icm
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On power series with only finitely many
coefficients (mod 1):
Solution of a problem of Pisot and Salem
by
DAVID G. CanToR* (Los Angeles, Calif.)

1. Introdectiom. Dencte by § the set of algebraie integers 8, all
of whose conjngates (exeept for 8 itself), have absolute value < 1. Let T
be the set of algebraic integers 6, all of whose conjugates {except for 6
itself), have absolute value < 1 with at least one conjugate of absolute
vaiue == 1. Pizot [3] has shown that if 21> 1, 6> 1 are real numbers
for which ' :

(1) - D < oo,
=10 .

{lz]l denotes the distance from  to the nearest integer) then éeS and A
is in the field Q(f). He has also shown {4] that if
1
=
2e8(0+1)(1+1ogh)
for all integers n > 0 then 6 §UT and A<Q(6). In [1] I give an extension

of Pisot’s result (1.2). A major open guestion is whether (1.1) ean be
replaced by Lm |A6"} = 0.

n—0a ’
In [6], Pisot and Salem ask for a theorem which ineludes both cited
results of Pisot. Theorem 1 (below) answers this guestion and shows

(1.2) 1467

" moreover that the term 1/(141logl) in (1.2) can, in essence, be replased

by the less restrictive term 1/(2 +Vi;g_2).

As usnal, we say @, ye<R are distinet (mod 1) if v~y ¢Z.

In [4] Pisot proved that if there exists a sequence of real numbers
@y @y, @y, ... Which assume at most f distinet values (mod 1) and 1> 1,
§ > 1 which satisty

(1.3) A" =a,+o(ljn), n =012 ...

* This paper was supporbed in part by National Seience Foundation Grant
MPS 75-6686. s
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then again §eSUT. We shall show that the rate of decrease o(l1/n') can

be replaced by the much slower rate o{1/n'~"C?). Furthermore we ghall
m

replace the term 26" in (1.3) by the more general expression 3 2A;(n)6%
i=1

where the 1;(n) are polynomials and |6, = 1. Finally, in {51, Plgot showed

that if a{2) = 2%3” is a power series defining a function a(z) mero-

morphic in the dﬂk le] < R, where B > 1 and if the ¢, assume only finitely

many distinet values {mod 1), then «(z) is a_raﬁnona:l function. We shall
extend this result to funetions a{z) which need only be meromorphic
in j¢|<< 1 and which can be expressed as the ratio of analytic funetions
whose Taylor series sabisfy suitable growth eondilions (these conditions
are trivially satisfied in the case considered by Pisot),

The key idea in proving these results is countained in Lemma 3.1,
which gives a new eriterion for a sequence of integers to satisfy a linear
recurrence relationship with constant coefficients.

If x is a real number, then [#] denotes the greatest integer < # and
[x] denotes the least integer > x. Note that (o] = min(e —[z], [2] —=).

2. Main theorems.
2.). THEOREM. Suppose @, = A6"-+e,, n =0,1,2,... is a sequence

of positive integers with 1> 0, 8> 1. Suppose that there ewist u and o
satisfying 0 < p<1, 0< o<1 such thet

Mm+n—1
(2.2) (L+67 ¥ (o4 —0e) < pn”

i=m

for all integers mz0, nzl If

(2.3) o < [log(al +1/8)+ 261 %(a Je)’,

then Y a,z" is o rational Jumetion, 8¢80T, and 6 has degree << 1/(en').
=i

2.4. Remark. Condition (2.2) will be satisfied if

m+n—1
(2.5) ' (L0 > < un”

for all integers m > 0, > 1 and condition (2.3} will be satisfied if
{2.6) ()" < 1 ){log{ay+1/8) +2).

