## References

- N. G. de Bruijn, On the number of uncancelled elements in the sieve of Encesthenes, Indag. Math. 12 (1950), pp. 247-256.
- [2] On the number of positive integers < x and free of prime factors > y, ibid. (1951), pp. 50-60.
- [3] The asymptotic behaviour of a function occurring in the theory of primes, J. Ind. Math. Soc. (N.S.) 15 (1951), pp. 25-32.
- [4] P. Erdös, On some properties of prime factors of integers, Nagoya Math. J. (1966), pp. 617-623.
- [5] C. G. Esseen, Fourier analysis of distribution functions. A mathematical stuof the Laplace-Gaussian law, Acta Math. 77 (1945), pp. 1-125.

Received on 18. 8. 1975

ACTA ARITHMETICA XXXIII (1977)

On character sums and the non-vanishing for s>0 of Dirichlet L-series belonging to real odd characters  $\chi$ 

by

- S. CHOWLA (Princeton, N. J.), I. KESSLER, and M. LIVINGSTON (Edwardsville, Ill.)
- 1. Introduction. Let  $\chi$  be a real non-principal character mod k. If

(1.1) 
$$\sum_{n=1}^{x} \chi(n) \geqslant 0 \quad \text{for all } x$$

it follows by partial summation that

(1.2)  $L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$  has no real zeros in the interval 0 < s < 1,

and

(1.3)  $L(1,\chi) > c$  where c is some positive absolute constant > 2/3. At the present time it is not known if there are infinitely many real primitive characters  $\chi$  for which (1.2) holds. On the other hand, it has been shown that if  $\chi$  is a real primitive character mod k then  $\overline{\lim_{k\to\infty}} \frac{L(1,\chi)}{\log\log k} > 0$  ([2], [8]), but it is unknown if the k's for which (1.3) holds have a nonzero density in the sequence of positive integers.

The results of our numerical investigations concerning the primes  $p \equiv 3 \pmod 4$  for which (1.1) holds suggest that these primes possess a positive limiting frequency in the sequence of all rational primes  $\equiv 3 \pmod 4$ . Our results in this connection are presented in Section 2 of this paper. In the third section we have given a brief account of related recent work and open problems on character sums. The final section consists of tables displaying pertinent computational results.

2. In this section we assume  $\chi$  is a real primitive character mod k, where k is prime, and thus we may take  $\chi(n)$  to be the Legendre symbol  $\binom{n}{k}$ .

<sup>6 -</sup> Acta Arithmetica XXXIII,1

On character sums

83

First, we note that if k=q is prime and  $q\equiv 1\ (\mathrm{mod}\ 4)$  then (1.1) cannot hold because of the identity

$$\sum_{n=1}^{m} \left(\frac{n}{q}\right) + \sum_{n=1}^{q-1} \left(\frac{n}{q}\right) = 0 \quad \text{for} \quad 0 \leqslant m \leqslant q-1.$$

We investigated the condition

(2.1) 
$$\sum_{n=1}^{\infty} \binom{n}{q} \ge 0 \quad \text{for} \quad x = 1, 2, ..., \frac{q-1}{2}$$

for primes  $q \equiv 1 \pmod{4}$  and found that (2.1) does not hold if  $q \leq 43\,000$  except for q = 5, 13, 37. Elementary considerations and the identity

$$\sum_{1 \le n < q \mid k} \left( \frac{n}{q} \right) = 0 \quad \text{for} \quad q = 13 \pmod{24}$$

due to Johnson and Mitchell, [7], show that if (2.1) holds for q then

$$\binom{2}{q} = \binom{5}{q} = +1$$
 and  $\binom{3}{q} = \binom{7}{q} = -1$ .

It would be interesting to determine if 37 is the last prime  $\equiv 1 \pmod{4}$  for which (2.1) holds.

For the remainder of this section we let p denote a prime  $\equiv 3 \pmod 4$  and we concern ourselves with those p which satisfy (1.1). Let |A| denote the cardinality of the set A, let  $\pi(y; 4, 3)$  be the number of  $p \leqslant y$  and set

$$B(y) = \left\{ p \mid p \leqslant y \text{ and } \sum_{n=1}^{m} \left(\frac{n}{p}\right) \geqslant 0 \text{ for all } m \right\}$$

and

$$\beta(y) = \frac{|B(y)|}{\pi(y;4,3)}.$$

Our computational results on  $\beta(y)$ , summarized in Table I, have led us to propose the following conjectures:

Conjecture 1.  $\lim_{y\to\infty}|B(y)|=+\infty$ .

Conjecture 2.  $\lim \beta(y) > 0$ .

It would be interesting to determine even if  $\lim_{x\to a} \beta(y)$  exists.

