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Effectively computable bounds for the solutions
of certain diophantine equations

by

ALFRED J. VAN DER POORTEN (Kensington, N5W)

Y. Introduction, It iz the purpose of this note to establish the exist-
ence of effectively ecomputable bounds for the size of the solutions of
certain diophantine equations. Thereby, in prineiple, we obtain an algor-
ithm for obtaining all solutions of these diophantine equations, since
ouly boundedly mauny possibilities remain to be checked. In practice, the
bounds one obtaing are far too large for it to be feasible to actually check
the remaining cases, and in this paper we make no attempt either o
compute bounds or to optimise the bounds our proofs might produce.

HRecently, Tijdeman [12] employing & refined form of an inequality
of Baker on linear forms in logarithms [3] established the existenice of an
effectively computable bound for the solutions of Catalan’s equation.
Tijdeman’s argument is completed by an earlier result of Baker on the
so-called hyperelliptic equation [2] which itself depends on a generalis-
ation of Baker's work on Thue’s equation [1].

It is our principal object to prove a p-adic generalisation of Tijdeman’s
result on Cafalan’s equnation. Accordingly it is shown that:

THEOREM 1. Let S be a finite set of distinct positive prime infegers,
S = {P1; --.; D}y ond denote by (v, y) the ged of integers x, y, and by {u, v}
the lem of integers w, v. Then there is an effectively compuiable constant
€ > 0 depending only on the sel 8, such that all rational integer solutions
o>1, y>1, w>1, o>1, Wy, ..,w, excluding the case u =v =2,

. and assuming (z, ¥) = 1, of the equation

2 —y" = (pf .. R

‘are bounded by C.

~ We denote by K an algebraic number field with degree d, and by
B1y .-+, 0; algebraic integers of K which are non-units, and which belong
%o the finite set T = {fy,"..., 6;}. If «, » are integers of K then (z,2) =1

.denotes that » and ¢ are relatively prime; equwa.lently, the uiea,l genera.ted

by z and = is the ring of integers of K.
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In order to deal with the case 4 = v of Theorem 1 we prove the follow-
ing result. It is considerably more general than. is required for Theorem 1
but this generality has some intrinsic interest.

THEOREM 2. Leét a, f, and y # 0 be integers of K. Then there is an
effectively computable constant C' > O depending only on a, §, y, the field I
and the set T, such thot if w> 2, w3 0,...,w, > 0 be rational infegers,
and x, y, # be algebraic integers of K such that (z, 2} = (¥, 8) = 1, salisfying
the equation '

ar®— py* = yz, where =z = 6., 607,

then 1, 1wy, ..., w; and all conjugates of x,y, ¢ are bounded by (.

There are a nmmber of inferesting implications of this resulﬁ; I am
indebted to T. N. 8horey for bringing these to my attention. For example,
denote by P[Z] the greatest prime factor of the rational integer Z. Then
we have the corollary.

COROLLARY. Lef a,b be non-zero rofional iniegers. and let m,n be

positive integers scmsfymg wmh > 9(m ny, Then for X, ¥ eZ (X,T)
bounded, : .

PlaX™+b¥" >0 as max(|X|, |¥|)->00

To see this, write mf(m, n) = m nf(m n)y = »n’ and 4 = mn' {m, fn)
Then the theorem implies that if «™,y™ e Z and oa*4by" is a rational
integer composed of some nominated fmlte get S of rational primes, then

2], vl are bounded by a constant depending only on &, m’ and »'. The

aggertion of the corcllary is then immediate, and, indeed it is sufficient
to require only that m’', n” be bounded in which case one even has

 PlaX™+bY"] >0 a8 max(|X], ], (m, n))->co.

As stated, the corollary is a result of Mahler [8]; it is however an easy
matter to give an explicit lower bound for P{aX™-+bY"] in view of the
effective mature of our argument, and t]ns efﬁeetwe a.spect of the result
iz new.

