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Fall 2: Fiir ¢ = 78 mit 7]e ist wegen %;c D{K) und (*) in 2.

bl(S)—?’;l c8d8 fir i=1,2,3.

. Pir 7t e wird abnlich wie beim Nachweis von W, eD () aigumen—

=
tiert: Da % oder L;—- in 8 liegt, gilt wegen (i) und (i)
o

- - Y1, 0 W 2B cas
K2 —bl(s)?;—bl(s) - P = 0,{8) p . < 8as.

Wie hei der Bereehnuﬁg von D(K) sind jetzt nur noch die § mif

2]‘2,,

2, 9, eP, (@, — 3yy) ~ 3} interessant. Und es geniigt auch hier zu zeigen, ‘

daB fiir diese 8

bl(S)% < 84S

gilt. Das aber ist wegen

w by (8
bl(S)—;— = el v, 2dz
nach (i} der Fall.
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On the density of the zeros
of the Dedekind Zeta-function

by
D. ®. HEATE-BROWN - (Cambridge)

1. Introduction. The Dedekind Zeta-function is defined by

CK(S)-= Zﬂiﬁz

where X is an algebraic number field, the summation is over all integral
ideals a of K, Na denotes the norm of a and s is an arbitrary complex
variable. The series converges absolutely for o> 1, where s = g4t in
the usual notation; moreover the function has an analytic continuation
to the whole complex plane, from which one sees in particular, that it
is regular except for a simple pole at § = 1. The Dedekind Zeta-function
is a generalization of the Riemann Zeta-funetion, {(s}, which is [g(s)
with K =, the rational field; as is well known the Riemann Zeta-
function gives information about the distribution of the rational primes,
and the Dedekind Zeta-function can be used similarly to furnish results
on the distribution of the prime ideals in K. For the bagic properties of
Cx{8) we refer to Landan’s tract [117].

Our main object is to establish an estimate for the density of zeros
of the Dedekind Zeta-funection in the range } < o<1, which is betier
than any given hitherto. Let ¥Nx(o, T) be the number of zeros ¢ = f+iy
of Zx(s) with |y] < T, B = o, the zeros being counted according to mul-
tiplicity. Tt is well known, see [11], thab :

; k
(1) Ng(0, TV o— Tlog? a8 Tsoo,
™

where % is the degree of K, and so in particular

{2) Ng($, T) < TlogT,
where, as later, constants implied by < (or ») depend only on K. We
shall prove :
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TEEOREM 1. For any &> 0 there ewisis ¢ = O{s, K) such that
Nglo, T) € T+ log T

uniformly for 3 < o<1, where k= 3.

The theorem improves upon a result of Sokolovsky [13], who was
apparently the first to apply Ingham’s technigues [7] to the Dedekind
Zeta-function. He proved in faet that Theorem 1 holds with the weaker
exponent

k+2—0/(klog(k+2))

in place of k+e¢, € here being & positive absolute constant. Sokolovsky’s
result applied also to the cases ¥ =1 and & = 2, and here again we now
have stronger estimates.

THEOREM 2. For any quedratic field K, and for any > 0, there emists
C = C{e, K) such that .

Ni(o, T) < T20=9"(log T)°
wniformly for 3 < o<1 —¢; and _
ATK(G, T < T&(I-—a-).'{3—2a)(log T)C‘

wniformly for 31+ o< .
Note that (2) gives
Nglo,T) € Petei—o

uniformly for § < o<+ H 0 < & << 1/6. Further, we shall prove below
a3 a speeial case of Theorem 3 that, for quadratic fields K

Ng(o, T) < TE+H0=)(log T)°

uniformly for 1 —s<{ o<1, if 0 < &< 1/10. Thus Theorem 2 implies, in
particular, that Theorem 1 holds, in the case k = 2, with the exponent
I+ s replaced by 8/3. In the case k¥ = 1, that is for the Riemann Zeta-
funetion, results of Ingham [7], Montgemery [12], and Huxley [6] show
that Theorem 1 holds with %+ & replaced by 12/5 and this is the best
result obtained to date.

