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Tt was shown in [1] that the speclhc integral representation of the
Riemann zeta-function

g (8)

1 _t fud " du

could be used to construct zero-free regions for Z(s) in the critical strip
& = {8 = o +ilt 0<< ¢« 1}. The basis of the method used in [1] is to
(A) decompose £(s) into the sum of two functions, £{s) = £,{s)+£a{s), 80
that whenever £(p) = 0, the equality |£{;(g)} = [£2(g)} holds; and to then
(B} use the assumption ¢ = 44y, 0 < f < 4, with Bessel's inequality fo
deduce zero-free regions for £(s).

In the present paper, we separate this method from the specml Ten-
resentation (1) and present it within a general framework which clearly
displays the relationship betweern the natural numbers and certain simple,
bat effective, aspects of I’-theory. The essence of this relationship is
the construction of fanctions f(2), 1 <k < ¥ (z= 1) for which

f Fﬁ(m) vfa(ﬂm)dm =y  1<j, k<.
=1 .

A systematic procedurs is given for constructing sueh functions, and they

are nused to obtain inequalities for the zeros of £(s) in . This is the resnlt

of Theorem 2. In Theorem 3 we deduce explicit zero-free regions for Z(s).
Throughout the paper we shall exclusively use functions in elass €.
Drrixrrron. We let ¢ denote the clags of real-valued, continuous

funetions, f{x), # = 0, for which there exists & ¢, > 1 such that

2) @ 1f(w)5131(9 %), 0<o<<a,

3 jfm)czx_o,
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(4) - [f )] <~’G”"“, =00,

() Fx)= Zf(m' ) converges for =0, and

=]
T Py e L0, o0), 0 o< .

Luvma 1. Let f be a function in €. Then for some o, > 1,
] (2 4]
(6) £(s) f 2 f{z)de = f FT R () de,
L3 i3

holds for all § = o+, 0< 0 < g;-
Proof. The conditions (4) and (5) guarantee that the steps

oo

f :n"‘lf(n@ dx

¢

L

fae)
[ o Flayio =
1]

2
i
-

= 3w f 2 fa)da = £(0) | o™ (@)dw

n=1

l

are valid for 1< o< gp. The conditions (4) and (5), together with (2)
and (3), show that (6) holds for all s = ¢+it, 0<< o< gy, by amalytic
continuation. This completes the proof of Lemms 1.

A variation of Lemma 1 can be found on p. 28 of [2]. Now suppose
that fonetions f,(2), 1 < & < W, from ¥ have been found so that

m fﬁ’wﬂmeﬁQM 1<j, k<.

For each f,, we use Le:mma. 1 to write

s)f 27 () de = fw””ll?’ @) da -+ fmms;lﬁktm)dm;

1
O<ogLIEL{p) =0, p = ,B—l—w, 0 << < }; then by Bessel’s inequality,
sinee 291 e L*(1, o),

N 1

(8) Smhwrw [ yumwr@m

But «*' e L*(1, o) if and only if «*' ¢ L*(0,1); and thus we are led
te explore the possibility that, by properly choosing the functions fj
(satisfying (7)), the sum

"-.

1%

_ N1 o
(" 2] f$‘?“_1F,ﬂ(m)dm :
f==1 1
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can be made sufficiently large so as to contradiet (8)..This would establisk
+he Riemann hypothesis.

The sums {(9) are not known to be unbounded. We shall, however,
be able to obtain zero-free regions for {{s) using the method just described.
This will be accomplished in Theorem 3. First we give a systematic pro-
cedure for constructing functions f;, 1 < k < ¥, which satisfy (7).