I am very much indebted to discussion with John Coates, in conver-
sation with whom the idea of writing this note arose. The ideaz of Alan
Baker [1], [2], and Rob Tijdeman [12] are basic to this paper, and I was
materially assisted by lectures given by Alan Baker at Cambridge Uni-

vergity in Lent term, 1975, T am gratefnl for some helpful remarks of

Cameron Stewart. Thiy paper was written whilst the author was on study
- leave from the University of New South Wales, at the Department of
Pure Mathematics &nd Ma,thema.tmal Statistics of the Umversmy of
Cambridge.
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2. Preliminaries and remarks. Our proofs depend on the following
two results, which refine results of Coates [67], and Baker [4] (see also
Tijdeman [12], Theorem 2), and & result of Sprindink and Kotov [111.

Let a4 ..., o, be non-zero algebraie numbers with degrees at most d
and heights respectively at most 4, ..., 4, (all 4;> 4). Write

2 = (logd,) ... {logd,_;), A =4,

Denote by p a prime ideal of the field K = Q{a,..., a,} and suppose
that p divides the rational prime p; assume the usual normalisation of
the valuation.

THEOREM A. For some effectively computable nwmber O, > 0 depending
only on p, n ond d (and ord, b,) the inequalities

0< |ai ... aln—1], < exp(—C; Q2'log 2'log AlogB)

have no solutions in rational integers by, ..., b, with obsolute zvcalues at most .
B (=4).

For a proof see [93, Theoremn 1. One bunlla,rlv shows that [9], The-
orem 2,

TEROREM B. For some effectively computable number C, > 0 depending
only on n and d (and the defermination of the logarithms) the inequalities

0 < |bloga,+ ... +bhiloga,| < exp(— 0,2 log R log AlogB) .

have no solutions in rational mtegem byy..uy by, with absolule values at most

B (>4)

Other than in Section 3 wealker results would suffice. In Sectlon a,
Baker [37, and a p-adic equivalent would be sufficient, whilst in Section 3,
Theorem B could of ceurse be replaced by Tijdeman [12], Theorem 2,

In proving Theorem 1 our principal argument (Section 3) will show
that if » is odd, and « £ v then the exponents u,v are bounded by an
effectively computable constant. Subsequently {(Section 5) we show,
inter alia, that # v = u then, similarly, % is 80 bounded, and (Section )
that if v = 2 then « is again bounded. Thus our argument reduces the
equation of Theorem 1 to finitely many equations of the shape z™-—y*
= p¥t ... p¥s (and thers is a similar reduction in the case of Theorem 2).
To deal with these equations the following resuli suffices:

TaEOREM C. L6t ap # 0, ayay, ..., g, be integers of K and denote
by f the polynomial f(X) = aqy(X —ay)... (X —u,). We suppose thai if
the vational inieger m satisfies m > 2 then f has at least 2 simple zeros and if
m = 2 then f has at Teast 3 simple zeros. Then there is an effectively comput-
able constant ' > 0 depending only on the polynomial f, the field K, the
set T\, and the integer m > 2, such that if w,>0,...,w, =0 be rational
integers, and z, ¥,z be algebraic integers of K such thai (w,z) = 1, salis-
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fying the equation
¥ = al@—~02) .. (@—a,2), where oz = 0¥, g%,
then wy, ..., w, and all conjugates of z, y, 2 are bownded by G,

Theorem C s easily deduced from a result of Sprindsuk and Kotov [11]
by, for example, the method deseribed in Baker [2] and the obvious changes
niecessary for p-adic case. For completeness we mention an appropriate
formulation of the required form of the Thue-Mahler theorem as proved [11]
(see also Kotov [7]):

TagorEM D. Lef iy oeey Qny Where m = 3, be distinet integers of K
and denote by 9, where 6 5= 0, an integer of K. Then there is an effectively
computable constant €' > 0 depending only on ay, ..., a,, 8, the field K,
and the set Ty such that if w, = 0, ..., w, > 0 be rationel integers, and ®, y, =
be algebraic integers of K such that (x,2) = (y, 2} =1, satisfying the equation

Ax =y} o @—eyy) = 2,  where @ =001, 6%,
then wy, ..., w; and all conjugutes of x, vy, z are bounded by €.

