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Some set-theoretic Constructions in topology
by

S. Mréwka (Buffalo, N. Y.)

Abstract. We prove a set-theeretic lemma: If § is a class of functions on a set R with
card§<m, then there exists a permutation = of R such that if f eF and fom e, then, for some y,
card( (R\ f-*(»))<m. Various topological applications of this lemma are given; e.g. we prove that
there exists a class R of subsets of the positive integers N such that the familiar space NUR has
only one compactification.

In [M,] we have shown a certain set-theoretic lemma (Lemma 1) which was
then applied in [M,], [M,], and [FM] to construction of non-E-compact spaces.
In this paper, we shall prove a stronger version of this lemma and then we will
give its further applications.

§ 1. A set-theoretic lemma. We shall prove

L1. LemMA. Let m be an infinite cardinal and let § be a class of function on
a set R where card R = m and card §<m. There exists a permutation © of the set R
such that, for every f, if both f and f o & belongs to §, then, for some y

O card (RN 1)) <m .

(Of course, the above lemma is stronger than Lemma 1 of [M,]— or Lemma 1.b
of [M,]— only for singular cardinals m.)

Proof. Let §, be the class of all fin F such that card(R\f"*(3)) = m for
every y. It suffices, of course, to show that there exists a permutation = of R such
that fom ¢ § for every fe §,.

Let & = {f;: £€E}, cardE<m; and let
1 = {£€E: f; has a fiber of cardinality m},

. = {¢ €& every fiber of J is of cardinality <m}

o M

(a fiber of a function fis a set of the form f~*(y), where y is a value of f).

For every & e, we denote by 4, one of the fibers of fy with card 4, =
and we let B, = R\AL5 We have card B; = m. For every £e =, we let Ce = R
and D, = R\ f7 (y) for every y €f{R). The collection {4;: e B} U {By: ey} v
U{Cs: B} U {Dg’y e &, yefy(R)} is of cardinality <m and each member -
of this collection is of cardinality m. Consequently, by a known result (quoted in
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[M,] as Lemma la), there exists a collection {A; .C.EEI} v {B":; é.EE_:‘} ¥
U {C;: EeE uiD;, EeEy,y efg(R?} of mutually disjoint sets of cardlfl‘ahty m
such that d;cA;, B;= By, Ci¢cCy, Dy Dy, (for every values of the involved
lndlclga‘lsl)n;ctions Je with £€ 5y, are handled as in [M,]. For a set KCA": we de,note
by mx a permutation of 4z U B; such that ’nx(x) = x for x € K and mx(x) € B] for
Ay/K. I K and K’ are distinct subsets of 4, the1’1 the functions f; o g and fé o Tgr
are also distinct. Since there are 2™ subsets of A4, wef ca; select a permutation m,
¢ UB, such that f; 7z # f1(d; U By) for every fe §. ’
o AIi; BgesEz We j%et ;1,, = card(f; ') v Cp); we have ¥ {',’fl’_: yef{CH}
= cardC; =m. Let E; = Ff{CP and select a C;'=Cy sucll‘ll th.at 1:|C;" is one-to-one
and f{Cy') = f(Cy); let x, be the only element c?f Q’; *w1th Jdx) =y, ye k.
Consider the product D* = X {Dé’y: y € E¢}. Letting m,-m m for every y-€ E,
we have m;" >, for every y € Eg; consequently, by Koenig’s theorem

card D* = [T {my: ye B} >3 {m,: ye B} = m.

For every element d*e D*, d* = {xf}ysEg, we denotq by 7 thg permutation of
Cy U J{D:,: ye E} defined by mal(x,) = x5, mp(x}) = x, for every yekE;
. on U (D * heck that if d* and d%
e is the identity on |J {Dy;: y € E\{x}: y € Eg}. We check tl nd di
are distinct elements of D*, then the functions f; o 7z anlc} Jromgx a’re also distinct.
Since card D*>mt we can select a permutation m, of C;' U | J {D,: ¥ € Eg} such
that fyome # fI(Cy" U U {D,: ye Eg) for every fe 5 .
The permutations n; are now defined for all £ e . Since they act in mutuz.tlly
disjoint sets, we can define the required permutation # to be the common extension
of all the mg's. The lemma is shown.

