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On a conjecture of Morgan Ward, TII
by
K. K. Kueora (Lexington, Ky.)

In [2], the author has shown that, in a non- degenerate second order
linear recurrence of rational integers, no integer occurs more than four
times. The aim of this paper is to generalize this result to reenrrences
of algebraic integers and to apply the method to the problem of bounding
the number of representations of unity by rark one bmary bignadratic
forms.

Throughout the paper, o will be the ring of 1ntegers of an. algebraic
number field K of degree [K: Q7 over the rational number field Q. A second
order linear recurrence in K is defined to be a &equence {a,} of integers
in o satisfying a relation : )

(1 Opye = Moy —Na,, 020, |@g) - lay] =~ 0,

where M and N == 0 are fixed integers in o. Let g, and 8, be the roots
of the companion polynomial

(2) wt—Mp+N = 0.

We say that the recurrence {a,} i3 non-degenerate if 8., f, and §,/8, are
not roots of unity. The multiplicity of {a,} is defined to be the supremum
taken over all -integers of o of the number m(d) of times that d occurs
in {a,}. The first result may be stated as follows.

TEEOREM 1. The multiplicity of o non-degenerate second order linear
recurrence in an algebraic number ficld K i3 bounded above by an effectively
computable integer n(m) depending only on the degree m = [K: Q1.

It would be inferesting to know if there is an absolute bound inde-
pendent of the degree [K: Q] If it existed, then one would expect to
be able to generalize the result to recurvences in the complex field C.
However, the method of proof used below cannot give such an absolute
bound. It can be shown that non-degenerate rational integer cubic recnr-
rences’ can have no more than six zeros,

By a careful study of biguadratic units, F. Nagell has proved the
following theorem ([5]):
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THECREM. If f(®, v) i an irreducible totally complea binary biquadratic
form with integer coefficients such that the field generated by a root of f(a, 1)
= 0 contains a quadratic subfield, then the diophantine equation f(z, y) = 1
has at most eight solutions. ‘

One expects that the condition about the exigtence of a quadratic
subfield is unnecessary. The diophantine equation in question will be
interpreted in terms of second order linear recurrences, and the fol-
lowing theorem will be obtained.

THROREM 2. Wilh the possible emceplion of forms in a finite number
of equivalence classes, am irreducible totally complem binary biquadratio
form with integer coefficienis represenis umily at mosi eight times.

The exceptional cases correspond to solutions of a manageable number
of binary quintie diophantine. equations. Since these may be solved by
Runge’s method, one ean, at least in principle, list the exceptional equa-
tions.

It is possible to apply the Skolem p- -adic method with a prime div-
isor p of 2 to obtain an upper bound with no exceptional equations. This
requires an examination of all possible decompositions of 2 in the splitting
field of f{®,1), which in the cases not covered by the result of Nagell
iz a field of degree 12 or 24. The result, which will not be proved here,
can be stated as follows. '

THROREM 3. An irreducible fotally complen binary biquadratic form
with integer coefficients represents unity no more than twelve fimes.

1. Linear recurrences in mumber fields. The proof of Theorem 1
uses Skolem’s p-adic method in conjunction with a result of A. Schinzel,
which in torn iz based on Baker’s method. The result of the p-adic argu-
ment can be summarized as follows:

Leuwma 1. La {a,} be & non-degenerate second order linear recurrence
e K satisfying (1), B, ond f, be the roots of the companion equotion (2),
and 1 be a prime ideal of the ving of integers of K (B, B2) such that ptN.
p —
the rational prime lying under p, & is the absolute ramification index of p,
and the brackets denote the greatest integer function. Let q be a posm/ue in-
teger such that

Supjno.w % is a positive integer no smaller than —~[ ;] . where p 18

ﬁl ""162”_

and, if p|2, teke q to be minimal subject to this condition. For every fized d
in o, consider the equation &y, = d. For every fized value of i, the equa-
tion has at most 2 solutions. If pt2 (resp. p|2) then there is at most one
(resp. two) values of i im the ramge O i < ¢ for which there is more than

(mod p~);
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one solution. If p|2 end the equation has 2 solutwns when 1 = iy, z, where
0 <iy <<iy << 2, thert 2(ip,—1,) = q.

Proof. The proof of Theorem 1 of [2] can be used to prove this
lemma. Note that there s considerable simplification since we do not
need as sharp a result as in [2].