Theorem 1 generalises, and includes, a recent result of Tijdeman [12],
Theorem 2 is new as regards the variable u, but otherwise our results rep-
resent only a mild generalisation of results of Coates [6]. Thers is an
extensive related literature; we refer the reader to the: surveys by Tij-

‘deman {137, [14] and thence to the surveys and literature there mentioned.
Regarding the Catalan equation, sec Cassels [5] and Tijdeman [121.

3. A p-adic analogue of the equation of Catalan. For positive integers
, ¢ denote by {«, v} their lowest common multiple. We shall consider the
diophantine equation
1) ' @ —y" = (p\T ... peyt

in rational integers =, y, u,%,w,,..., w, satisfying respectively o > 1,
y>1,u>1,0> 1, where py, ..., p, are distinet positive primes belonging
to the finite set § = {p,, ..., p,}. It is clear that the numbers 2w, ..., Wy
are non-negative, and we shall suppose, as we plainly may without loss
of generality, that  and v are prime numbers. It will be convenient to
suppose for the fivst part of our argument that v iy an odd prime. We
shall write 2z = PP ... p5s and observe that we may suppose . withowut
loss of gemerality that (2, 2) =1, (y,2) = 1, since It is evident that we
may cancel ont any factor that happens to be common to z,y and =
. Finally, we write {#, 2} = w¢’ = w'» and remark that of course if u #0
then u' = u, 4" = ¢ whilst if 4 = o then v’ =1, ¢* = 1.
We have

@) P = (g ) —a ) ,
=0y +#)2 0 ~ Loy — 1)(y +2*12 ¢ (mod (y + 2)3)
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and elaim that therefore

i zw'r
L T "d'r) =1 0T ¥.
¥+

3) (y iy

To see this, observe that if a prime p is such that plz then pry-2¥
because (y,#) = 1, whilst if ply+z* then (2) implies that if
PUY+ 2" (y+2") then plpz*"Y; hence necessarily the only prime
which ean divide both y+2z* and (y°-+2"")/(y+2*) is v. Moreover (2)
implies that if oiy-+2z° then we have

(1" +2) g +2*) = 12" (mod ),

and this confirms owr claim (3).

Now sinee (1) implies that o = (y+2*)-(y"+2%)(y +2“) we can
conclude that if o1y +2+* then ¢“~*{y-}-2, whilst if p is prime and p # v
then ply-+#" implies that p*|y 2. It follows that there is a pogitive
integer Y such that if y satisfies (1) then .

(4) y =0, 74—

where v, = 1 or »~". By a similar argument if follows that if z satisfies (1)

then there is a positive integer X such that

(8) D= uy X2

where #, = 1 or %™

‘We postpone discussion of the ease . = » until Section 5 helow, and
confine ourselves here to the cage # == v. Then in view of (4) and {5) we
may write (1) ag

(6) . (uoxv+zv)u (0 T e g™)? = 2%,

We shall suppose that % > », observing that in view of the symmetry of (6),

the case » > % will be similar. By ¢, ¢, 6y, €2y ... W& denote constants
depending only on the set 8, and by %, X" we denote abgolute congtants,
As we aim to show that v, u < ¢; we may suppose that > ¢,. Our firgt
object is to show that » < % implies that

{7) ' v < e{logu)”.
Flainly, for 9|2 we have that (1),- (6) and (4} respectively imply that
5y =1y = Y0, =27,
iy | XN — 1], = 2ty XY, = p 7,

o Y =1, = eyt XY, = pTvn.
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{Note that if u, or » belongs to § and the corresponding w is non-zero
then, necessarily w4, = 1, or, respectively, v, = 1.) Hence it follows that
(®) |y (X[ 1], < max {p™, p™, p 7 = p,

We firstly suppose that X < ¥, and aim to show that X is not too
gmall compared to Y. Hence we apply Theorem A fo

A=uwlry¥X/¥T)=1 with £ =Ilogulogr, 4 =7, B =u
and, assuming - =% 0, we obtain that
)] : | AL, > exp( - O, (logu)*log ¥},

for some constant €, depending only on-p, p e 8. Compa.rmg (9) with '(8)
we gee that

(10) P < 6xp (O’p(log%)“’lbg Y.