It is clear from (1), together with the symmetry of the zeros about
the line ¢ = 1, that one eannot replace the exponent ¥+ ¢ in Theorem 1
by any number less than 2. This leads one to conjecture that, for all k,
and for any > 0

(3) Ng(e,T) < TE+H=N oz T)°

uniformly for < o<1, where ¢ depends orly on K and & Th?.s can
be regarded as a density hypothesis for the Dedekind Zeta-function in
analogy to the familiar conjecture made in the rational case. At present
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it is known [9] that the density hypotheéis holds in the case k=1
for o2>11/14, and we shall prove here that it holds in the case k — 2
for o= 111/124 = 0.895...

TEROREM 3. For quadralic fields K, (3) holds uniformly for ¢ > §(1— p)™
where u, v are absolute constants such that

4) L(3+4t) < t*(logty”

and O depends only on u,», & and K.

Haneke [4] has shown that (4) holds with u — 6/37, » =1, and
this gives the lower bound for ¢, in the case % =2, quoted above. We
are upable, however, to prove a result of the same precision as {3} for
fields of degree k>3 even over a restricted range of o.

We can use Theorems 1 and 2 to give a resulf about prime ideals
in K. In analogy with the prime number theorem one has (see [117)

(i 2)

T (@) ~ as g—-o0,

loga
where siz(2) denotes the pumber of prime ideals with norm <. We
give here an asymptotic formula for the number of prime ideals whose
norms lie in an interval; the theorem improves upon an earlier result
of Sokolovsky [13].

TrrorEM 4. Suppose that 1z a>1-1/k if k23 and 1> a > 5/8
if & =2. Then

as P— 00

(@ +y) = la) ~ g
uniformly for o* <y < @. In particular when @ > ©(a), there emisis a prime
tdeal p of K with @ < Np < o-+-2® _

The proofs of Theorems 1, 2 and 3 depend on the technigques of
Montgomery [12], together with the later developments of Jutila (81
In addition we shall nse the mean-value theorem for [{z(5)[2 at ¢ = 11 JE
as obtained by Chandrasekharan and Narasimhan [3], and also, to
deal with Theorem 3, a modified form of the lemma of Haldsz [6].
Theorem 4 is an immediate consequence of Theorems 1 and 2 ahove,
together with Theorem 3 of Sokolovsky [131

In the final section we shall indicate how, on the assumption of
Artin’s conjecture for non-abelian I-functions, the estimates established
here can be improved somewhat; in fact our considerations lead to some
unconditional improvements for small valnes of k.

2, Preliminaries. We record here some properties of the Dedekind
Zeta-function that will be required frequently later.
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 First (see [11], Satz 155), we have
(5) (o +it) < [1

in the region o> 1%, |f| > 2, where A depends only on K; also (ibid.,

Satz 171}
(6) NK(%.': T‘l‘l)"‘NK(%a

Further we note that, for ¢>1 we can write

(o]

{0 Z aofn,  1flx(s) = D by/n®

X n=1 ne=l
where a; = b, =1 and |b,]< &, < (d(n))¥, d{x} being the number of
divisors of #. Indeed by the Euler product (see [11], Satz 141).b, = 3'(—1)
wherse the sum is over all representations of #» as N{p.p. ... p,} with dis-
tinct prime ideals p; of X, and a, is the number of representations of =
in the above form, where now the p; are not necessarily distinet; this
gives |b,| < a,. Further since both a, and (d(n)}* are multiplicative it
suffices to prove a, < (d(n)} for n = p°, where p is a prime; now if p; ... pp
are the distinct prime ideals dividing p, and ¥p; = p%, then m << %k and
plainly @, is the number of solutions of

™ <logd (T2>2).

€ = 6P F .on by,

s #,, Whence, since @,< e we have

(@) < (@)

in non-pegative integers &y, ...

a, < (6+1)" =
a8 requived.
We shall need also two results Whlch show that a Dirichlet poly—

nomiai
S{s) = Z 1

n=N-1

(¥ > 2),

cannot be large af too many well-spaced points. Suppose that & is a finite
set of complex numbers s = ¢4t safisfying o> 0y, To <<t << Ty4-T for
some og, Ty and T2 2, and satisfying also the spacing condition j#—1#'|= 1
for all digtinet s, &' in &. Suppose further that ¥ > 0 and that |8(s)| =V
for all ¢ in &. Then by Theorem 7.5 of [12] with ¢ =1, y =1, é =1,
we have :

(8) 1] < (T+N)UV*log¥,

where |¥| denotes the number of elements in & and, for brevity, we

have written
2N

7= Y g

n=N+1
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The second result i is & medified form of the lemma of Haldsz referred
to in §1.