Although we have been unable to obtain any lower bound for  $\lim_{\overline{y\to\infty}} \beta(y)$  other than zero we can more readily obtain a non-trivial upper bound as the next theorem shows.



THEOREM 2.1.

$$\overline{\lim}_{y\to\infty}\beta(y)\leqslant .44$$
.

Proof. Let  $r_1 < r_2 < \ldots < r_k$  be all the primes  $\leqslant x$ , let  $\varepsilon = (\varepsilon_1, \, \varepsilon_2, \, \ldots, \, \varepsilon_k)$  where  $\varepsilon_i = \pm 1$  for  $1 \leqslant i \leqslant k$ , and for  $n = r_1^{\alpha_1} r_2^{\alpha_2} \ldots r_k^{\alpha_k}$  an integer  $\leqslant x$  we define  $\chi_{\varepsilon}(n) = \varepsilon_1^{\alpha_1} \varepsilon_2^{\alpha_2} \ldots \varepsilon_k^{\alpha_k}$ . Note that if p is a prime such that  $\left(\frac{r_i}{p}\right) = \varepsilon_i$  for  $1 \leqslant i \leqslant k$  then  $\chi_{\varepsilon}(n) = \left(\frac{n}{p}\right)$  for  $n \leqslant x$ . Now, set

$$W_k = \{ \varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k) | \ \varepsilon_i = \pm 1 \ \text{for} \ 1 \leqslant i \leqslant k \ \text{and}$$

$$\sum_{n=1}^m \chi_{\varepsilon}(n) \geqslant 0 \text{ for all } m \leqslant x \Big\}$$

and

 $P_k(y) = \{ p | p \leqslant y \text{ and there is an } \varepsilon \text{ in } W_k \text{ such that }$ 

$$\left(\frac{r_i}{p}\right) = \varepsilon_i \text{ for } 1 \leqslant i \leqslant k$$

$$=\Big\{p\mid p\leqslant y \text{ and } \sum_{n=1}^m\left(\frac{n}{p}\right)\geqslant 0 \text{ for } m\leqslant x\Big\}.$$

Clearly then

$$B(y) \subseteq P_k(y)$$
 for all  $y$  and  $k$ 

and

$$\overline{\lim_{y\to\infty}} \ \beta(y) \leqslant \lim_{y\to\infty} \frac{|P_k(y)|}{\pi(y;4,3)} \quad \text{ for all } \ k.$$

It follows from the prime number theorem for arithmetic progressions, the Chinese remainder theorem, and the law of quadratic reciprocity that, for each  $\varepsilon$  in  $W_k$ ,

$$\begin{split} \left| \left\{ p \mid \ p \leqslant y \ \text{ and } \left( \frac{r_i}{p} \right) = \varepsilon_i \ \text{for } \ 1 \leqslant i \leqslant k \right\} \right| \\ &= \prod_{i=2}^k \left( \frac{r_i - 1}{2} \right) \left( \frac{1}{\varphi(8r_2 \, r_3 \, \dots \, r_k)} \, \frac{y}{\log y} + o\left( \frac{y}{\log y} \right) \right) \end{split}$$

and hence that

$$\mu_k \stackrel{\text{def}}{=} \overline{\lim}_{y \to \infty} \frac{|P_k(y)|}{\pi(y; 4, 3)} = \lim_{y \to \infty} \frac{|P_k(y)|}{\pi(y; 4, 3)} = \frac{|W_k|}{2^k}.$$

Now  $\mu_k$ , for any specific value of k, provides an upper bound for  $\lim_{y\to\infty} \beta(y)$ ; the larger the k the better the bound since  $\{\mu_k\}$  is monotone decreasing.

Computation of the  $\mu_k$ 's is more readily accomplished in terms of the  $t_k$ 's below.

Let

$$T_k(m) = \left\{ \varepsilon \mid \sum_{n=1}^i \chi_{\varepsilon}(n) \geqslant 0 \text{ for } i \leqslant m-1 \text{ and } \sum_{n=1}^m \chi_{\varepsilon}(n) < 0 \right\}$$

and set

 $T_{\pi(m)}(m) = T(m)$  where  $\pi(m)$  is the number of primes  $\leqslant m$ . Thus, for example,

$$egin{aligned} T_{k}(3) &= \{(-1,\ -1,\ arepsilon_{3},\ \ldots,\ arepsilon_{k})|\ arepsilon_{i} &=\ \pm 1\ ext{ for }\ 3\leqslant i\leqslant k\}, \ T(7) &= \{(1,\ -1,\ -1,\ -1),\ (-1,\ 1,\ -1,\ -1)\}, \end{aligned}$$