Let X = (@, &5, .+., &y) be & point in BV, Euclidean N-space; and
let QF denote the subspace of EY defined by the inequalities 6 < 2, < a1
< .. << By, For any ge ¥, define a function &(u,v), u,2> 0,

Glu,v) = f G (ux)G (v) d,
1

where & (2} = V‘ g(nm) Forany X e @V, consider the ¥ x N real, symmetrlc

matrix 4 = AV(X, g) defined by

A = [Flmy, ), 1<j,k<H.
Tt is known that A has ¥ non-negative eigenvalues 4, = 2, 2 ... =2 ly = 0,
A = A (X, g) (since A is & Gram matrix), with corresponding orthonormal
elgenvectors €, €2y «v., tx; € = €,(X, g) = (€15, Gagy -y Bp)- We choose X
and g so that, in fa.et A iy positive definite, in Whmh cage the smallest
eigenvalue Ay is positive. When this is the case, the fonetions

(10) fule) = ‘ﬁﬁ" ,Y’ezkg (2,)
i

are functions in € and satisfy (7 ), sinee

mi

y oG () d

fﬁmﬂmm_

N
2 Bmg elh ml; mm)

(Ajﬂ'k) = ﬂ—-;---J1 s
1 -
= W(-A-ek} ej) =W(Ak6k’ Ej) = 6_17-:'
vl )

It follows that we have

THREOREM 1. Let g ¢ and X e Q¥ be chosen so that A = Ay(X,g)
is positive definite. With this choice of X and g, define functions f, 1 < k< N,
by (10). Then if £{g) =0, p = p+iy, 0< f< &, the inequality

‘y-‘ 1 . 1
2—1 T
D\ [# el < 1=

holds.
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Prooif. The inequality of Theovem 1 is simply the inequality given
in (8) with the orthonormal functions f,, 1 < k< N, given by (10).

No method to effectively estimate the magnitnde of the sum in The-
orem 1 is known when g and X are unrestricted. When ¢ and X are suitably
restricted to a subclass of % and @, however, then it i3 possible to disen-
tangle p from the other parameters to obtain explicit zero-free regions
for £{s). We illastrate this procedure in Theorem 2 with & special choice
of g; and afterwards, we discuss how other choices of g also lead to explicit
zero-free domains.

Put
ha) = (ﬂn”)g.
et

We congider a linear ecombination of % in order to have a function in €. -
Thug, put .
(11) gl = ASan(mmh
with @, e R and 0 << ¢, < 1', 1< v < 4, chosen so as to satisfy
(a) . E &, =0, |
(b) - Nae, =0,
() - Nagt =0,
(@ N =D 0.

Rince h(z) satisties (2) and {4) with o, = 2, s0 does g(x); and it is easy to
see that eondition (¢) gnarvantees thaf (3) holds, We now show that (a)
and (b) imply (3). (The condition (d) will be needed for another reason
in Theorem 2.) When 2 > 0, we have

2 hing) = Ba(w)

where B,(z) is the second Bernoulli functmn; i.e., the periodic extension
of ;—z+a?, 0< o<1, with period 1. Hencs,

o 4
= Z.Q(n;jg) = —m‘z‘Za,Bﬂ(c,,m).
n=1 . r=]

Since 0 < ¢, < 1, Byle,#) =3—o,0+(c,2) 0 < o< 1. It follows from (a)
and (b} that '

™ yaB (c,2) = —Za,cﬁ, 0o,
in Whmh case condition (5) holds. '
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THEOREM 2. Let g(z) be defined by (11), and choose X € @~ subject to
the restriction 0<<m; < m<...<ay<l. If o= Biy, 0 B<S, i

a zero of C(s), we have ‘
N z a
DEZ (e, Xg) < jol? ,
oo 1—26

where, as usuol, 1,,(X) end ¢, = ,(X), 1 < k< N, are the eigenvalues and
eigenvectors of An(X,q), and where we have put X* = (&F, 2, ..., 2%).

Proof. Let X and g be chosen subject to the conditions stated in
Theorem 2. We consider the N x N matrix 4, (X, q) defined as usual.
Lot Ay, ...y dyand e, ..., ey, &, = (61, 0y, ..., 8yy) denote the eigenvalues
and corresponding eigenvectors. of 4. We ghall show ab the end of the
proof that 4, > 0. Let us asswme this is trne for now. Put

1 X ) . :
fk(m)=F;mg(w;m), 1<k<N.

Then we know that the_ N functions .

N 4
1
Fula) = = Den ) 0. Balmes)
’ i=1 vl

are orthonormal, and that the inequalify of Theorem 1 holds:

Zifm“ PP () d

But it iz now a simple maitter to evaluate the integrals; viz.

