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Tt is clear that explicit zero-free regions for {(s) can be obtained g,t
leagt in those cases where the integra&s :

-

f 227G (@) dm

are of the form I(g)J (w;), in which case the mequa.hty of Theorem 2 takes

the form
~ N

X !
2% 20 T O <

The integral will be separable when X e@¥, 0 < < ... < @y < 1,and when
g €% hag the form

gl@) = E ahiez), 0<e<1,

with k(z) having the form
hiz) = 3“;—”, reZ, r=2.
T]ns follows by the same reascnmg given in Theorem 2.

We romark that the single greatest impediment to the estimation
of the size of the sum appearing in Theorem 1 is the lack of an effective
construction of the orthonormal functions ¥, 1< k< N. A systematic
procedure for constructing sueh functions has been given, but it is inef-
fective in the sense that the spectrum of the matrix A, (X, ¢) is largely
unknown, so that good estimates of the sum in Theorem 1 and Theorem 2
are not obtained.

Finally, we observe that the methods of the present paper can be
readily adapted to the gtudy of the zeros of Dirichlet ZL-series, where,
in this case, we wonld begin with the integral ‘

f gt 2 (nm) de.

=1

Any zero-free region like that given in Theorem 2 would have important
‘conseqnenees for the distribution of prime numbers.
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The existence of subgroups of finite index in the modular group
which are different from its “congruence subgroups” was first pointed
out by Klein ([6], § 1, p.63) and several mathematicians have since dealt
with the explicit eonstruction of such subgroups (see [7], [8] and [9]).
If one looks for “nom-congruence subgroups” in analogous situations,
one is led naturally in the light of the well-known solution of the “Congru-
ence subgroup problem?” and especially [10], to consider the other
interesting case mamely, that of the group SL{2, o), where p iz the ring
of algebraic integers in an imaginary ‘quadratic field over the field @ of
rational nunibers. The problem of constructing ‘‘non-congruence subgroups”
of BL{2, Z[l/—l]) has recently been dealt with in a purely algebraic
fashion by A. Drilliek {2]. We are thankful to Professor S. Raghavan

- for his gnidance during the preparation of this note. We are also thanlkful

to Professor K. G. Ramanathan for his encouragement and o Professor
W. Magnus for having given us an opportunity to gee the dissertation
of Drillick.

In this note, we deal with the construction of non-eongruence sub-
groups of SL.{2,0), i.e. subgroups of finite index but different from “congru-
ence subgroups”, when p is the ring of integers in an imaginary quad-
ratic field Q (¥ —d) with d = 1,2, 3, 7, 11, 5, 6, 15. Tn the first five cases,
the field is euclidean and B. Fine {3] has given an explicit presentation
for PSL(2,p); In the remaim'ng cages, we use the presentation given by

 Swan [117.

Our proof is based on the same 1deas as of Drillick and perhaps a little
simpler.
Let SL(2, o) denote the group of —rowed matrices, Wlth entries in o

.and determinant 1, and P81:(2,p) the group SL({2,0)/{+I>, where I

is the 2-rowed identity matrix. For any ideal g in o, let 8L(2, n/q) denote
the group of 2-rowed matrices, with enfries in the guotient ring o/q and
determinant 1, and PSL(2,0/q) the quotient group SL(2,0/q)/{L D).
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Let _
I'(g) = {T'e8L:(2, o) such that T = I(modq)}
and ) .
F(q) = {T eSL(2,0) such that T = +I(modq)}.

Then I'(g) is called the principal congruence subgroup wmodulo ¢
in SL({2, o). Any subgroup of SL(2,p) containing I'(q) for some ideal g
of p is ealled & congruence subgroup and is necessarily of finite index. Clearly

SL(2,0)/'(q) ~8L(2,0/q),
T +I) =TI(q).

Lemwsa 1. Let p be any prime ideal of o and t any natural number.
Then the order of the group I'(p)/T'(v*) is a power of p.where p is the rational
prime belonging fo p.