and

$$T(2l) = \emptyset$$
 for  $l = 0, 1, 2, \dots$ 

We have

$$t_k \stackrel{\text{def}}{=} \big| \bigcup_{m=1}^x |T_k(m)| = \sum_{m=1}^x |T_k(m)| = \sum_{m=1}^x 2^{k-n(m)} |T(m)|$$

and

$$\mu_k = \frac{|W_k|}{2^k} = 1 - \frac{t_k}{2^k}.$$

At least for small m, computation of |T(m)| is fairly straightforward. We have included in Table II the values of  $t_k$  and  $t_k/2^k$  for  $2 \le k \le 17$  and we may now complete the proof of Theorem 2.1 by observing that  $\mu_{17} = 1 - t_{17}/2^{17} \le .44$ .

We close this section with a conjecture slightly stronger than Conjecture 1.

Conjecture 3. Let  $r_1 < r_2 < \ldots < r_m$  be the first m primes. If p is the least prime  $\equiv 3 \pmod 4$  for which  $\left(\frac{r_1}{p}\right) = \left(\frac{r_2}{p}\right) = \ldots = \left(\frac{r_m}{p}\right) = +1$  then

$$\sum_{n=1}^{x} \left( \frac{n}{p} \right) \geqslant 0 \quad \text{for all } x.$$

The values of p = p(m) for  $1 \le m \le 10$  are given in Table III and we have found Conjecture 3 to be valid in each of these cases.

3. In this section  $\chi$  denotes a real non-principal character mod k. Recently, S. Chowla, P. Hartung, and M. J. deLeon, [5], proposed the following

Hypothesis J. To every odd real primitive character  $\chi \mod k$  there exists a real principal character  $\chi_0 \mod k'$ , such that

$$\sum_{n \leq x} \chi(n) \chi_0(n) \geqslant 0 \quad \text{for all } x.$$

G. Purdy, [12], verified Hypothesis J for  $k < 800\,000$  apart from 3 possible exceptions and his results together with those of M. Low [11], imply that  $L(s,\chi) \neq 0$  for 0 < s < 1 and  $\chi$  a real odd primitive character mod k for  $k < 800\,000$ . H. L. Montgomery has suggested proving a converse to this hypothesis, namely:

If  $L(s, \chi) \neq 0$  for 0 < s < 1 then there is a character  $\chi'$ , induced by  $\chi$ , such that

$$\sum_{n \leq x} \chi'(n) \geqslant 0 \quad \text{for all } x \geqslant 0.$$

Let  $\Lambda(n) = \log p$  if  $n = p^a$  and  $\Lambda(n) = 0$  otherwise. S. Knapowski and P. Turán, [9], have shown that if  $L(s, \chi) \neq 0$  for 0 < s < 1 and all characters  $\chi \mod k$  then

$$\sum_{\substack{n=1 \pmod{k} \\ n \leqslant x}} \Lambda(n) - \sum_{\substack{n=1 \pmod{k} \\ n \leqslant x}} \Lambda(n) + cx^{1/2-\epsilon}$$

cannot be of constant sign as  $x \to \infty$  for any fixed value of c, positive or negative,  $\varepsilon > 0$ , (l, k) = 1,  $l \neq 1$ . In the same fashion we can show that if  $L(s, \chi) \neq 0$  for 0 < s < 1 and  $\chi$  is a real, odd, primitive character mod k then

(3.1) 
$$\sum_{n \leq x} \chi(n) \Lambda(n) + cx^{1/2 - \varepsilon}$$

cannot be of constant sign.

Thus, if  $k < 800\,000$  and  $\chi$  odd and primitive, then expression (3.1) changes sign infinitely often as  $x \to \infty$  for every fixed real value of c and c > 0.

J. Littlewood, [10], showed that the assumption of the extended Riemann Hypothesis leads to

(3.2) 
$$L(1,\chi) = O(\log \log k)$$

and

(3.3) 
$$L(1,\chi) = \Omega(\log \log k).$$

S. Chowla, [4], proved that (3.3) holds without any assumption. However, to date there has been no improvement of  $L(1, \chi) = O(\log k)$  and it would be of interest to be able to replace the big "O" here by a little "o".