If A and B are non-zero integers of an algebraic number field I,
then a prime ideal p of the ring of integers of I is called a primitive divisor
of A" —B™ il p|A™—B" and pt4®—B° for all s in the range 0 < s < a.
Using Baker’s method and a result of Blanksby and Montgomery ([1]),
Schinzel ([8]) has proved the following result.

Lmvma 2. If (A, B) = 1 and A/B is not a reot of unily, then A®—B"
has a primitive divisor for oll n> ny(d) where ny(d) is an effectively com-
putable constant depending only on the upper bound 4 for the degree of A[B,

Before showing how the lemmas lead to the theorem, let us set up
some preliminary notation. Let {a,} be 2 second order non-degenerate
linear recurrence in K satisfying (1). By a well known result ([3], p. 85),
there is a finite extension K’ of K containing integers M', ¥', and R
with

M =MER, N=¥NF, ad (M,N) =1
Let {U,}, {U.}, and {V,} be the Lucas sequences defined by
U,,+2 =MU,,—NU, U,=0, U, =1,
(3) Upiy = m U;_H—-N' v, U,=0, U-=1,
Vose = MV =NV, Vy=2, V=1

Just as in [2], §2, these sequences can be expressed as

- ’ ﬁ?_ﬁg - ﬁ’““ﬁm
U, = R"UL = , U=t ana
o "~ hb FErA
- Vo = 2,

Where 1, 52 Tesp. fi, fa) are the roots of the companion polynomial (2)
(resp. o2 — M +N' = 0). Also, one has some obvious generalizations of
formulas in [2], §2:

(B) &y, = Upty —NU,_; 8,

Vn/2+ (ﬁl“’ﬁz) Uﬂ-fz and ﬁg = anz_(ﬁl_ﬁz) U,,JZ,

where ¢, —2a£+1~Ma, and D = ME— 4N Let P = []Rp
?i
P’
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If p is a prime of K’ which divides N’, then sinee (M', N') = (f+
4By £ B =1, ome has pt A —F* for all n > 0. If B is any ideal of K’
such that (8, N') =1, then by (4), there is a least positive integer ¢
such that B|T;. Now since (B, N} =1, an easy induction using (3)
together with U; = 1 shows that for every s, no prime divisor of B can
divide (U,, U,_,). The natural generalization of (7) of [2.I] shows the
identity

U:d-w = U:,, U::-H —N U;d—l U;

for all x> 0 and v in the range 0 < v < t. Since U, = 0, it follows that
BiU, for all 4> 0. Now if there were a least positive n ~ wi4-v with
0 < v < tand B| T, then the identity shows that B| U, since (B, ¥N' Uy_,)
= 1. This contradiction proves that for every » > 0, we have B U, iff
122

Proof of Theorem 1. With the notation of the last three para-
graphs, let us bound the number of oceurrences in {a,} of some integer

den. Clearly, we may assume that 4 ocours at least once in {a,}, and so

by translation that @, — d. One can factor the ideal generated by d as
(d) = UAUBE

where U = (a4, ¢;), no prime divisor of B divides (M, N), and every
prime divisor of € dividesz (M, N). Since (M, N)|a, for all # =2 by
equation (1), it may be assumed that € is divisible by (M, ). Since
(d) = (a,) = UABE, (B, 0, A7) =1, and (B, B) =1, we see by the last
paragraph and (5} and (4) that for every #z 0, UB|{a,) it B|(T,) iif
B(T,) if t|n where t is the least positive integer with pB|U,.

The degree D = [K(f1, B2): Q] is at most 2[K: @] Further, each
rational prime can split into at most D primes in K (B4, f2)p and the
ramification indices of each of these primes is at most D ([3]). So certainly
there are no more than 3D < 12[K: Q1 primes of K(f,, 8.) for which
the quantity » in Lemma 1 cannot be taken to be one. Also by [3], p. 85,
there are algebraic numbers 4, B and b such that .§

(A,B)‘=.1.