Proof. We know from [4] that I'(q) has in SL({2, n) the index given
by

1
stz o)t = 0o [ [ 1= =)
’ 1”7 (¥p)
where p runs over all prime ideals dividing q and Ng (respectively Np)
denotes the order of o/g (resp. o/p). The homomorphism #: SL(2, 0/p")—
8L(2, 0/p) induced by the natural map o/p'->p/p is surjective and the
kernel is I'(p) /I (ph). Hence I'(p)/I"(p’) has order (Np)* 2. We know that

2 it 0 is prime
sz|p po is prime,

Thus I'(p) /I'(p) i3 a p-group.

Lewwma 2. The alternating group A,, n > 7, is not zsomorphw o any
composition faator in @ composition series for SL(2 0/q)-

Proof. Let g = pil...pg¥, where p;, 1< 7 <C k, are digtinet prime ideals
and a; > 0 are integers for 1 <4< k. As is well-known, SL(2,0/q) is the
direct product of SL(2, ofpf) for 1< i< % and any composition factor
in a composition series for 8L:(2, o/q) is also a composition factor in a com-
position series for SL(2, n/pf) far some 4, 1 < 4 << k. Hence it is encugh to
prove the lemma, when q = p’, p a prime ideal of o, > 0 any integer.

Case 1. 2 gp. Consider the normal series

8L(2, 0)[T(p") = I(p)|T(p") = (I).-

Tn view of Lemma 1, I'(p)/I"(p") has erder 2 power of 2, henc@ its compo-
sition factors are of order 2. Now '

P otherwise.

SL(z, D)/’I’(D )T {(p)/I(p") ~8L(2, DiiP)
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and the order of SL(2, nfp)

6 when 2 splits in o,
60 when 2 remains prime.

Hence 4,,, for » > 7 is not isomorphic to any composition factor.
Case 2. 2 ¢ p. Consider the normal series,

SL(2, 0)/I"(p") » )T = TV = .

In view of Lemma 1, I'(»)/I{p}) s & p-group. Hence its composition factors
ave all eyelie of order p. Now

12, 0)/T (") 1T (p)IT(p") ~SL(2, 0)/I'(p) = PSL(2, op).

‘When Np = 3, the order of PSL(2,0/p) is 12 hence 4, n=17 18 not
igomorphic to any composition factor. W]len Np>3, PBL(2,0/p) 1
gimple and 4, » > 7, is not isomorphic to PSL(2, F), Where Fisa ﬁeld
with p or p? elements; in fact for a field F, with ¢ = p’ elements (and p
a prime), it is well-known that the order of PSL(2, F,) iz g{¢?—1) and
n! = g(g® 1) is impossiblefor p >t =3 ort = d,p> B,or £=1,p > B.
This completes the proof of the lemma.

Lemais 3. Let the symmetric group 8, or the allernating group A,
for some n 2= T, be the quotient of SL (2, o) by a subgroup K. Then K is a non-
congruence subgroup.

Proof. (i) Let, if possible, 4, ~8L(2, 0)/K for = 7, with K > I'(g)
for some ideal q. Then any composition serieg for SL(2, n/q) contains afactor
isomorphic to 4,, for some x = 7, which is a contradietion to Lemma 2.

(ii) Let, if possible, &, ~ SL(2, 0)/K with K > I'(q) for some ideal g
and for some 7 = 7. Then A, ~ H/K, for a normal sabgroup H of SL(2,0).
The normal series

8L(2, 0)[I'(q} 2 H/I'(q) = EiI{q) = (L)
has a simple factor isomorphic to 4,, for some # = 7, a contradiction fo
Lemma 2. Hence the kernel K is a non-eongruence subgroup.