§ 2. Applications to E-compact spaces. In this section we shall extend the results
of [FM]. For terminology and notations concerning E-compact spaces, we Tefcr
to [Ms]. First we shall eliminate the assumption of regularity of certajn cardinals
used in [FM].. )

Let m be an exponential cardinal (i.e., a cardinal of the form m = 2"; u is
denoted by logmy); let X™ be any space which contains a closed discrete sub-
space R of cardinality m and a dense subset D of cardinality logm. If 7 is a pf:rmu—
tation of R, then X will denote the space obtained from the discrete union of
two disjoint copies of X™ by the identification of each point p & R in the first copy
with the point 7(p) in the second copy. As in [FM] we have

2.1. X is a perfect image of the discrete union of two copies of X (m,
In addition
2.2. X is the union of two closed subsets each homeomorphic to X,

Repeating the argument in [FM] but appealing to Lemma 1.1 of the present
paper we can show
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2.3. Let m be an exponential cardinal and let E be a space with card E<m.
There exist a permutation m of R in X™ such that X is not E- compact.

If m is Ulam non-measurable, then we can find an A4~ -compact space X ™
with the above properties (this is the content of Theorem 1, condition Sj,,(m),
in [M,]; in fact, as X™ we can take the power A™). Consequently, we obtain

2.4. The class of all 0-dimensional Dperfect images of N -compact space, as well
as the class of all 0-dimensional spaces which are unions of two closed A -compact
subspaces, is not contained in any class of compactness R(E), where E is of non-
measurable cardinality. )

‘We have thus eliminated the assumption of regularity from the Theorem in [FM].
This has been achieved also (in a somewhat different way) by Husek [H]. Our con-
struction, however, can be applied to an arbitrary space X™ (with the stated
properties).

We shall now prove the existence of a large number of 0-dimensional classes
of compactness. A few introductory remarks will be in order. The smallest class
of complete regularity (save for the trivial class of one-point spaces) is the class
€(2) of all 0-dimensional spaces (2 is the two-point discrete space). We want
to show that even within €(2) there is a large number of classes of‘compactness.
The smallest class of compactness (save for the trivial class) is the class &(2) of
all 0-dimensional compact spaces. The next one is the class K(A); in fact, we
have &(2) =K (A4) and, according to 4.21 in [Ms], there is no E with KDYLK(E)
ER(A"). On the other hand, Blefko (see [B], Ch. 3 and also [M;]) has shown that
if w; and w, are initial ordinals of different cofinality, then neither of the classes
K(S(w,)) and & (S(w,)) (%) is contained in the other @if cf (ws) = cf(w,), then K(S(wy))
= {(S(w ,)))- He has also shown that, in contrast to the above-mentioned result on
the class K(A4"); there are E with K(2) ¢ K(E)£K(S(wy)). The first result of Blefko
gives the existence of a large number of 0-dimensional classes of compactness, but
we have to vary the size of the representative. We will show that there are a large
number of classes of compactness with representatives of fixed cardinality.

We shall first observe that a space X (with the stated properties) exists for
every (not necessarily Ulam non-measurable) exponential cardinal m (of course, if
 is measurable, then we cannot require X™ to be A" -compact), One way to see
this is to use the mth power Dpogm of the discrete space Dyyy,, of cardinality logm
as X", gp*  has a dense subset of cardinality logm (Hewitt-Marczewski-Pon-
diczery theorem) and it contains a closed discrete subspace of cardinality m (?).
This X™ has the advantage of being D,q,-compact ; if we do not care about this
property, then, by taking a subspace of 9y, we can obtain an X which is of
cardinality m. ’

() S(&) is the space of all ordinals <&.
(®) This fact follows from considerations of [M:]; however, in an explicit form, it was stated
in [J] and [M]. For a more detailed comment of the whereabouts of this result see [M,], Sec. 4.
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Using the above remarks we shall prove

2.5. THEOREM. Let 1t be an exponential cardinal. There is more thar? m. 0-di-
mensional classes of compactness, each having a representative of cardinality m.