By = Ab, B, =Bb, and
Clearly, A/B = 8/, has degree at most 2[H: Q. By Lemma 2, it follows
that for r equal to ab least one of the first 12[H: 0]241 multiples of ¢
greater than n,(2[K: Q]), the gquantity f]—p; = " (47— B") has a prime
divisor p which does not divide (M, N} and for which » may be taken
_ to be 1. By the paragraph preceding the beginning of the proof, (p, ¥') = 1;

and so it follows that pf (). Letting ¢ denote the multiplicative order -

of V,/2 (mod p}, we see by (6) that g7*

i

= ¥ =1 (mod p).
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There is an integer @ in an extension field of K such that {a)= (ag, a)

([8]); p- 85). Letting {a,} be the sequence defined by a; = anfa, we
see by (7) that

r V " ’
(8) Opgpiy = (—QL) az{mod p)

for n > 0 and 0< ¢ <7ft. Now by the choiee of £, (d/a) = (ap) |BE and so

(p, a,n) =1.T1f (a, p) # 1, then the congruenece (8) chows that d/a cannot
oceur in the subsequence {a,,,}. On the other hand, if (aj,p) — 1,
then the same congruence shows that for fixed %, there iz at most omne
value of j in the range 0 < j < s such that d/a occurs in the subsequence
{Osmirssicr- By Lemma 1 applied with {a,}, p, and g|rs, we see that d
can oceur no more than rf{--2 times in the sequence {a,,}. By the first
paragraph of the proof and the analogue of Lemma 7 in [2], 4 can ocour
at raost once oufside of thiz subsequence. Thus d oceurs at most

o P22 Q) +(U20I: 0+ 5t
= . L3 ‘ :

+3

< o (2[K: QN +12[K: QP +5

times in {a,}. Sinee this bound depends only on [K 01, Theorem 1 is
proved.

2. Biquadratic forms. Let f(z, ¥) bg an irreducible totally complex
binary bigquadratic form with rational integer coefficients. Tt will first
be shown u.nder one additional assumption that 1f the diophantine eqgua-
tion . :

{9) flo g =1

hag at least one solution, then the number of solutions is twice the number
of times a cerfain quantity oceurs in- a part1eular second order linear
regurrence.

Suppose equation (9) has at least one solution. Then acEter 8 uni-
modular chapge of variables, it may be assumed that (@,y) =(1,0)
is a solution; hence f(w, 1) is & monic polynomial. H 5 is aroot of f(w, 1) =0,
then eguation (9) can be interpreted as saying that @—ny has norm one.
By the Dirichlet unit theorem ([3]) and the assumption, that flz,y) is
totally complex and irreducible, the rank of the unit group of Z[n] is
one. If ¢ is'a fundamental unit for Z[y], then &—ny = {&™ where % is
an mteger and { is a root of unity’ in Z 7). Further since 5 is Jrratlonad
each pair (£, n) eorresponds to at most one solution of equad:mn (9).

Aggsume now that Z[#] contains no roots of unity other than £1.

_Slnee 7 ig of degree 4, this is equivalent to assumjng that Z[#)] contains
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no primitive cube, fourth, or f.lfth roots of unity. For every integer n,
we have

(10) En = cﬂn"_ C1n % + 02n’73+ cﬁnns

where the ¢, are rational 'integers; The Aavssumption implies that the

pumber of solutions of equation {9) is twice {one for each value of { = L1)
the number of solutions of ¢, = ¢, = 0.

Applying sutemorphisms to equatmn (10) mapping (77 y &Y = (114, &)

to the econjugate pairs (v, &), ¢ = 2, 8, 4, one obtains a system of linear
equations
3

= Z%?ﬁ.:

j=0

i=1, .., 4,

in the variables €y, .., Csa. By Oramer’s rule and the fact that the dis-
eriminant of # i3 non- zero, the condition that ¢, = ¢, = 0 iz equiv-
alent to

det(1, =, ’ﬁf &) = det(L, ny, &, 77:) =0
which can be written as
4 . 4
M A= B =0,
=l fam] )
where 4; and B, are the appropriate minors. For fixed %, it follows that
4 4
(1) d, =B, D A4y 3 Bt = Y (ABy— 4, B) & = 0
]l {1 %k
Now it is easy to verify thatb

Be (—1*det (L, 5, nDisr

(12 -
Y I, T T at (L, i s

= .—2’% =7, —Tr(n)¢Q.
=k
Bince
4 4
Oy = A‘IZ’A‘E}‘ and ¢, = A‘IZ’B{E}‘
4=l =1
(where 4 = det(1, w;, 5%, 7})) are rational integers, it follows by linear
independence and (11) and (12) that ¢,, = ¢, = 0 if and only if 4, = 0.
Rearranging equation (11} we see that the number of solutions of equa-
tion (9) is twice the number of solutions of

(13) 6, = D (A:By—A,B) (&[5
i R

= ‘Ak Bj "‘.Ain
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where j == k is fixed. Now this last equation has at least one solution
(viz. » = 0) but cannot have infinitely many solutions sinee equation (9)
has but finitely many. solations by a theorem of A. Thue [9]; hence the
left member of (13) cannot be identically zero. This establishes the as-
gertion made in the first paragraph of thiz section.