Remark. Even if we have 3 homomorphism # of & normal subgroup &
of finite index in SL(2, o) onto A4, or §,, for » > 7, the kernel K of 4 is
g non-eongruence subgroup of SL(2, ). )

Temwma 4. If SL{2, o) contains one non- cmagmenee subgroup then
contains infinilely many such subgroups. _

Proof. Let ¢ be a non-congruence subgroup of SL(2,o0). Then
GnI'(q) for any ideal q of b is of finite index in SL(2, o) and is evidently
a non-congruence subgroup. Let § be an infinite subset of the set of rational
primes. For each p in §, let p be a prime ideal in o containing p. We assert
that G I'(p) are distinet for infinitely many p’s in 8. Let, if possible,
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GnI(p) = H for infinitely many p’s in §. Then Np(¥p*—1), the index
of I'(p) in SL(2, o) divides %, the index of H in 8L(2, o) ) for infinitely many
primes p, this is elearly mlpossfole

TEEOREM. Let p be the ring of integers of Q(V—d), where d = 1,2, 3,
7,11, 5, 6,15. Then SL(2,0) contains infinitely many non-congruence
subgroups.

Proof. In view of Lemma 4, it is enough to exhibit one non-congru-

ence subgroup of SL(2,0). For the constnction of one guch subgroup,
we nse an expliclt presentation for PSL(2, o) given in [3] and [11] for the
d's mentioned.

icm

In the sequel, we mean by a product ¢; o, of two permutations ¢y, o, .

on » symbols, the permutation obtained by applying o, first and then o,.
We deal with the various d’s one by one, as follows.

d = 1.
PSL(2, 0} = {a,1;, u; a? =1° = (al) = (t1)® = (ul)* = (at)*

= (ual}® = identity, fu = ut}.

The map which sends a, 1,4, u, to (14)(25)(67), (15){24)(67), (153)(2674),
{(27)(46) Tespectively clearly extends to a homemorphism of PSL{2, o) into
8.. We asgert that it is onto. In fact the image contains (52), (5271346)
{for, (alata)—=(25), (ualat'a)--(52713486)) and hence 8, by ([6], p. 49).
Hence 8, is a guotient group of SL({2, o) and the kernel is a non-congruence
subgroup, by Lemmsa 3.

d=2,

PSL(2,0) = {a, t, u; tu = ut, a® = (@) = (4 'ana)® = identity}.

Since for every n > 9, 8, is generated by two elements «, § of order 2 and 3
respectively [1], it is a quotient of PSL(2, n); a map ¢ with ¢(a} = q,
() = ap and g{u) = identity will do. Thus §,, for every » > 9, is a quotient
of 8L(2, o) and the kernel iy a non-congruence subgroup.

d = 3.

Tet &* be the commutator subgroup of PSL(2, o). Then

G = {j,m,t,u; §* = m? =7 = u? = (H)® = (mu)® = (umyj)®

= (mt)? = identity}.

Lat @ be the map which sends m, 7, %, 7 to (13)(24), (12)(34)(56), (17}(23)
(56), (16)(24)(35) respectively. Since ¢(f)p(j) = (145}(263), p(m)p(t)p(w)
= (147), g(w)e(m)p(j) = (175)(263), p(m)p () = (14)(23)(56), ¢ extends
t0 & homomorphism of G* into §,. Sines @lum) = (17342)(B6), @(um)®
= (56). Also ¢ (miumjtjmj) = (1364752). Henee (5624173) & p(6"). Thus §,
is a quotient group of G* hence also of the commutator subgroup & of

Lo
[~1]
11
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SL{2,p). Sirce @ is of finite index in SL(2, n}, we get a non-congruence
subgroup of SI:(2,p), by the Remark following Lemma 3.
d="1.

PSL(2,0) = {a, i, u; iu = ut, 6 = (af)® = (u"'auat)® = identity}.

It we set p(a) = (12)(34)(56), p(t) = (15947)(2368), ¢(u) = (2368) then
dearly o(t)g(s) = plu)e(t), pla)p() = (187)(258)(469) and g(u) ¢ (a) X
xp(w)g(a)p(t) == (17)(25)(49); hence ¢ extends to a homomorphism of
PSL(2, o) into 8,. We show that ¢ is surjeetive as follows. In fact,

(12)(34) (56} {17) (25)(49) = (15627)(394),

((15627)(394))° = (16627) e ¢{PSL(2,0)),
(15627)(2368) = (15827)(36);
hence
((15827)(36))° = (36) & @ (PRL(2, v)).