Tf (2.3) s satistied we may inerease g until g =1 or there i equality
“in (2.3) and this increase will not violate eondition (2.2). If this is done
we can conclude that 6 has degree < 2 (log(a0 +1 ]'8))/0‘
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oo .
2.7, TanorEM. Suppese a(z) = > a,2" is o power series, where ihe

n=0

o, assume <[ disttnot values (mod 1), w}‘iich ean be written in the form

s(2) Jt(2) where s(z Esnﬂ“ and t{z) = T t,2" are analylic in lz) <1

and satisfy =
(2.8) 2 1] < o0,

(2.9) 2 lemi® = o(1/n%),
(2‘10) Z gt'mi = 0(1/%‘8)5

where 0L a< <] and at+fz2

n=0

—1ff. Then a(z) and 2 [a,]e"
rational functions. '

2.11. COROLLARY. Suppose &y, Gy, da, ... 48 & Sequence of real nuwmbers
taking =< f distinet values (mod 1). Suppese A(n), la(n), ..., ,(n) are
polynomials with complex coefficients and 8, O, ..., 6,, are complex num-
bers with 10, = 1. Suppose finally that

m
2%(9@) 8 = a, +o(1jn "),
i=1

Then 2 a,2" amd Xla,|d" are rational fumclions.
n=(0 =0
2.12. CoroLLARY. If a(z) = yanz“ is a rational funclion end the

a, asswme only finitely many mlues (mod 1), then ZL%J 2" is o retional
Sfunetion. =0

Before we give the proofs we give some comments. Whe]hl g=1
and all |g] < e, then conditions (2.2) and (2.3) are patisfied if

(2.13) (14 0 < (elog (e +1/8) -+ 2} .

Thus to show that Theorem 2.1 inecludes the eited result (1.2) of Plsoty
it guffices to show that if = satisfies (2.13) and if 1> 1 then

(14 6)* (elog (a-+1/8) 4 2¢)"* < 266(0+1)(1.+logh).

We shall omit the elementary verification. To show that Theorem 2.1

implies the other cited result (1 1) of Pisot, suppose that 5‘ g < co. By

n=0
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omitting & finite number of tha a, and renumbering the a,, if necessary,
we may assume that {1+ 0)* Zen < 1. The ught hand side of (2.3) ap-
proaches 1 as o—0, Thus if We put o= {1+6) Y's and choose o> 0 suf-

n= CI
fictently small, conditions (2.2), (2.3} will be satisfied and hence 8<8uT,
It is interesting to note that the special ease of Theorem 2.7 when
by =1, f, = -6, ty =% =... =0, g, =40"4¢,, f=1, a =0, =1

shows that Pisof’s condition Y & < co can be replaced by the weaker
e n=0

eondition > &, —0 as n—0.
m=n -

We note that throughout this paper the wora “integer” could be
replaced by “Ganssian integer” or, more generally, “integer of L” where
L is a quadratic imaginary algebraic number field. Ali results would remain

vald (mutatis mulendis) and a slightly different definition of § and T

would be necessary.

3. Proofs.
3.1. Levoia. Suppose g 50, ¢4, €, ... 08 @ Sequence of integers and
tg =1, %y, ts, ... 28 & sequence of compler numbers. Pul

" i

W = S E thtlcm-.ﬁ A1

Ul Y

ﬁf Dol Py < ... < B, 18 a finite, increasing sequenece of non-negative in-
tegers define A, (py, Py, -, By) To be the (n+1) % {n 1) matriz whose (h, )
eniry is &y, q for 0 h, 4 << n. If there exists ¥ = 0 such thai

[AetlA, (py, b1y oy B <1 for all py<py<...< D,

then there exist g satisfying 1< g <7 and ty =1, dy, ..., &, such that

g
Edicn—_i =10
=0

for all n = gq.

Proof. For n< r define the matrix H“(pu,pl, .y P,) o be the
(n-+1) % (n+1) matrix whose (%, 1) entry is Cppri TOT O Ry E < m. Putb
J, =H,(0,1,...,7) and let U, be the upper triangular (r+1)x (r-+1)
matrix whose (%, 4} entry is #,_, when i 2> % and 0 when << & for 0<
hy i< r. Sincet, =1, det(U,) = 1. The matrix ULJ, U, has (m,n) entry
| e Hence UL, U, = 4,(0,1,...,7) and by hypothesis |det(J,)] < 1.