1 N 4
1 ) s 1. D{ey, X*
J o o . .- 8

Substituting this value of the infegral into the inequality of Theosrem 1
vields the inequality of Theorem 2.

To finish the thecrem we need t0 show that 4,(X, ) is posﬂswe
definite. This will be accomplished if we can show that for each (fixed)
¢hoice of the real number ¢, ..., fy, and for each X e@”, the function

<__m
1-2p

N
T(@) = D tg{ma)
I=1

. 5 ’
is the zero function only when ¢, =i, = ... = iy = 0. But if I, is the

largest index for which % 5 0, and if ¢ = max¢,, then the derivative
IsSvsgd

of T(x) hag a jump diseonfinuity at = = (cmlo)“‘1 in which cage T does
not vanish 1dentlca,]ly This completes the proof of Theorem 2.
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Tt is clear that explicit zero-free regions for {(s) can be obtained g,t
leagt in those cases where the integra&s :

-

f 227G (@) dm

are of the form I(g)J (w;), in which case the mequa.hty of Theorem 2 takes

the form
~ N

X !
2% 20 T O <

The integral will be separable when X e@¥, 0 < < ... < @y < 1,and when
g €% hag the form

gl@) = E ahiez), 0<e<1,

with k(z) having the form
hiz) = 3“;—”, reZ, r=2.
T]ns follows by the same reascnmg given in Theorem 2.

We romark that the single greatest impediment to the estimation
of the size of the sum appearing in Theorem 1 is the lack of an effective
construction of the orthonormal functions ¥, 1< k< N. A systematic
procedure for constructing sueh functions has been given, but it is inef-
fective in the sense that the spectrum of the matrix A, (X, ¢) is largely
unknown, so that good estimates of the sum in Theorem 1 and Theorem 2
are not obtained.

Finally, we observe that the methods of the present paper can be
readily adapted to the gtudy of the zeros of Dirichlet ZL-series, where,
in this case, we wonld begin with the integral ‘

f gt 2 (nm) de.

=1

Any zero-free region like that given in Theorem 2 would have important
‘conseqnenees for the distribution of prime numbers.
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On the construetion of non-congruence subgroups
by .

Jurrer Brrrro (Bombay)

The existence of subgroups of finite index in the modular group
which are different from its “congruence subgroups” was first pointed
out by Klein ([6], § 1, p.63) and several mathematicians have since dealt
with the explicit eonstruction of such subgroups (see [7], [8] and [9]).
If one looks for “nom-congruence subgroups” in analogous situations,
one is led naturally in the light of the well-known solution of the “Congru-
ence subgroup problem?” and especially [10], to consider the other
interesting case mamely, that of the group SL{2, o), where p iz the ring
of algebraic integers in an imaginary ‘quadratic field over the field @ of
rational nunibers. The problem of constructing ‘‘non-congruence subgroups”
of BL{2, Z[l/—l]) has recently been dealt with in a purely algebraic
fashion by A. Drilliek {2]. We are thankful to Professor S. Raghavan

- for his gnidance during the preparation of this note. We are also thanlkful

to Professor K. G. Ramanathan for his encouragement and o Professor
W. Magnus for having given us an opportunity to gee the dissertation
of Drillick.

In this note, we deal with the construction of non-eongruence sub-
groups of SL.{2,0), i.e. subgroups of finite index but different from “congru-
ence subgroups”, when p is the ring of integers in an imaginary quad-
ratic field Q (¥ —d) with d = 1,2, 3, 7, 11, 5, 6, 15. Tn the first five cases,
the field is euclidean and B. Fine {3] has given an explicit presentation
for PSL(2,p); In the remaim'ng cages, we use the presentation given by

 Swan [117.

Our proof is based on the same 1deas as of Drillick and perhaps a little
simpler.
Let SL(2, o) denote the group of —rowed matrices, Wlth entries in o

.and determinant 1, and P81:(2,p) the group SL({2,0)/{+I>, where I

is the 2-rowed identity matrix. For any ideal g in o, let 8L(2, n/q) denote
the group of 2-rowed matrices, with enfries in the guotient ring o/q and
determinant 1, and PSL(2,0/q) the quotient group SL(2,0/q)/{L D).