Taking the product of fhe inequalitiss {10) for all p € § we obtain that
(11) | 2" < FOslos,

whera Cg = p%@’ depends only on the set S.

‘We remark that indeed A = 0; for if the contrary were the case then
we should have

- (w—e")" = (y -2,
80 {z—&")" > "2, which plainty contradicts z*—y" = %"
© Asweaim to show that (7) is the case, we can suppose that

(12) v > ¢y(logu)*
with, say, ¢; > 3C,. Then (11) implies that
z< YW,
Hence. .
(13) . ¥ =, TU gt~ YSuM . Iru,ls > Y.Wla .

Therefore equation (6) implies that

) _ (2, X¥ -{—z”)“ - Ifﬁuvls+zuv . yluws
so by (11) and (12)

(14) _ ug XV > T _ s Y,

We remark that in making our convenient estimates we make heavy use
of our assumptions « > ¢, and (12). -
In view of (11) and (14) we have
K X" — 1] = [ f{u, X7)] < jo Feabosi-iv
[y o T — 1] = [e*f(o, ¥*)| < fo~" Flestomst'=opuv
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and by (13)
o /yn_n — [;ur!yq < é Y(cﬁ(mgu)dr!)u‘

Recalling that if el < § then log(l+a)l < 2}jal we obtain
heloge — uleg (ug X)) < Featogwi=ir
ilogy — vlog (v, YY) < Flestonni-rhuir

lwlogae—ovlogyl < ylegtiog ! —deju,
whence )
(15) | julogu,— vlogry+ uvlog (X[ ¥)| < ¥ie—eder),
We now apply Theorem B to
A = ulogu,—ovlogv,--uvlog(X}Y) with 0 =loguloge, 4 =1Y,
. B = up

noting that A’ == 0 since A # 0. We obtain that

(16) 11 > exp { — Oy (logu)*log ¥

where (', is an absolute constant. Gompamiﬁg (15) with (16) wo see that

5 < ey {logul*

which is the assertion (7); we remark that we cmﬂd actually have shown
that 2 << gy (logu)tloglogu.,

To eomplete this part of our argument we observe that (6) implies
that

(g X727 < (U XTJe" - 1) — 1 = (0 ¥*[2% — 1) < (my X" [2")",

whence, in any event, ‘
.X< -1,’1‘ 1,'uY< 21/'

and with very slight adjustments our proof above a;pphes to the possibility
X=>7.
Our second. objective will be to show that indeed

(17) u<< ¢ (logu)”

and our argument will, in structurs, foﬂow the argument we have used

above.
‘We obtain, a8 &t (8), that on the one hand

(18) loy (o X°) — 1], < p 7™
We suppose that z < ¥". Indeed by (1) and (4)
(@) = (0, T — 1Y+ 1 < o (XY,
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and as v, < 1 we invariably have x < ¥°. Then we may apply Theorem A
to
A =o@/¥Y—1 with 2 =logv, 4 =F", B=wu
and, assuming 4 = 0, we obtain that for ea,cs]i ped
{19) |}, > exp (- C,(logu)’vlog ¥).
Comparing (19} with (18) we ses that
(20) P < exp (.0,, (logu)*vlog ¥)

 and taking the product of the inequalities (20) for all p e 8§ we obtain
that

(21) 2 YOstogue
Hence, recalling (7), we see that y = 9, ¥%—g* > F*2, g0
’ Ay — 1| = 24 jy?) < %chm(log'u)avwiu)u,
lyllra T) ~ 1] = [2*/(5, T)] < 4072 oo,
whence, as above at (15), we obtain that
(22) ' lulog (2 T%) —vlogs,| < Yetesule—u,
‘We now apply Theorem B to
A" = ulog(w/¥*) —vlogy,, with £’ =Ilogw, 4 = ¥', B =u
and, assuming 4’ #£ 0, we obtain that
(23) ' |4’| > exp(— G, (logx)vlog ¥).
Corparing (23) with (22) we see that
: u— ey {logu)’ v < oy (logu)’e,
and recalling (7) we obfain '
(24} . u << ¢ (logn)’

which is (17) as required; we remark that we eould actually have shown
that w < ¢”(logu)*loglogu.