Sinee f, has integral entries, det{J,) = 0. Let g be the least integer for
which det(J,) = 0 for g << n < 7. Since det(J,) = ¢, is not zero, g is > 1

and det(f, ,) # 0. Thus there exists a non-trivial linear combination
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of the columns of J, which vanish. Henece there exist d

d,, not
[

all 0, such that 3'dye, , =0for g<<n <
h=0

or G1y orey

2¢. Since det(J

that d, s 0 and we may assume, with no loss in generality, that d, = 1.

1) # 0, we see

g
We now show, by indnetion, that Edh Cop =0forg<n
k=

we have shown thab Zdh g = (} for g <

< g +7. Suppose
L qg+n—1, where g+1
< n< . The mafrix Jn h% determinant 0. Call its columns vy, 1, +ovy e

L . . e
Successively, for j = n, j =n—1,...,j = greplace column y; by Md,v;_,
h=0

The determinant of this new matrix is still 0. If ¢ <j < »n, the elements

. "y - g q 4
in the (n-+-q—7,7) poﬁ.ltmns = 30,5 a0d the elements above these
h=0
elements are of the form \ D@y gy Where ¢ =5
h—

_.Q'
follows that the determma.nt; of the new matrix is ( dye Magh
0

k<< n, hence are 0. It

‘;n—q-kl 3¢

h
xdet(J,_,) = 0 and hence Z‘dﬁcnﬂ » = 0. Thiz shows that S‘d’hcn% =0

Be=p
for g < o< g+ Pub E,L*H(O 1, i

-1, n—r,n—r41, ..., —q).
Y\,e wilt show, by induction, for all # > g—[—; that det(K,} = 0 and that

hEthn—h = 0. We have already shown this when n = g--». Suppose
=0 .

we have proven it for all m satisfying g +» < m < n. Let §; denote the
ToWw veetor (¢, ¢y, ..., 6., By induection, each of the rows 6y, 4., ...

-+ 844y, Which arve nof present in H,, is a linear combination of the
first ¢ rows of K, : 6,, &, ..., §,_;. By adding appropriate linear combi-
nafions of the preceding rows to the last row 8, _, of K, we ean replace

7% —q

the last row by Z’ tn_gs, ¥hen we can replace the next-to-last row
fn—g—1 b=

by Z’ b Gng—1-ns ete Thus, at the eompletion of the row operations,
D=

the row &; is replaced by Tt,,, in- Lieb 'yJ denote the jth column of this

new mafrix; we ean replace y; by Zthyj_ ny Successively for j =7,
A=t

-1, ..., 0. The matrix we obtain in this way will be 4,(0,1,...,9-1,
w—r,n—r-+1,...,n—g) and will have the same determinant as K.
Thus jdet (K} < 1 and since K, has integral entries, det(K,) = 0. Denote
the jth Golll:mn of K, by %;. Now, suceessively for j =r,vr—1,..., ¢

replace 7, "by \ dh Wit The new matrix gtili hag dete1mma.nt LIg<ji<

the elements m the (r+q—13,5 po,ﬂtwn& Y‘dh ¢, . The elements

=
above these elements are of the form Td,,ch & Where g k< n, and are
_ = .
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0 by the inductive hypot-h(;sis. It follows that -det(K,) = (hé) " SN e SL P
xdet(J,_;) = 0. Hence ,!;E;dh‘" 3 =0.8
3.2, Lmva. Suppose f(z) = p* 2 where 0< 51 <1, 0< o<1,
Then there exists a positive integer r<<1-F1/(eu'’”) sueh that
logf(r) < o {1+ eu'™ —L{en!!").