LEvMA. Suppose p, v are . positive constants such that
S(o+it) < [t (log It
uniformly for (| > 2, o= 8, where 0 < 6 1. Then
| < NUV—2+TN1+”]" Ay 2=k (og TR,

Proof. We shall apply Theorem 8.4 of [12] to a subinterval of
[T, Ty+T] of length T'; denoting by & the subset of & consisting of
points with # in the subinterval, this gives

17| < O (N 15| N* T'*(log TY) UV~
for some constant C. Thus |#'| < 20N TV, provided that
(9) T < (20 N U PP (log T) 3

Tf (9) holds for 7' == T then we can take &' = & and the lemma is proved.
Otherwise we divide the interval [T,, T,-+T] into m subintervals of
length T/m, where m (3> 2) is the least integer such that (9) holds with

" T" =T/m. This gives

m—1 < T{EON® UV-2(log Ty},

- Now |&'| <« NUV~? for each subinterval, and so | <« mNTV™%; this

proves the lemma.

3. Basic density estimates. Our object in this section iz to reduce
the problem of estimating Ng(e, T) to that of esfimafing the number
of points at which a Dirichlet polynomial of the kind considered in § 2
can be large. ' '

We introduce the funection

= 2 b,n~?
nsX

where the 5, are the coefficients appearing in (7). Then {z(s)Mx(s) ~1
a8 X—oo for ¢>1 and indeed
20 n"

where C; =1 and €, = C,(X) =0 for 2<n < X. Further, by a well
known Mellin transform we have, for any ¥ > 0 and any ¢ > —1,

{r(s)M x{s) =

24100

(10} 20,19@“6"“’? 2% f fls,w)dw,

=1



174 D. R, Heath-Brown
where f(s, w) = (8L w) M p(s+w) ¥¥ (). The sum on the left can
be written
eHEL Y g s,
n>X
and here ¢ MY ~ 1 a5 ¥-+o0. To estimate the integral in (10) we move
the line of integration to rew = ¢, where ¢ = a(s) = 1 —o—1/k. Assuming
that' 1 —1/k < ¢ <1 we pass simple poles at w = 0 and w = 1—s¢, and
thus, on denoting by 2 the residue of the pole of Zz(s) at 8 = 1, the ex-
pression on. the right of (10) becomes
ad-fos

fls, wydw.

(£ CK(S)Mx(SHZMx(l)Yl_‘T(l*SH-—ZE

a—ica

We now take s = g, a zero of [ (s} ; then the fivst term of (11) vanishes,
and, since Ie‘”y —1|< } for ¥ == 4, as we now assume, this implies that
at least one of the following expressions has absolute value at least }:

a{g)4-ico

1
o f flo, w)dw; Z C,n e MT,

afg}—io0 n=>X

Let ¥, N,, N, be the number of distinet ¢ = g4y with = o, |y| < T,
for which the expressions in (12) are, in modulug, at least 4 respectively.
Since each zero has multiplicity < logT we have .

Nglo, T) < (N, -+ N+ N;)logT.

We proceed. to estimate N,, N, and ¥,; for this purpose we select
X =T"< ¥ < T% where 0 <5 < 1.
N, can be estimated trivially. Since

sy IF(z+iy)l <~ for |y|=1, 0
where the implied constant is absolute, we have

[PA—o)] < e~ for
Further |¥'7?| < 7% and, using the, estimate ib,| < (@(n))* < »* obtained

in §2, we get
D b,lnt < X,
neX

(12)  AMx(}Y'7I{(1—g);

so<l,

lo} == 2.