Also _ 7 _

(15947)(153827) = (1827594),  (1827594)(15947)(16947) = (1825749),

(15947)(12)(34)(56) (74951) (2368) = (1827396),
(1825749)(1827396) = (125398746), and (125398746)° = (369182754).

Since (36) and (369182754) generate §,, QJ(P.SL(Q,D)) = Sg Hence it
follows that 8, is a quotient group of 8L(2, o) and the kernel is & non-
congruence subgroup by Lemma 3.

d=11.
PSL(2,0) = {a, t, u; tu = u, a® = (af)® = (v quaf)® = identity}.
The map ¢ which gends a,f,u to (12)(34)(56)(78), (1245)(3678), (1245)
respectively extends to a homomorphism of P3L(2, o) into §;. Further,

(1245) (12)(34) (56) (78) (3678) = (265)(347), (265)(347)(1245) = (126)(3547)

and hence

((126)(3647))* = (126) e ¢ (PST(2, 0)).
= (16)(245), we. have
((16)(245)) == (16) e @{PSL(2, 0)).

From (1245)(126)

Moreover, .
(126)(3678)(1245)(16) = (14562783)
and so '

(14562783)° = (16842357) e ¢ (PSL(2, 0)).
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Since (16) and (16842357) generate S, ¢(PSL(2 n)) = By, hence S,
is also & quotient group of 8L{2,0) and the kernel is a non-congrusnce
snbgroup.

d = B.

PSL(2,0) ={T, U, 4,B,0;T0 = UT, A* =B =(TA) ={(ABy
= {AUBU™Y = identity; 404 = 70T, UBU0B = TCT™1},
Since 8,,, for any # = 9, is generated by two elements o, § of order 2 and 3
respectively, the map ¢ with ¢(B) = ¢(U) = ¢(C) = identity, ¢(4d) = «,
(1) = fa, extends to a homomorphism of PSL(2,0) onto S,, n> 9.

Hence 8, for any # > 9, is a quotient of SL(2, o) and the kernel is a non-
congruence subgroup.

4 = 8. .
PRL(2,0) ={T,U,4A,B,(; TU = UT, A* = B* = (TA)® = (ATBy
= (ATUBUYY = identity; AC == C4, T CTUBU"' = BC)}.
The map ¢ defined by ¢(U) = p(B) = (C) = identity, p(4d) = (12)(34)(56),

p(T) = (1458){26937) gives & homomorphism of PSL(2, p) into §,. We
have

p(ATA) = (15947)(2368).

Henge

p(ATA) = (2368) ¢ ¢ (PSL{2, 0)).
Since _ .
) (2368) (1458){2693T7) = (14586)(27)(39),
we have

(27)(39) e ¢ (PSL(2, 0)).
Further (26937)(27)(39) = (263) and so

(2368)(263) = (68}ecp(PSL(2 0)).
Now

p(Td) = (137)(258)(469), (137)(258)(469)(263)
and hence

= (125869437),

(869437125) € ¢ (PSL(2, 0)).

Since (86) and (869437125) generate S, §, is a quotient group of PSL(2, n)
and hence of 81.(2, p) and the kernel is a non- eongruence subgroup.

d =185,
PSL(2,0) ={T,U,4,0;TU = UT, A* = (TA) = identity; A0 = 04,

UCUAT = TAUCU}.
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Since, for every # = 9, 8, is generated by two elements o, § of order 2 and 3
respectively, the map ¢ with ¢(U) = identity, ¢(4d) =a, ¢(0) = q,

(T} = pu gives a homomorphism of PSL(2, o) ento §,, forn = 9. Hence §,,,
for » = 9, are gnotients of SI.(2, o) and the kernels are non-congruence
subgroups. Thus for all the rings o, mentioned in the theorem, SL(2, p)
contains infinitely many non-congruence subgronps (in view of Lemma 4)
and the proof of the theorem is complete. '
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