Proof. Put glw) = p®=™ and choose =, = 0 so that g(w,) is the mini-
mum of g{x} for £ = 0. Now

logg(x) = wlogp+ owloga,
g’ (@) g () = logp+o+ologs.
Bince g'{x,) =0,
- logu+o+elogm, = 0,
logw, = —1—(logp)/a.
Thus a5 = 1/{ue”) and '
| logg(mg) = —ox, = —of(ep’).

Put # = [,]. Clearly 1 < r< 1--1/(ep). Since g’ (z) = 0 for 2 2= m,, we
gee that g(r) < g{w,-+1). Next '

g(@o+1)1glwo) == p(L+1fme)™" (m+1)° < pe” (o +1)7 = (L4 ep')".
Then,

log g (@) +1og (g (w, +1) fg ()

logg(r) <
< —of(eu™) - olog(l +ep'®) < —of(eu™") + aeu'’”.

Now, (%) = gla)/(u2"), henee

T) = gl uwr®) < glr)(pasy = eglr).
Thus
logf(r) < o+logg (r) < o (14w —1 /(™). m

Proof of Theorem 2.1. Write u = 1+ ({log{a; +1/8))jo and o == eu'’".
Then (2.3} becomes

| u<(o(Ltu)(oje) or  pe’ < (1+u)
Henece )
' 1 2 2

ng — = < = { sz 4 2.
1+u  w+(u+2)  ppvyrrd (rutvui+a)]
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Now the polynomial X2+ 44X —1 has roots {—~uT 1’@);’2 and v lies
between thege two ropts. Hence v?+uv—1 < 0 or #-4-v—1jp < 0. Thus
(log(ai +1/8)) /e +1+4ep"—1(ep'") < 0. ,

By Lemma 3.2 thére exists a positive integer » < 141/(ex"") such thab
log (s "0} < o1+ eutl® —1/{eu'?).

Then
(3.3) - log(ag+1/8) +log{u sy < g,
Pll‘b 5‘.“1 :,sﬂ—ﬁs,a_l aﬂl:ld. seb t’O =S 1, tl = mﬁ’ a.nd ti fa— 0 Whe_n i,>/2.

m h
Define =, = hZO '_Ta_tht,;am tn-toeis LRGN &gy = @y, iy, = &,y = 8, 'When
2o 5

2l and @, = 0py,— 08, when m,n > 1. Next, if m,n31,

2 52 2 g3 '
T = '5713—1—1:._266m+n é‘m*:-—}dnw14_ 8 51111—11—1

é 51211,-!—)'. + B ( 5?n+n _i'; aiﬁ+n—1) + GE a“fnv}«n—l = (1 + 6) (531+n + 85_;1",_'_”_1) !

Now let pg,P1y ...y Proy be 2xl increasing sequence of positive Integers

and define the matrix 4, , = 4, (py, p1, ..., p,_,) 0 be the 7 x v matrix
whose (h, ¢) entry is @, ; for 0 < b, i <r—1. Let B,_, = B, _1(PgsPry ---

+++3 Ppoy) e the 7 X v matrix obtained from 4,_; by multiplying the first

column by (1+6y and dividing the first Tow by (14 6%, Qall the

elements of the ¢th row.of B,_,, 9,4, %u, ... Yir.1- Then if p, >0

r—1 r—1
;E(: v, < (1 +5)(‘3:2:,-+2 (5;i+f+35;i+j+1))
= im

s,

1 i
<@+ (Y 855+0 D o)< we,
7=0 J=1

Similarly, if p, = 0,
r—1 r—1 :
b <+ Y G4 0)< ai 4w )1+ 6F.
I=0 i=1

Since log(ai+1/8) > 0, we see from (3.3) that ur° < 1, hence

N

pIOP<1/8  and 3 yf < adt1)s.
F=0

' By H.a;da,ma.x_'-d’a ineguality, if p, = 0, then

\det (4,) = [deb(B,_)f* < (af-+1/8) (wr) %,
while if p, > 0, then
o ldet (A, ) < (Y.

