det
B2 Z w(m)| = sz-“‘*ﬂw(mn
= 1 m=1I me=1
and
LS b
g = ok _1_2_1:'

At léast for small m, computation of |T(m)| is fairly straightforward.
We have included in Table IT the values of 4, and £,/2" for 2 < k< 17
and we may now eomplete the proof of Theorem 2.1 by observing that
e e T = '
We close this section with a conjecture slightly stlongel than Con-
jecture 1.

CONTECTURE 3. Let Py < Ty < ceo <X Py, be the fivst m primes. If p s

the least prime =3 (mod 4) for which (il—) = (?2) == (-?ﬂ) = +1 |
AP » P

then

A :
y (__) =0  foral a.
pras) p
n=1

The values of p = p(m) for 1 < m < 10 are given in Table ITI and
we have fom:_td Conjecture 3 to be valid in each of these cases.

3. In thig section y denotes @ real mon-principal character mod k.
Recently, 8. Chowla, P. Hartung, and M. J. deLeon, [5], proposed the
following

icm
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Hyroruesis J. To every odd veal primitive character ymodk there
exists & real principal character 4, med &', such that

2 Z(n)p(n) =0
ez

G. Purdy, [12], verified Hypothesis J for & < 800000 apart from 3
possible exceptions and his results together with those of M. Low [11],
imply that L(s, ) %= 0 for 0 < s <1 and y a real odd primitive character
mod k for k<< 800000. H. b. Montgomery has suggested proving a con-
verse to this hypothesis, namely:

If L(s, 3) %0 for 0 < s <1 then there is a character y', induced by ¥,

such that
DA m=0

T

for all z.

for all 2= 0.

Let A(n) =logp if n = p® and A{n) = ¢ otherwise. 8. Knapowski

. and P. Toran, [9], have shown that if L(s, x) 7 0 for 0 << s < 1 and all

characters y mod &k then

A(n) -+ ex*?—*
n=l(mod k)
K

Af{n)—

n=I{mod k)
. n<z

" cannot be of constant sign as #—>oo for any fixed value of ¢, positive or

negative, ¢ >0, (I, %) = 1, I = 1. In the same fashion we can show that
if L(s,y) #0 for 0 <s<1 and yx is & real, odd, prmutwe character
mod % then

(3.1) 3 amy Am)+ ot
ﬂ-{z

cannot be of constant sign.
Thug, if k< 800000 and y odd and primitive, then expression (3.1)
changes sign infinitely often as z— oo for every fized real value of cand ¢ 0.
J. Littlewood, [10], showed that the assuroption of fhe extended
Riemann Hypothesis leads to

3.2y _ L(1, xy = O(loglogk)
and
(3.3) : L(1, y) = 2(loglogk).

8. Chowla, [4], proved that (3.3) holds without any assumption. However,
t0.date there has been no improvement of L{1, y) = O(logk) and it would
be of interest to be able to replace the big “0 here by a little. 7
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Finally, we would like to mention results relating the size of L(1, y)
with the sums '

2 z{n).

A, Gelfond, 6], showed that if ¥ iz a real nonprineipal :ch&ra.cter mod
k and ¢ =max |} y(n)| then

x>l sy
¢
IL{L, 2}l > for  ¢> go-
qlogg
E. Bombieli, [3], proved that if y is a real non-principal character mod &
and } y(n)= —¢ then
nGa
-
L(1 = ————,
2= 16{g+1)
Table I
¥ nly; £, 3) | | B ()] i it}
0643 600 | 248 41333
21191 1200 448 .37333
33361 1800 652 .36222
46171 2400 849 .35375
59167 3000 1053 35100
72547 3600 1255 .34881
36143 4200 1455 34443
99787 4800 1639 .34146-
T 113567 5400 1828 .33852
127363 6000 2013 .33550
141707 6600 2903 .33379
156181 7200 2385 .33125
170603 7800 2569 .32936
175727 8000 2626 .32825
Table I1
k- tk 2k k & /2%
2 1 250 10 503 .491
3 2 250 11 1028 502
4 6 375 12 2106 514
5 13 . A06 13 4294 524
8 27 422 14 3698 531
o 58 453 15 17874 545
8 119 A65 16 36457 556
9 248 A84 17 73481 .561

[4]
[5]

[6]

[71

[81

[91
[10]
[113

2]
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Table III
m ! m) {1) “ (i { plmi(h)
1 i 7 6 1559
2 23 7 5711
3 1 71 8 10559
4 311 9 18191
5 \ 479 10 31391

(1) Here p(m) denotes the least prime p =3 (mod 4} for which (3) = (i)
P

e

= -1, whera p,, denotes the mth pirme.
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