M x(1)l<
whence
MMx(A) TN (L — )| < Tr+ag—iv,

where the implied constant depends now on K. Hence, if the expression
on. the left is at least %, it follows that |y] < log7 and 80, by (6), N, < (logT)?
which 1s Plainly less than any of the bounds required for N o, T).
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To estimate N, we note first that there exists ¢ = ¢
such that

KE,5)>0

1 afg)-+ico

ole) +iClog T

1

fle, w)dw' QE;

and similarly for the integral with » < —Clog?, where v = imw. For
we have

[My(o+w)] < 2 (d(n))k,nllk--l <X,
neX
where, as above, the implied constant depends only on K, angd, by (5)
and (13) :
Nerl{o+w) YU I (w)] < jy+o|4e™,
hence :
1f(0, w)] << ™t

if fv| > ClogT with C sufficiently large, and the assertion follows. Now
we have |I'(w)] < logT provided that |w| > 1/logT and so

!BIX(E?"'W)YWP(@DH < XY“@logT.
Thus if the second expression in (12} is, in modu_lu%, at least 1, then

y+Clogd
1

) 1 \
—_ Cx(l - +iu) du » (X¥*@logT)?

™
y—Clog T

assuming that a(c) < —1/logT; if the latter condition does not hold,
that is, if ¢ <1—1/k+1/logT, then by (2), we see that Theorems 1 and 2
bold trivially. Now by the Cauchy-Schwarz inequality we obtain
r+ClogT .
du > X2 ¥ 2@ (1og T3,

1 1y
Cx( —-ia-+m)

y—Clog
and on summing over all o contributing to N, this gives

T+Clog?

(14) (w)du » N, XY %) logT)~3

1 Lol
CK( —z—}-m) %

TwQlogT

where n(u) is the number of ¢ with |y —u| << Clog?. By (6) we have
n{u) < (logT)®. Further by the mean-valuoe theorem of Chandrasekharan
and Narasimhan [3] we have

+T

[

-T

2
du < T(logT)*

gl 1+"
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andl so the left hand side of (14) is < T(logT)**% On comparing estimates
this gives ‘

(15) N, < 2O (log T4+ ¢ Trt3n poe-i—,

Finally we estimate ;. First we note that there exists ¢ = C(K) > 0
such that

1C,1e™™F < 1/8;

n=CF logd
for we have
Gy = 2 bdaﬂld
dln
X

and since jbg < (d(n))", layal < (d(n))* it follows that
10, < (d(n)™+! < p® < /D)
provided that n > ¥logZ. Hence we have

(16) 2 Gﬂn—ﬁ’e—ﬂ-"l" I > 1/8
Xan<C¥logT

for at Jeagt Ny zeros ¢ = f+1iy with §= o, Iyl < T. We now use an argu-
ment due to Jutila. We write {16) in the form

UZy+Zy+ e +Zl 2 1/8;

where m is the largest integer with YY™ > X, X (27 < m) denotes
the sum over n with YD < 5 ¥¥, 3, refers to the range ¥ < n
< 0Y¥logT, and X, refers to the remaining range namely X << n < yim
By Dirichlet’s box principle there exists an I such that |2} = 1/(8m)
for at least N;/m zeros p. Further since X —= T"< ¥ < T we have
m < 3k[y and so ' '

(17) 12l = (8m)™ » 1

where, as later, the constant implied by », or < depends only on K
and 5. Now, on noting that X™ > F™m+l > Y12 we obtain
2= d,n?

Pl an<CFlogT

for some coefficients d,. Since, as above, IC,| < (@(n))™+, and further-
more ¥ < 1, we see that

|| < (d{n))EH D" (),

where d,,(n) is the number of ways of expressing n as the product of m
fa.ctors, and on recalling that m <1 and dn(n) < (a 'n))’" we get |d,|
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< {d{n))* for some » depending only on 5 and K. We now write (17} in
the form '

ZO 430 420 s 1,
where X% (1< i< j) is the sum of terms d,n° with
Y1I22i—1 <n< yl]zzi

and. j is the smallest integer such that ¥**27 > O ¥ logT;dere d, is defined
ag zero for n > (YlogT. By Dirichlet’s hox principle there exists an ¢
such that |Z¥| » 1/ for at least N,/(mj) zeros o. We write N = ¥27
for brevity, and put :

v

8le) =Z0 = M an°

n=N+1
Ther |S(g)| > ¥, where ¥V » 1/j, and since 2! < C¥logT we have
¥V » 1/logT. Further we define

N

U= D 1,

n=N+1'
then from the well known estimate (Hua [5], p. 17)

2 ([d(n)). < a(logz)® ~t

nee
together with- the bound |d,]< (d(n))" established above, .we have
U < N*%(log T\’ where € = 4*—1. Finally we select a subset & -of
the N.j(mj) zeros g, sueh that y—y'| =1 for distinet g, ¢’ in &, and
1¥] » N,f/(mjlogT); this is possible by (6).