To complete our a.rgument we observe that indeed A 20, A %0
since otherwise we should have o™ — of ¥*° == 0 which contradicts 2% < U A
which we have already demonstrated above.

Since the equation (8) is not quite symmetric in % and v we should
briefly consider the case w < v. We suppose that v > ¢, and note that,
4§ shown above, X < 2¥. Then, simply by transposing « and » in t]le
argument, we easily show that

(29) u < ey (logv),
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Since by (1) and (3) we have
¥ o= (uy X7+ )" — 2% < gy X¥F,
and 4, <1, we conclude that y<Z X*. Now considering the expression
g (y (XY —1
leads, as above, to the required conclusion that
(26) : v << ¢'{logv)7.

Reealling that (24) is established under the assumption that » < u,
similarly (26) under the assumption that w < ¢, we see that we have
shown that if =, » are primes, v # v and » odd, satisfying (1), then w
and » are bounded by 2 constant depending only on the get § = {Pg, ..., 2.0
This reduees study of the equation (1) to the case u = v (Theorem 2},
the case v = 2 (Section §) and to finitely many cases with u, v fixed.
On applying Theorem C this completes the proof of Theorem 1 for the
cages @ s=p and v =& 2. '

4. The product formula. Let K be an algebraic number field with
degree d, and denote by N = Ny , the field norm. If ¢ is any non-zero
element of K then we have ’

(27) []we, =1,
2

where the product is over all valuations of Q, including the archimedean
valuation; equivalently the product is over all positive primes including
the infinite prime. We have, for each p,

o1, = [] 1650,

»p

where the product is over the distinet prime ideals p of K dividing p
and n, is the degree of the eompletion of K at p over the completion of Q
atl p {(equivalently, for finite primes p, n, = e.f; where ¢, is the exponent
to which p divides p and f, is given by Np = p'p); the primes dividing
the infinite prime correspond to the distinet embeddings of X in €. We
will speak of the prime, and infinite (prime) valuations of K.

Tt follows that we have by virtue of (27),

(28) [] 6 = 1o~

v
where the product on the left is over all (finite) prime ideals of K. We
have implicitly used this result in Section 3, and shall apply it explicitly
below. .
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5. A p-adie analogue of the equation oz — fy"* = y. We have omitted
the case % = ¢ In onr discussion in Seetion 3 above, and shall deal with
it here as a special case of a considerably more general result. Incidentally,
the special case % = v of the equation (1) leads o a result which is frivial
in the sense that it may be obtained by very much mors elementary means,
Tn particnlar it is inappropriate to apply the techniques of Section 3
to what is essentially a simpler problem.

Let K be an algebraic number field with degree d and denote by
9, ..., B, algebraic integers of K, which are non-units and which belong
to the finite set T = {6, ..., 6;}. We denote by 8 = {p,, ..., P,y & finite
get of prime ideals of K satisfying the property that, if 10|, << 1 for some 0
in T and some valuation indneed by & prime ideal p of K then p belongs
to §. There is no loss of generality in supposing that K is a normal exten-
sion of @ and that the set T, and thence the set 8, is invariant under
automorphisms of K; this i3 so because the constants we obtain depend
on K and the adjustiments necessary may be assumed to he incorporated
in the constants. We shall congider the equation