Finally, we would like to mention results relating the size of  $L(1, \chi)$ with the sums

$$\sum_{n=1}^{x} \chi(n).$$

A. Gel'fond, [6], showed that if  $\chi$  is a real nonprincipal character mod k and  $q = \max_{x\geqslant 1} \left| \sum_{n\leqslant x} \chi(n) \right|$  then

$$|L(1,\chi)|>rac{c}{q\log q} \quad ext{ for } \quad q>q_0.$$

E. Bombieri, [3], proved that if  $\chi$  is a real non-principal character mod k and  $\sum_{n \leq x} \chi(n) \geqslant -q$  then

$$L(1,\chi) \geqslant \frac{\pi}{16(q+1)}.$$

Table I

| $oldsymbol{y}$ | $\pi(y;4,3)$ | B(y) | $\beta(y)$ |
|----------------|--------------|------|------------|
| 9643           | 600          | 248  | .41333     |
| 21191          | 1200         | 448  | .37333     |
| 33391          | 1800         | 652  | .36222     |
| 46171          | 2400         | 849  | .35375     |
| 59167          | 3000         | 1053 | .35100     |
| 72547          | 3600         | 1255 | .34861     |
| 86143          | 4200         | 1455 | .34643     |
| 99787          | 4800         | 1639 | 34146      |
| 113567         | 5400         | 1828 | .33852     |
| 127363         | 6000         | 2013 | .33550     |
| 141707         | 6600         | 2203 | .33379     |
| 156131         | 7200         | 2385 | .33125     |
| 170603         | 7800         | 2569 | .32936     |
| 175727         | 8000         | 2626 | .32825     |

Table II

| k    | $t_k$ | $t^k/2^k$ | $\boldsymbol{k}$ | t <sub>k</sub> | $t_k/2^k$ |
|------|-------|-----------|------------------|----------------|-----------|
| 2    | 1     | .250      | 10               | 503            | .491      |
| 3    | 2     | .250      | 11               | 1028           | .502      |
| 4    | 6     | .375      | 12               | 2106           | .514      |
| 5    | 13    | .406      | 13               | 4294           | .524      |
| - 6  | 27    | .422      | 14               | 8698           | .531      |
| 7    | 58    | .453      | 15               | 17874          | .545      |
| ., 8 | 119   | .465      | 16               | 36457          | .556      |
| 9    | 248   | .484      | 17               | 73481          | .561      |

## Table III

| m | $p(m)(^1)$ | m  | p(m)(1) |
|---|------------|----|---------|
| 1 | 7          | 6  | 1559    |
| 2 | 23         | 7  | 5711    |
| 3 | 71         | 8  | 10559   |
| 4 | 311        | 9  | 18191   |
| 5 | 479        | 10 | 31391   |
|   |            |    |         |

(1) Here p(m) denotes the least prime  $p \equiv 3 \pmod{4}$  for which  $\left(\frac{2}{p}\right) = \left(\frac{3}{p}\right)$  = ... =  $\left(\frac{p_m}{p}\right)$  = +1, where  $p_m$  denotes the *m*th pirme.

## References

[1] P. Bateman and S. Chowla, The equivalence of two conjectures in the Theory of Numbers, Journ. India Math. Soc. N.S. 17 (1953), pp. 177-184.

[2] P. Bateman, S. Chowla, and P. Erdös, Remarks on the size of  $L(1, \chi)$ , Publ.

Mathematicae Debrecen 1 (1950), pp. 165-180.

[3] E. Bombieri, Limitazioni Riguardanti Somme di Caratteri Reali e Somme di Funzioni Completamente Moltiplicative, Rendiconti Institute Lombardo Accad. Sc. Lettere (A) 94 (1960), pp. 642-649.

[4] S. Chowla, On the k-analogue of a result in the theory of the Riemann zetafunction, Math. Zeitschr. 38 (1934), pp. 481-487.

[5] S. Chowla, M. DeLeon, and P. Hartung, On a hypothesis implying the nonvanishing of Dirichlet L-series  $L(s,\chi)$  for s>0 and real odd characters  $\chi$ , J. Reine Angew. Math. 262/263 (1973), pp. 415-419.

[6] A. Gel'fond, On an elementary approach to some problems from the field of distribution of prime numbers, Vestnik Moskov. Univ. Ser. Fiz.-Mat. Estest. Nauk 8 (1953), pp. 21-26.

[7] W. Johnson and K. Mitchell, Symmetries for sums of the Legendre symbol (to appear).

[8] P. Joshi, The size of  $L(1,\chi)$  for real non-principal residue characters  $\chi$  with prime modulus, Journ. Number Theory 2 (1970), pp. 58-73.

[9] S. Knapowski and P. Turán, Comparative prime-number theory, I, Acta Math. Acad. Scient. Hung. 13 (1962), pp. 299-314.

[10] J. Littlewood, On the class-number of the corpus P(V-k), Proc. London Math. Soc., Sèr. 2, 27 (1928), pp. 358-372.

[11] M. E. Low, Real zeros of the Dedekind zeta-function of an imaginary quadratic field, Acta Arith. 14 (1968), pp. 117-140.

[12] G. Purdy, The real zeros of the Epstein zeta-function, to appear.

Received on 8. 9. 1975 and in revised form on 6. 1. 1976

(767)