‘We are now in a position to apply the results of §2. First, smce»

m <1 and j < logT, we have from (8)

(18) N, < &|(log T} < (T+XN)N'"2(log T')°*.

Secondly on taking § = 0,%u = §,» =1, in the lemma of § 2, as is pos-
sible {see Titchmarsh [14], p. 20), we obtain

(19) -Na < (N2u20+TN4—60') (10gT)30+10.

. Thirdly on taking 6 = } in the lemma we get

(20) N, < (Nﬂ—-ﬁc_l_TNQ-—ZU—(M—a)](Eﬂ)) (IOgT)C!

for some ¢’ depending only on K and ». The estimate (19) will be used
to prove Theorem 1, (18) and (19) for Theorem 2, and (20) for Theorem 3.

4. Proof of the theorems. It remain to ‘choose Y so that the esti-
mates for N,4 N, are as sharp as possible; we recall that there is no
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longer any need to consider N,. We recall also that we can suppose, for
the proof of Theorem 1 that ¢ = 2/3, since it holds trivially if ¢ <1 —1/k.
Since ¥ N < YlogT we have

N ¢ V¥ ¥og T,
Thus (15) and {19) give '
(21) NN, < THH yei—iik—o) o (§i=20. Pyi—3e)(Jog T)3C+1,
We now take ¥ = U304, then

pi-to b yRA-k—0) _ pl+snil—a)k

Né—ﬁa < yz-aa_

Further, for o2 2/8, 22 3, we have TY "<

N2 +‘N—3 <& T(l +3ﬂ.)(1 - o)k (10g T) 30.;..11’

1. Hence we obtain

and Theorem 1 follows on taking n = £/(3k).
For the proof of Theorem 2 we assume first that o>
Y =7T" in (21), then
Yz—zo — _Tyz—ad —_
Further, in the case k = 2, we have T ¥ Y% < 1, provided that 143y
< 1/6, and the condition certamly holds if ¢<{1—¢ and % = #/3; this
establishes the first part of Theorem 2. For the second part of Theorem 2,
that is for ¢ < 3/4, we use (15) with % = 2 and (18); these give
—"-\Tz‘}'-Na < T1+3tr YL_W-Jr(Yz_“+TY1I2—")-(10gT)O+6.
On taking ¥ = T%-29) we obtain
Y- o Tlﬂ!z—-d — T4(1-n)[{3—2a);

turther T*+"Y~ 1 provided that 143y < 2/(3—20), and the con-
dition holds if ¢ 2= 3+ sand 4 = ¢/3. This completes the proof of Theorem 2.

Finally, for Theorem 3, we use (15) with ¥ = 2 and (20). Since by
hypothesis

T2(I~—a)/ s

2—2¢— (40— 3)/(2p) < 2 — 4o
and furthermore, o> 3/4 so that 2—4¢ < 0, we obtain
No-Ny < THHF304 (P50 L TY ) (log IO+,
On faking ¥ = T'*3" we get
y2—2a

and this gives (3) on putting 5 = &/8.

__ ml43 T —
= qL+En Fr-2e  qU+3n)e—20)

5. L-funetions. Let ¥ be an algebraic number field which is & Galois
extension of ¢ and let & be its Galois group. Let y be a character of

2/3 and take
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& matrix representation g of & and let & be the degree of 4. The L-function
introdnced by Artin is given by

Lis, 3. F/0) = [ ] aet{1—p~ o (Fi)}) ",

where the product is taken over all primes p which do not ramify in F, I is
the unit kX % matrix and (F/p) denofes the Frobenins aubomorphism
(FL") We omit the factors corresponding to ramified primes; this
will not affect the number of zeros in the strip 2 <L o<1 If K is a sub-
field of ¥, then {;(8) = L(s, y, F'/0) for some y, so that the Artin T-fune-
tion ineludes the Dedekind Zeta-funetion as a special case.