It may happen that £ is only of degree two. In this case, we niay
assume that the notation has been chosen so that & = &, & =&, j =3,
and k& = 4. Equation {12) and its analogue with & replaced with 2 shows

" that the coefficient of &,(§; in {13) is non-zero. Since /& =1 and n =0

is a solution of (13), it follows that the other solutions are multiples of
the multiplicative order of £;/&. Since the other solutions are finite in
number, it follows that there cannot be any. Therefore in this case equa-
tion (9) has but two solutions. Assume heneeforth that £ is of degree four.

Consider now the ease where the linear recurrence in (13) is de-
generate. For gome pair 4, j with 4 % §, one has £;/§ = { where {is a
primitive rth root of unity. Since Q(£;, &) is of degree at most three
over (&), the only possible values for » are 2, 3, 4, and 6.

If r = 3, 4, or 6, then the minimal polynomial for & over Q(&;) is

D+ 8 =0 or PLEp+E =0

Further if £, denotes the other solution of this equation, then the fourth
conjugate £, les in Q(§). Applying any automorphism ma.ppmg & to
&, gives &,/&, = {*' where # 3 m. Thus

Em/Ej = (Emlgn)(énjgj) = C:‘:1+'
where ¢ = 0,1, or —1 depending on the valne of #. It follows that
| 1= &8 6d, = CHETHEE),

and so & is aroct of unity, which is absurd. Therefore r = 2 and £/§; = —L.
Applying an automorphism mapping & to & where k #4,j one gets
&, J&, = —1. Since the &% are distinet, one has m %4, §, k. The product
of the conjugates of £ is one; so it follows that the four conjugates are
of the form &, &%, —& —£& 1. Now (12) for k¥ =1, ..., 4 shows that the
coefficients .4;B, — 4, B; in equation (13) are all non-zero. With the no-
tation of that equation, the form of the £'s makes it clear that &/& is —1
for one value of i %4, k and is a power of £ for the other such value of ¢
(and so in particular is not a root of unity). Xt follows that equation (13)
has at most one solution of each parity. Thus, if the recurrence is de-
generate, then equation (9) has at most four solutioms.

Next it will be shown that, if for ¢ = 2 or 3, there is a prime ideal
p of the ring of integers of Q(&, ..., &) such that

(87— /(& — &) = 0 (mod p*)
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where :
—3e .
| _[ ] i 13’1'9,
x = p—1
de if - p|2

and ¢ is the ramification index of p over the rational prime p which lies
under it, then any non-degenerate second crder linear recurrence whose

companion polynomial has roots & /& and &/ is of multiplicity at

most four. This in tuwrn will imply that equation {9) has at most eight
golutions in this case. To awvoid repetition, the reader is referred to the
relevant parts of the proof of Theorem 1.

Suppose first that pt'2. Let §; = &;/& for 4+ = 1, 2. Since & is & unit,
one has :

(B — BD(B1— Bs) = 0 (mod p¥).

The argument of Theorem 1 can now be repeated letting r = v and =
be the multiplicative order of V,/2 (mod p¥). _
Now suppose that p|2. With f§; defined as before, one has

Uy = (B~ B0 /(B — Bz) = 0 (mod p*).
Let t be as in the first paragraph of the proof of Theorem 1 and set r= tv.

Then U,| U, and so ¥./2 = U.(8,—F:)/2+F5 is a p-adic unit. It follows

that U,/V, =0 (mod p*). Therefore by (7), one still has (8) holding
true modulo p*. Letting s denote the rultiplicative order of ¥,/2 (mod p*),
the argument of the first and third paragraph of the proof of Theorem 1
shows that d oceurs only in the subsequence {a,,}, and for. each ¢ with
0 < ¢ < v, there is at most one § in the range 0 < § < ¢ such that d ocenrs
in the subsequence {Gspueesy- In particular, it follows by Lemma 1
that d occurs at most twice in each subsequence {&.,. .} If v =2, then
one has consequently m(d) <C 4.