More exactly, there exists a 0-dimensional space S with cardS = m and a tr.am_
finite sequence of O-dimensional spaces

E07 El’ LR ] E.:a [N é<a)l »
where w, is the first initial ordinal of cardinality >m, such that each E; is a perfect
imhge of S and

R(EYER(Ey)  for every n<i<w;.

Proof. We consider a space X™ of cardinality m (as described above) and
we let S to be the discrete union of m (disjoint) copies of X™. We let E, = S.
Assumme that for a given £<w, the spaces E, are defined for every 17<f and they
satisfy the conclusion of the theorem. We let E be the discrete union of all E,,
E=1Js{E; n<&}. Eis of cardinality <m, hence, by 2.3, there exists a permu-
tation 7 (of the set R in X™) such that X, is not E-compact. We I.et E; b’e the
discrete union of E and X,. Clearly, E is a perfect image of S. Since E is not
E-compact, E; is not E,-compact for every n<¢; ie., S(E)ZR(E) 'for every
n<¢. But clearly R(E)cRK(E)=K(E;) for every n<{. The theorem '1s shown.

If, in this theorem, we replace the condition R(E,)ZR(E;) by just K(E)
# K(Ey (for every n<&<wy), then all the space E; can be taken to be perfect
images of the discrete union of two copies of X™,

It remains an open question whether Theorem 2.5 holds if “more than m”
is replaced by “at least 2™,

§ 3. Application to spaces. A& U R. Let A4 be the set of positive integers and
let R be a class of almgst disjoint subsets of 4", By A" U R we denote the space
in which points of .4 are isolated and neighborhoods of a point 4 € R are of the
form {4} U (A\S), where S is an arbitrary finite subset of A. This space was first
considered in [M,]; in [M,] it was used to provide an example of a pseudo-compact
non-countably compact space. In fact, it was observed in [M,] that A" U R is
pseudo-compact if (in fact, if and only if) R is maximal (with respect to almost
disjointness). It is easy to construct maximal classes R such that (A" L R) is
“large” (e.g., such that (A U RNV U R) contains at least 2%° points); the main
result ‘of this section is to show that there exists a maximal R such that f(A/ U R)
is the one-point compactification. ‘

In what follows, R will always denote an almost-disjointed (but not necessarily
maximal) class of infinite subsets of 4. We shall collect various observation on
spaces of the form 4 U R.’

3.1. The discrete union of two spaces of the form & U R is again of the form
N U R
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3.2. Let /' U R be given and let o be a decomposition of R into finite classes.
The resulting quotient space is again of the form & U R. .

Proof. The resulting quotient space is homeomorphic to A U R, where
RN =) {8 Kea} )

3.2 will usually be applied in the following form

3.3. Let &7 U R be given and let ¢ be a one-to-one map whose domain and
counter-domain are disjoint subsets of M. The space obtained by the identification
of each A e domain ¢ with @(A) is of the Jorm & U R,

We have

3.4. There are 22™ of maximal classes R (in a fixed set A).

Proof. Let us write /" = 4", U ./VZ, where 4" and 47, are infinite disjoint.
Let M, and R, be classes in A", and 4 2, respectively, both maximal and of cardi-
nality 2™, Let ¢ be any one-to-one map of R, onto N, and let

R, ={duop(4): 4eR,).

R, is a maximal (almost-disjointed) class of subsets of H5if @ 5 ¢, then R, R,
Since a space 4" U R can be homeomorphic to at most 2% spaces of the form
AU R, 3.4 yields

3.5. There are 22%° (non-homeomorphic) pseudocompact spaces of the form.
AU R

3.6. There is a maximal R such that B(N U RN U R) contains at least
2% points.
» Proof. Let R’ be an arbitrary maximal class in 4" with card ' = 2%, for

every 4 9’ take a maximal class %, in 4 and let R = || {R,: de R}, R has
the desired properties.