(29) : a™ — By* = vz,
where a, £, are integers of K,y == 0, and
(30) 2= 6P 8,

in rational integers w > 2, w; = 0, ..., %, > 0 and algebraie integers =, ¥, #
belonging to K and satisfying (-;c, H) = (y,2) = 1. We suppose that =, ¥,
2y Uy Wyy ..., w; satisfy (29) and (30) and the stated conditions, and denote
by ¢, ¢y, Cz; - .. POsitive constants depending only on a, 3, y, the field K,
and the set T. After caneelling common factors, and if necessary adjusting
' the definitien of z, we may suppose tha,t {a,2) =1. As we propose to
show that

(31) ' u < clogu
. we may suppose that u > ¢;logu.
We shall denote by X, Y the height of x, respectively y, and assume

without loss of generality, as we may, that X > Y. For prime ideals p|#
(in &) we have, on writing

A = fla(yfz)~1,
that
(32) AL, = lyzjaz®], < |2l,.
Then, since 4 # 0, Theorem A implies that
{33) |l > X calosu,
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whence we obtain that, on comparing the inequalities (32) znd (33), and
multiplying the resulting inequalities over all p in § aceording to the product
formula (28) of Sectmn 4,

(34) . ]‘Nz; <Ixcalngu_
Now becanse the elements of the et T are non-units of K {and because

we may suppose that X iz sufficiently laree relative to some 6), equation
(34) implies that », and each of its conjugates, is bounded according to

(35) Ez]< Xeqlogn
To see this, we observe that [N0| is a positive integer, grester than 1,
for each 8 in 7, whence it follows that each w is bounded above by some
¢;(log X)logu, and the assertion (33) is an immediate consequence.
By, if necessary, considering an equation conjugate to (29), we may
suppose that |2{” = X, whenee by (35) we have
iAI _ iyz/cwui < _‘%Xcﬁlngu—c;lu, say.
But for complex w, the inequality {e” —1! < 1 implies that
lw—bin! << 4{e°—1],
for some rational integer b. So on writing w = logfifa+ulogyjz and
‘ A == w—blog{—1),
we. obtain that
(36) EERD ci
we observe that we may suppose that [b] < 2u, say. We clearly have
A" # 0, so Theorem B implies that
(87) . 1A' > Xeslorw

and, the two inegqualities (36) and (87) together Imply (31) a8 required.
This argument reduces the eguation (29) to finitely many egquations
of the shape
o™ — fy" = yz,
and then Theorem D completes the proof of Theorem 2, and the proof of
Theorem 1 for the cases u = .

6. A p-adic analogue of the equation 2 —%* = 1. We bmeﬂy congider
the case omitted in Section 3, namely the case where v is even. Hence we
congider the diephantine equa.tion

(38) ' at—y? = {p" ... B
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in rational integers =,y,u,wy, ..., w, =abisfying respectively = > 1,
y>1, w>>2 where pi,...,p, are distinet positive primes belonging to
the finite set § = {p,, ..., p;}. Tt is clear that the numbers w,,..., w,
are non-negative, and that we may suppose that z, y are prime to

2 =t ... Pyt
since otherwise we counld eancel any common factor. We shall show that «
is bounded in ferms of constants ¢, ¢,, e, ... depending ouly on the set §,
and accordingly we assume that x, y, w, wq, ..., w, I8 a solution of (38).

In the Ganssian field we have -

7 = (y +iz) (y— =),

and, recalling that y is prime to 2, we have ged(y iz, y—iz) =1 or 2
8o that we have, say

y+iz = Aa®, y—ie = up*

i

with a., B4, neZ[i]and 1] £ 2, {u] < 2, say. On eliminating ¥ we obtain 7
Ad’ — puf* = 2iz,

whence, by the argument of Section 3, %< clogu, and % is bounded as
reguired. Theorem D now completes the proof of Theerem 1 for the case
p =9,

The above argument is a p-adic generalisation of a very particular
case of the recent result of Schinzel and Tijdeman [107 on the equation
y" = P(a); whilst it seems clear that a p-adic generalisation of that resulf
should not present new difficnlties it would lead us too far afield to atternpt
to show this here.
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