4 — Actz Arithmetlea TXXIV,1
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By (3.3) Met{4, ,)i< 1 and by Lemma 3.1, a(2) = }a," is a rational

=0
i i —1 < 1/{ep") (sinee » as
function whose denominator has degree \.<__r .1<
used in Lemma 3.1 is 1 less than » as used in this proof). By the Fabtou—
Hurwitz Lemma [7], we may write a(z) = P(2)/G(z) yv.}lere P(g) aind
Q(z) are relatively prime polynomials with integral coefficients satlsfymg
9(0) =1 and degQ(z) < 1{(es™"). Now P(2)jQ(s)—2{1~82)"" = Zoenzn

ié analybic in Jo| < 1. Since 4 # 0,1/0is a pole of P(2)/0(7) and Q(1/8) = 9
Since Q(0) =1, # is an algebraic integer. As all other roots of Q(z) lie
in Jz] 3 1, all conjugates of 6 (except ¢ itself) lie in ¢/ < 1 and <SUT. m

3.4. LEMMA, Suppose Y1, Ya, Yy ... 98 G Sequence of positive numbers
safisfying

C o Zmeel .
y 4,—0 as M-+,
2
=1

-l . - .
Put 8, = sup MZ Yy, Then if 4, < iy << ... < 1, 48 @ stricily inoreasing sequence
n i
man t=m .

of positive integers, we have _

r ro. K
Z Z'.’/ij-l—k = 42 6;.
7=1 k=1 ) i=1 .
Proof. Choose j<» and let & be the largest power of 2 which is
< rfiy; let 1 be the largest power of 2 whirh is < j; let. g be fhe largest
power of 2 which is <. Since ;,>j>1, .
L

E.”!ﬁﬁk-ﬁ aij“I‘azij'[‘ 54ij+-‘-+5hfj< 31‘"" 6'25+§4i+"'+6hj

3
K 8yt Byt gt 4B,
Hence
r r . .
3 MU < G F S+ S 8+
Fl k=1

+2(8, - 8y b b H )+
48y Bg+ Byt )+
—i—gﬁg
L8 +38:,+78,4...+(29—1) 4,
£ 8 +38,+4(20,F 46, +... +(g/2) 8,)
= 51+(51+252)'+4((63+54)""(55'{'66'@‘ 8,4 8g) +

RRTTE (PR )
<48, +d,+...+6,). & ' : .
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. r r
3.5. Lmwa. If X = () is an » X r matriz and > Nyt << r, then
i=1 j=1
' ldet (X)) < 1.

Proof. By Hadamard’s inequality and the arithmetic-geometrie
mean inequality, '

r r r r
et ()< [ Dl <{(0) 3 oy < 1. m
. i=1 j=1 ’ f=1 j=1 ' .

Proof ef Theorem 2.7. By subtracting a constant multiple of
1/(1—=) from a(z), if necessary, we may assume that some of the e, are
0 (mod 1). This will not change the number of distinet values {mod 1)
asgumed by the a,. ¥t will replace s(z) by (1-—-2)s{z)—zt(2) and t(2) by
(1—2)i(2), where 7 is a constant. Since a<<f, (2.8), (2.9), and (2.10)
will remain satisfied. We may assume that a(z) is not constant. Since
a(z) is Tegular in a neighborhood of 0 we may divide s(z) and #(z) by the
same integral power of ¢ and assume that ty # 0. By ifurther dividing
$(z) by an integral power of ¢, if necessary, we may assume that s, == 0.
We may multiply s(z) and ¢(z) by the same non-zero constant and asgume
that ¥, = 1. Thus, after appropriste rensming, we may. assume the hy-
potheses of Theorem 2.7 and, in addition, that s, + 0,1, = 1, a{z) is not
constant, and that one of the < f digbinet values (mod 1} assurned by
the a, is 0. If N is a positive integer we may write :

Na, =c,+e, wWhere - ¢,eZ a:nd'—lfzgsn<1/2.