Asguming that v = 3, the same conclusion may be drawn as soon
a8 one knows that at most one of the subsequences containg more than
one oceurrence of d. Working now with the linear recurrence {a,}, let ¢
be the least positive integer such that p¥ = g =1 (mod p*). Since
p*| Uy, one has pff,—fy; and for every » = 0, p| U, iff p*| U, iff 3|n.
Thus p| Uy and 3|gt. B 3¢, then p*| U, and the argument of the last
paragraph with ¢ replacing » shows that @ (d) < 2. Assume therefore that
31g and that two subsequences {a,,, ;) and {@, 4} where 0 <4 < j < 3¢
both contain two oceurrences of d. Since tg|rs, there are two subsequences,
88Y {Ggmsm}t AD4A {8y i} (Where 0 <<k <m <¢) both containing two
oceurences of d. By Lemma 1, this means that 2(k—m) = ¢ = 0 (mod 3),

and so both subsequences are contained in a single subsequence L

where w =k =m {mod 3). Therefore this subsequence contains four
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oceurrences of d, eontradicting the result of the Iast paragraph. Thus
m(d) < 4 in this case also.

It remains to invesfigate conditions under which appropriate prime
ideals can be shown to exist. The non-existence of appropriste primes
will be shown to correspond to solutions of one of a finite number of binary
guintic diophantine equations. To do this, note first that sinece the rami-
fication index of any prime is certainly no larger than the field degree,
the definition of » shows that fhere are at most a finite number of prime
ideals for which » can be greater than one. Taking norms, it follows that
if

=2 or 3

No=[[(&—@f&—&) for
i<i
is not one of some finite set of values, then a suitable prime exists.
Letting g(®) = &* — ba*--ca® — dw+ ¢ be the minimal polynomial for
&, one ean compute

14) N, = bod—dz—be

using the cubic resolvant ([10], p. 181). As for &,, note that

¥ = [ [@+as+em = [ [ G-raE-ey

i<f f<f

S ey & o
T oe(1—24 HE‘-’ £28) _6(.—_1-—5)411;1{& {2&;)

=6(1—_£)‘Res (9@, g(Z=)}

where £ is a primitive cube root of unity and Res denotes the resultant.
A straightforward bubt somewhat lengthy calculation of the determinant
defining the resultant shows that '

— Ny = y¥—c2y?—Setey + o* (d2+ ble—oce)
where y = bd—e. Since ¢ =1, combining this with equation (14) yields
(1s) - —N; = y2—cty?— 3ty + oy —Ny).

These quinties for the various exceptional values of N, and ¥, are the
desired set of diophantine squations.

To complete the proof of the theorem, note first that if Z[x] con-
tains non-real roots of unity, then equation (9) has at most eight sel-
utions by the theorem of T. Nagell quoted in the introduction. Further,
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a given & can be the fundamental unit of at most finitely many rings
Z %], and for a given value of £ thesecanbe effectively determined ([4]).
Therefore in order to prove Theorem 2, it suffices to prove that each of
the equations (15) has but a finite number of solutions. But this follows
from a theorem of (. Runge ([7]) and the following lemma.

Levwa. The polynomial
Yyt —a?y? 3@y + o'y Az + B

where A 5= 0 and B are integers i3 drredueibls over the field O of rational
nUMbErs.

Proof. If not, then it is a product of two polynomials whose leading
forms must be monomial factors of a*y. Substituting any complex value
for « or for y yields & polynmomial in one variable which is not identically
zero; hence the polynomial in question has no non-trivial factors invol-
ving only one variable. In particular, there are no linear factors. Ji there

“Is a factor with leading coefficient o®, then there is one of the form ag®+
+bo+o0—y where @ # 0 is rational. Substituting ¥ = ax®+bz+¢ into
the polynomial gives a sextic polynomial in # with leading coefficient
a® —a?- g, Since this polynomial is identically zero and a % 0 is rational,
we have a contradiction. If there is a factor with leading form axy, say
axy by ey —d, then substituting y = (bo+-d)/(az+¢) into the poly-
nomial and clearing denominators shows that as--clbz--d. So there

" must be a linear factor, which we have already seen to be untrue. This

exhaunsts all possibilities; so the lemma, and hence Theorem 2 are proved.
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