3.7. There is an R such that card R = 2%° gnd Jor every continuous real func-
tion fon A U R, fIR is equivalent to .« function of the 1st Baire class on the reals
(i.e., B can be mapped in a one-to-one fashion onto the reals so that the map makes
SIR a 1st Baire class finction on the reals). ‘

Proof. This follows from the consideration of [M7], Sec. 1. We consider the
Nemytski space N discussed in the quoted paper; and, preserving the notations
of that paper, we will treat .4 as the N\R and we let R = {T,:peR}. Then ¥ U R
is homeomorphic to N, hence our conclusion follows from 1.2 in M1

Of course, if a space N U % has the property expressed in 3.7, then every
uncountable set E'cR which is either a zero-set or a cozero-setin N u R is, in fact,
of cardinality 2%,

3.8. There is a maximal R having the properties stated in 3.7. ‘

Proof. Let R be any class having the properties of 3.7; extend R’ to a maximal
class M. Since card R’ = 2™, we can find a one-to-one map ¢ of M"\R' into R".
Let 4" U N be the space obtained from 4 U R” by the identification of each
A e NR with ¢(4) (see 3.3; the explicit definition of Ris: R = RN\ (R'\R)]u
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v {4 uod): AeR\R'}). Pointwise, A U R is the same as‘/V u R, a‘nd
& u R is a continuous image of A" U R, hence R has the desired properties.

(Remark. "We have shown a slightly stronger statement:

3.8'. For every R’ in N with cardR’ = 280 shere exists a maximal R in N
such that R = {By: Ae W'} where By> A for every A€ RN')

3.9. If /' U R is pseudo-compact, then every infinite set E < R which is a zero-set
in N u R is uncountable. : :

Proof. This is an exercise that can be found in [GJ], Exercise 51, p. 79.

3.10. Let X = A& U R. The following conditions on R are equivalent
(a) R is maximal;

(b) & U R is pseudo-compact;

(c) every infinite Ac A" has an accumulation point in M;

(@ BX~A = T o

(¢) for every closed subset A of X, A n (BX\X)=4 REX,
Proof. Exercise ((a)=(b) was given already in [M,]).

We shall now prove

3.11. THEOREM. There is a maximal class R such that
. (a) if EcR is infinite, then E is a zero-set in A" U R if and only if RNE is

countable;
and hence

(b) B(AN U R) is the one-point compactification.

Proof. Let R’ be a class in 4 with the properties in 3.8. Let & be the class
of all real functions on %’ which can be continuously extended over 4™ U .
Apply Lemma 1.1 to , let 7 be the resulting permutation of R'. Let X be the space
obtained from the discrete union of two disjoint copies of A U R'; AU R’
and ¥ U R, by the identification of each 4 &R’ with the point =(4) in Ri.
By 3.3, X can be written as 4 U R, where 4" = 4 U A]. X, being a continuous
image of a pseudo-compact space, is pseudo-compact (so R is maximal). The “if”
part of (a) is obvious; we shall show the “only if* part. Let Ec 9 be infinite and
let E = g~(0), where g is a continuous real function on X. Let = g|R, f can
be treated as a function on R’ and, in fact, we have that both fand fe = belong
to §. By 3.9, E is uncountable, hence, by 3.7 (see remark after the proof of 3.7),
card E = 2%. But, by Lemma 1.1, there isa y such that card ('\/1(»))<2%.
Clearly, y = 0, hence card (R\E) = card (R'\f~*(y)) <2™. But R\E is a cozero-set,
hence, again by the remark after the proof of 3.7, card (RN\E)<¥,.

(b) follows from (a); R does not contain infinite digjoint zero-sets of N U R;
hence, by 3.10 (@), f(A U RIN(A" U R) cannot have more than one point.

The theorem is shown.

3.11. COROLLARY. There are 22%° of (nonfhomeomorphic) spaces N O R such
that B(A" U R) is the one-point compactification.
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Proof. Take two disjoint copies A", U R, and A&, U R, of a space in The-
orem 3.10, write #" = 4y U A", and apply the proof of 3.4.
From Theorem 3.10 we shall derive

3.12. THEOREM. There is a space X and a zero-set Xy =X such that

O  if4,BcX, are zero-sets in X, and A U B is a zero-set in X, then A or B is
a zero-set in X,

but it is not true that
(I)  every zero-set in X, is a zero-set in X.

(Observe that (IT) is equivalent to: every continuous real function on X, can
be continuously extended over X.)