By Dirichlet’s theorem ([2], p- 14, Th. VII) there are infinitely many
choiceg for N for which

(3.6) leg] < LINT=D g 29,1, 9, ..

where the right hand side of (3.6) is interpreted as 0 if f =1. We may
decrease o and f, if necessary, and assume that 0 a1l and a8

=2 —1f

In the succeeding lemmas we use the following notation:
T 212 ]thl; '
b=10
N is a positive integer satisfying (3.6);
. ” _

Woyn = N 2 th'$m+n—h;
R=0

A1
U, == _"N'hZ Shf’mw}«n-—h;
=={)
L] 2]
Wpyn = 2 Zthtfgm-j-ﬂ—?z—i;
h=0 i=0
m on
B = "2, ytktiam+n—k—i‘
: A=0 i=0
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We shall let p,< p;<< ... < p, be a strictly inereasing, finite sequence
..y P,) B0 be the (r+1) x

of non-negative integers. Define 4, = 4. {p,; P1,
¥ (r+1) matrix whose (m,n} eniry I8 2, ,, 0<m, n<7
3.7. Lenia. We have @y = Y pt Vmn+ Winn

Proof
n m n m
Popm = Z il i Ot — Z Z thti (Na‘m-}-ﬂ—h—i - 3m+nwh—i)
== ﬂ h=0 im0 h=0
n. om
1
— wm,n +NZ. t‘i 2 tham-i-n—?x-—a'
i=0 =0
n mir—i
= Wyn +N 2 k (’gm+n—i_' 2 th“m-}-n—h—@')t
o i=v he=m+1
M -
gince ) #a mnht = Smin—i- Continuing,
h=0
m+n  m4n—h .
Loy, = wm,n'l‘um,n_N Z Ty 2 tia“m+n~—h—1'
A=m-+1 i=0

1
= Wy, Um,n - N Z ths'm-Hl—h = Wn T Yup,n + . B
h=m+1 .
+

3.8. Lemua. We have lsy] = o(s?~97).

. h=10
Proof, By the Cauchy-Schwarz inequality,

-1 . 2§—1
o 412 HZ gy e 12 g
sl <[ 3 sl T < PP o (L = o ().
h=f h=j :
Let 2 he the largest power of 2 which is < r. Then
z :

1 ql-rl_,l
1801 + 20(21’(1—4)12) — 0(21’(1—&)}2) — o-(r.(]__cc)m)’

Diaal < lsui+§‘ D i< 2

L=t i= J_qm
since a<< 1. R
3.9, Lumma. We have

Z‘I : 1) Tée/l\n-!-’](]‘—l)
m—D f=={
Z‘ 2; = N'o(r'h;
m=0 n=0

D D, = Fro(').

m=0 n=0
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Proof. SBince

P n
. i 9 Hf—
Wl < D DT Itl - Ml e o] < TN,
h=10 =0
the first inequality is clear. Next, since n<<r, u, , is the coefficient of
2Pmth iy "
T+,
¥ yihzh 51 ;%
S
By Parseval’s equality with 2z = ¢%~1 in the following integrals
r N oy #+Pm
; e
Z[upmnlzgz—nf thhz’*E s
n=8 0 h=o =Py,
Tz 2w r ri Iy \
2 Nl
S (Z | 2, 8#)) 49
q k=g . i=Dm,
17“ r 22 F+Pp
L (S5
. h=0 t=py
7+Den,

< N°T? _2 15, .
=P

< a<1/2, and o; = 0(1/i"), we have

Puot o; = sup 28,,] Since 0
I=i h=j

-

0’; == 0(?1'(1)‘
=10

Next, nsing Lemma 3.4 with y, = |8,

o r "‘Hpm
b =2 2
Dl P <IN N s, L = BT 2 lepmﬂe
me=0 n=0 m=0 i.-pm : m=0 i=0
< 4NT V 0; = NPo(#"~%) =N o),
I'.-ﬂ
ginee a4+ f =2—1/f and f< 1 implies a=>1—1)f or 1—a< 1/f. This
proves the second mequa,hty Similarly, »,,_, is the C-OGﬁlClPJl‘b of 2Pm*™ in
ro- LR vy
¥ Yy Yt
k=4 f=pp+1
and proceeding as for w, ., using Lemmas 3.4 and 3.8, we obtain
F+Dm
2 [Pl <N2(21sh1) D sl S FHop ) Po(r Y
twpm+1