Let now N, (¢, T) be the number of zeros ¢ = -4y of L{s, ) with
i< T, # = o, the zeros being eounted according to multiplicity. Then,
providing that (A) to (B) below hold, the proofs of Theorems 1, 2 and 3
go through verbatim for L{s, ), with the definition of % above; the
only proviso is that L(s, y) may be regular at ¢ = 1 in which case the
second term of (11) does not occur, sgo that N, = 0. Thus for example
Theorem 3 beconies:

L(S, 1=

For characters y of degree 2
' N (o, T) < PE+= (o570

uniformly for o= 31— u)™%, where p, v are absolute constants such that (4)
holds and where € depends only on u,», & and F.
The properties regunired of L(s, y) are the following:

(A) L(s, x) is analytic in the region o>}
except possibly for a simple pole at ¢ = 1.

(B) L{c-tityy) < Bfi* (621, 1=2),
where the constant A depends only on F.
(C) N3, T+1)—N,(3,T) €logT

Za s,
where a; = b; =1 and |a;ﬂ], 1,
pending only on F.

(E) For fixed ¢ >0 and k2= 2

+T

|

-7

(T3 2).

o0

-5

= 2t
1

< (d(n))® for some constant B, de-

(D) (s, 2) = I, n

L.

2
at < T',

€ — Acta Arithmetica FXXIII,2
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also if =1
&
[ LG, pra < T
T

Since we may suppose that y is irreducible, L(s, g) is a Dirichlet
L-function when y is abelian. In this case (A) o (E) are well known [6],
[12]. But for non-abelian characters it is not even known that (A) holds,
this being the unproved conjecture of Artin. However it is known [2]
that L(s, ) is meromorphic, and that when G< 8, Lis, g) is regular
for non-unit, irreducible y [1]. Further, (B) and (E) may be proved
on the assumption that (A) holds, while (C) and (D) hold unconditionally.
In fact (O) follows from the corresponding result for general abelian
IL-functions L(s, %, E/K) ([10], Satz T1), sinee, by [2} L{s, ) may be
written as the produet of such functions and their inverses. Furthermore (D)
may be proved by an argument similar to that given for the coefficients

“in (7). Henee (A) to (E) may Dbe replaced by the single hypothesis (A).
We shall give complete proofs of these latter asserfions elsewhere.

Ze(s) may be factorised as C(s)L(s, %, B/Q) where E is the normal

closure of K/Q and x has degree [K: Q1—1. Then

Nglo, T) < Nolo, T) 4+, (o, T).

Tf we now assume the truth of Artin’s conjecture, and estimate N, (o, T')
as indicated above, we get a sharper bound for Ng(o, T) than previously,
since & has, in effect been reduced from [K: @1 to [K: @]—1. More
precisely if Artin’s conjecture is true then '

Nglo, T) < =1+ (o0 TY¢

for fields of degree k>4, and the estimates of Theorems 2 and 3 now
hold for cubic fields K. These results could be further sharpened in special
cases, for example when K /Q is normal, by decomposing {x(s) into & prod-
wet of £(s) and more than one Z-funetion. For quadratic fields KX we
have (g(s) = L(s)L(s, y, K/Q) where y is a Dirichlet character. Hence
the above considerations show that the estimates [6], [9] previously
established for the rational field in fact hold also for the quadratic fields.
Thus for instance the condition ‘o= 0.895... obtained in Theorem 3 can
be weakened to o3 0.785... = 11/14. .

Tn the case when K has degree < 4 the Galois group of B/Q will be
a subgroup of §,. In this case Artin’s conjecture is known to hold [1];
thus, in fact, the results stated above for cubic and quartic fields hold
unconditionally. '

Tn conclusion T would like to thank Professor A, Baker for his help
in the preparation of this paper, and also to thank the Science Research
- Couneil for their financial support while I was engaged. on this research.
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