Proof. Take two disjoint copies 47, UM, and A&, U R, of a space with
properties in Theorem 3.10. Let R}<®, be countable; identify each point of
R, \R} with a point from R, (by any one-to-one map of RART onto R,). Let X be
the identification space, let X, = 4, U R, (X, can also be freated as (WU R)u
U RY). () fails because Y is a zero-set in X, but mot in X. (I) is more tedious;
t can be verified by showing the following

(1)  aclosed set A= X is a zero-set in X iff 4 n R, is finite or R,\A fs countable,

and

(@ aclosed set A= X is a zero-set in X, iff 4 n R, is finite or R,\4 is count-
able.

Theorem 3.12 yields a negative solution 6f a question posed by J. W. Green [G].
Green asked if the following condition (I') implies condition (IT):

(I if § is a z-ultrafilter on X with X, € ¥, then &y = {d: A is a zero-set in X,
and Bc A for some Be §} is a z-ultrafilter on X,.

In fact, it can be shown that (I) implies (I') in pseudo-compact spaces (and
the space X in Theorem 3.12 js pseudo-compact). But the relationship between (1),
(I') and (II) in non-pseudo-compact spaces (say in Z%-compact spaces) remains
an open question.

3.13. If X, is a zero-set in a pseudo-compact space X, then condition () implies (I').

Proof. In a pseudo-compact space z-ultrafilters are closed under countable
intersec tion and we will, in fact, show that (I) implies (I') in any space X, provided
that F is closed under countable intersections. To show that F, is a z-ultrafilter
we have to show that if Cis a zero-set in X, then there is an 4 € § such that either
AcCord n C=@.If Cis a zero-set in X, then there is nothing to show. Assume
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that € is not a zero-set in -X; let C = f~Y(0), where fis a non-negative continuous

function on X, and let
1l 1
An={peXo:f(p)>;l}, Bu={P5Xo:f(P)<’;}-

Our assumption on C implies that B, is zero-set in X only for finitely many n (othe1-
wise C would be zero-set in X); consequently, by (I), there is an ng such that 4,

a zero-set in X for every n>no. If 4, € § for some 7, >, then we are done; mdeed
Ay n C = @. Assume therefore that 4, & for every n>ny. Then, for every
n>n0, there is an A, € § with 4, 0 4, = @. We have 4 = NA4,e and 4=C;

n>no
and this ends the proof.

§ 4. Applications to rings of continuous functions. We shall consider, as usual,
subrings of C(X, %) that contain all constant functions and are closed under in-
" version and uniform convergence. For ease of speaking we shall call such rings
regular. In addition, if a subring F=C(X, &) separates points and closed subsets
of X, we shall call § an s-ring (in C(X, 4)); § will be called representable provided
that every non-zero homomorphism ¢: F—Z% is representable by a point from X
(i.e., there is a po € X such that ¢ (f) = f(p,) for every fe §). As a consequence
of Lemma 1.1 we have the following

4.1. The intersection of two regular representable s-subrings of C(X, ) need
not to be representable (even if it is a regular s-subring); in fact, this happens: in
C(N 330, B).

(N30 is the discrete_space of cardinality 2% )

Proof. Let § be a regular respresentable subring of .C(A y%0, %) with card §
= 2% (see remark below). Apply Lemma 1.1 to &, let = be the resulting permu-
tation of A ,me. Let § = {fen: feF}; &, is clearly a regular representable
s-subring of C(A 3%, 4). Both § and §, contain characteristic functions of one-
point sets, therefore, § N §; is a regular s-ring. But § n F; is not representable;
indeed, for every § N §;, there is a y such that card (A sof "1())<2%; sulfices
to let o(f) =

Remark. An example of a regular representable s-subring § of C(A s, )
was first given by Isbell [1]. A simpler example was given in [HJ]; N, is treated
as the set of all points of the unit interval [0, 1] and § is the set of all functions of
the 1st Baire class. Other examples can be provided with the aid of the following

4.2. Let § be a regular s-subring of C(AN "3%0, &). If & contains a sequence fy, fo,
of functions that separate points of N yxe, then § is representable.