— Nz ( 2——ct—-ﬁ) _ N:!O(,rl,ff) o
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Proof of Theorem 2.7. (Completed.) If f= 2, put

Y‘ Eo:ﬁm,,“ 5 =1/(36T" and r = &NV

m—D n=
where N will be chosen later and chosen so large that » > 2. Since
wiz,n < 3 (%?ﬂ-,ﬂ_[_ 1)1211,%+ w?ﬁ,ﬂ) [
we have by Lemma 3.9
_X < Br-TilfNZPf{f—i)+N~0(7.11f) < 6(6N2fl(f—ll)/N‘3+2(f—1)+ O(N2f/(f—1))
< 128T% Lo(r) < r/3Fo(r).

Thus X, »» Which is the sumn of the squares of 4,, is < r/2 for all sufficiently
large . Choose N satisfying (3.8) so large that X, <{7/2 and that r > 2.
Then by Lemma 3.5,

'det (A (Pos P1s - Ipr))' <1,
and this is true for all Po < Pr=s vee < P BY Lemma 3.1, ¢z} = Zc ot

n=0

is rational. It f = 1, we choose N = 1 and then by Lemma 3.9, X, =o(r).

Then. exa.etiy a8 above, using Lemmoas 3.5 and 3.1, c(z) = Zc #" ig rational.

Put e(z) = snz 80 that Na{z) = e¢(z)4 (). ¢(z) xngig(z)/Q (2) where
P(z) and Q( ) are polynomials with @{0) = 1, then

e(z) = d(2)/e(z)
where

dz) = Na()Q)—t()P(z) and  e(z) = £(2)Q (2).

n=0

d(z) = >d,2" and e(2) = Ye,2", then
=0
limd, =0 e =1 and
n—00 ! 0 Z ]3311< o

There are < f distinet &,. Put ¢ = minfe;—¢] and » = ma.x|sn] Chooge

e;s

My S0 Iamge that 7 2 | << o fd and {dil << a/4 for all n>= n,. Now
nwn0+1 g
d, = Zﬂﬂm w804 if > nol S’e Epm — a) << ¢4, hence
e
' g .
&y — 2(_em)5n—m|<01,2'
m=0

Thus &, is determined by the previous (n,-+1)s; and hence the seguence
80y 81y £2, ... 18 eventually periodic with peried < f™*. Thus there exists o

Power series with only finilely many coefficients {mod 1) 55

so that e, = g,_, for all snfficiently large n and e{z) = g(2}/(1 —2°) where
¢(#) is a polynomial. Hence ¢(2) and a{z) = (¢(2)-}e(2)}/V are rational
functions. By the Faton—Hurwitz lemma [:] we may assume thai ¢ (2)
hag integral coefficients, hence that a{#) may be written in the form
a(2) = u(2)}fv(z) where fu(zz) == (1—2%)(}{z) has inbegral coefficients and

»(0) =1. Write »(g) = 3u2" with v, = 1. Then
iy

I
2’0«:%--: =0 for all »>n, = deg(u(e)).

t=0

‘Write a, =la,]+y,. There are < f distinct y, and

S‘q;mla 0(modl) for #>a,.

I . ’
Thus y, = — }¥;¥n_¢ (mod 1) if n > n,. Hence y, is determined by the
=1
previous I s and the sequenee Yoy Vis Vas --- 18 ultzma.telv penodlc

Hence ) [a,]d" = a(?) ‘}Jynz“ is & ra.tlonal functlon B
n=0 .

=0
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