Proof. The parametric map / corresponding to the class Fo = {fi,/fas -}
(see [Ms], p. 165) is a one-to-one map of 4, into the space 2™, To put it differently,
we can find a (completely regular Hausdorfl) second countable topology T on A aie
such that each f;, is T-continuous. Let X* be the (A ;80, T); the above implies that
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§ A C(X*, &) is a regular s-subring of C(X*, #). Since X* is Lindelof we have,
by Corollary 4.7 in [Me], § n C(X*, #) = C(X*, &) thus C(X*, #)<=§.

Since X* is second countable, C(X*, &) is representable. Let §* = {f: f,—f
for some sequence fi, f5, ..., f, € C(X*, &)}, f,—~f stands here for pointwise con-
vergence. Let. x, dencie the characteristic funetion of a point p € Nyne; let &; be
the smallest regular ring cf C(A "y, %) contained C(X*, &) U {1,: pe N a¥a}.
Since X* is first countable, y, € F* for every p € A ,x0; thus C(X*, B)c F = F*.
By a theorem of Mazur (quoted — with proof —in [CM], statement (A)), every
homomorphism in ¢: §; —% preserves pointwise convergence; consequently,
if @ restricted to C(X*, £) is representable by a point py, then the same p, represents
¢ on the entire §,. It follows that §, is representable (recall that C(X*, ) is rep-
resentable).

Finally, observe that § being a regular s-subring of C(A ;%0, %) implies that
1p € & for every pe A m; consequently §; = FoC(AN o0, £). But §, isa regular
s-subring of C(A 50, &); consequently, by Theorem 4 in [M;], & is also represent-
able. This ends the proof.

4.2 implies, of course, the result of [HJ] that the ring of the 1st Baire class
functions is representable. It enables us also to exhibit a still smaller representable
regular s-subring of C(AN 180, %): once again we treat 4 ;%0 as the set of the points
of the interval {0, 1] and let § be the smallest regular subring of C(A 380, &) that
contains the identity function and all the characteristic functions of points. Ex-
plicitly, this § consists of all f on [0, 1] such that there is a continuous g on [0, 1]
with {x: f(x) # ¢(x)} being at most countable.
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Pseudo-completeness in linear metrizable spaces
by
Aaron R. Todd (Brooklyn, N. Y.)

Abstract. J. C. Oxtoby has shown that the standard Baire category theorems follow from his
definition of pseudo-complete spaces. Although a pseudo-complete metrizable space need not be
topologically complete, pseudo-completeness implies completeness for a linear topology whose
completion is stronger than a metrizable topology. Pseudo-completeness and completeness are
equivalent for a linear metrizable topology. A complete linear topology stronger than a metrizable
topology need not be pseudo-complete.

In a portion of his paper [2], Oxtoby nicely identifies by his pseudo-complete
spaces, those common elements of several standard Baire category theorems which
make them corollaries of his Proposition (5.1), Any pseudo-complete space is a Baire
space, and his Theorem 6, The Cartesian product of any family of pseudo-complete
spaces is pseudo-complete.

The object of this paper is to establish that, for a large class of linear topological
spaces, pseudo-completeness implies completeness; indeed, for linear metrizable
spaces these concepts are equivalent.

A topological space X is guasi-regular if and only if each non-empty open set
contains the closure of a non-empty open set. A family # of non-empty open sets
is a pseudo-base for X if and only if each non-empty open set contains an element
of #. A quasi-regular topological space X is pseudo-complete if and only if there is
a sequence (4,) of pseudo-bases for X such that if U, e B, and U,oU,,, then
ﬂ U, is non-empty.

It is easily seen that a pseudo-metrizable space X, which is complete in some

’ pseudo-metric d, is pseudo-complete by considering the bases 4, of non-empty open

sets of d-diameter less than 1/n. That the converse is false may be seen by considering
a subspace of the plane, X = Rx (0, ) U Qx {0}, the union of the upper half plane
and its set of boundary points with rational first coordinates: For each %, use open
disks of the plane which are contained in X and which have centers with rational
first coordinates and radii less then 1/n. If X is complete in some metric which induces
its topology then Xis a G, subset of the plane ([1], p. 96). This is not possible since Q is
not a G; subset of R.

The following proposition characterizes a property 1equ1red in the main
theorem.
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