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Semilattice theory with applications
to point-set topology

by

Eric John Braude (Erie, Pa.)

Abstract. By means of semilattice theory, it is shown that if an intersection-preserving
epimorphism  exists between a pair of closed subbases containing the singletons, and 6~ R ()]
= {@}, then the generated topologies are homeomorphic. The necessity of including the smgletons
in this context is studied, and a similar theorem is proved for subbases which do not necessarily
contain the singletons, but which generate compact 7, topologies. These results generalize theorems
of Birkhoff concerning bases or entire families of closed .sets and set maps which are lattice
isomorphisms.

1. Introduction. Theorems expressing conditions under whlch the isomorphism
of the lattices of closed sets of a pair of topological spaces implies the topological
equivalence of the spaces are an established part of the lattice theory literature.
(See, for example, [1], [3], and [4])

By means of general semilattice theorems, it is shown here that, for T spaces,
consideration of these questions can be profitably extended to semilattices of closed
sets which are subbases for the topologies involved —instead of totalities of closed
sets or of bases, — and to intersection- or union-epimorphisms — instead of
lattice isomorphisms (e.g. for an intersection morphism, F(4 n B) = f(4) n f(B)
for all 4, B). Several counterexamples are presented to delineate the extent to which.
some of the hypotheses can be weakened.

In Section 3 we study meet epimorphisms between semilattices (Theorem. 3.6).
The results obtained are applied to show that if an intersection morphism exists
from a closed subbasis containing singletons onto a second, then the generated
topologies are homeomorphic (Corollary 3.15). This generalizes a theorem of
Birkhoff. A counterexample shows the necessity of including the singletons, set
theoretic investigations yield Corollary 3.12 which essentially concerns cardi-
nalities, and further topological considerations are discussed which stem naturally
from the study of intersection morphisms (Corollaries 3.19 and 3.32).

Section 4 has as its main result (Theorem 4.5) a generalization of another
theorem of Birkhoff. It is proved that if an intersection morphism exists from one
closed subbasis onto another, and if the topologies which .they generate are com=
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pact and T, then the topologies are homeomorphic. Again, counterexamples are
given to show that various hypotheses cannot be removed.

In Section 5, union morphisms are studied. Results dual to those proved earlier
are first established. It is then proved that if two closed subbases containing the
singletons are union isomorphic, then the topologies which they generate are
homeomorphic (Corollary 5.10).

§ 2. Notation. A posef, or partially ordered set is a set with a reflexive anti-
symmetric and transitive relation. ot

A semilattice is a set with a binary idempotent commutative and associative
operation.

Given 2 semilattice (A4, o), define the binary relations <, and <y on A4 as
follows: ag b iff a =aob; asyb iff b= aob. Then {d; <> (K4, <)) is
a poset in which inf {a, b} (sup{a, b}) exists for every pair {a, b} of elements (see,
e.g. [2, . 9]). We define aab = inf{a, b} and avb = sup{a, b} in these two cases.

A map f from a poset (P, <) to a poset (Q,s) is isorone it x<y implies
SO )

A map f from a semilattice P to a semilattice Q is a meet (join) morphism if
flanb) = F@AfB) (flavd) = fl@) viB)) for every (a,b) in P2, A one-to-one
meel (join) morphism will be called a meet (join) isomorphism. Every meet (join)
morphism is isotone with respect to <A (<y)-

Suppose that ' SexpX and @ cexp ¥ are closed under finite intersections
(unions). A map f: F—% is an intersection- (a union-) morphism if

i

fAnB) =fA)nfB) (flduB) =S4 vfiB)

for every 4, B in %. Thus, fis a meet (join) morphism from the semilattice (%, n)
(%, V)] to the semilattice (#, n) [(¥, V)]

A zero of a poset P is an element 0 with 0<x for.all x € P. Posets contain at
most one zero. .

By an atom x of a poset P, we shall mean an element which is not the zero,
but which is such that if y<x and » # x, then y = 0. An atomic poset is one in
which every element is the supremum of its atom predecessors.

A family & cexpX is a closed subbasis for (or C-generates) a topology I
if 7 is the smallest topology whose closed sets contain #.

By N we shall denote the set of all (strictly) positive integers, and we let Z*
=Nu{0}.

'

§ 3. Intersection morphisms I: subbases with singletons.

3.1.Remark. Anelement k of a semilattice S'is an atom if and onlyif kAl = [k
or kal=0 for every lin S.

3.2. LemMA. Let S be a poset with zero, and let 0 be an isotone map of S onto
a poset T. Then 6(0) is the zero of T.

i
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Proof. For every element s of S, we have 0<s, and so 6(0)<<0(s). Since 0 is
an epimorphism, #(0) is the zero of T.

3.3. LemMA. Let S and T be semilattices and 0: S—T a meet epimorphism. If
J is an atom of (S, <) then 0()) is either the zero or an atom of (T, < p).
Proof. For every s€ .S, we have sAj =j or 0 by Remark 3.1.
Thus,
0(s AJ) = 8()) or 6(0),
and so

(A0 = 0()) or 0 '

for every s in S by Lemma 3.2.
Since # is an epimorphism, we can conclude that 8(j) is an atom by Remark 3.1.

3.4. Remark. If a meet morphism 0 between semilattices is one to one, and
the range of @ contains 0, then 87(0) = {0} by Lemma 3.2. The condition 67*(0)
= {0}, however, does not suffice to make even a lattice epimorphism one to one.
For example:

1% .
710(@) = 6(1)
ace
<0(0)
00

Corollary 3.8 indicates a set of circumstances in whose context the condition
6~1(0) = {0} suffices to make a meet epimorphism an isomorphism.

3.5. DEFNITION. Let S be a semilattice, By S, we denote the set of atoms
of (S, < p)-

3.6. THEOREM. Let S and T be semilattices with < p-zeros and 8 a meet-morphism
of S onto T. Then

(1) the map 0 is one to one on S,~6~1(0);

() if 87%(0) = {0} and S is atomic, then 8[S,] = Ty;

(3) for every keSS, :

O[{le S,~071(0): 1< \k}] = {z€ 0[S,]: 0 # 7< 0K} -
Proof. We shall use the symbol < for <. Let j, and j, be distinct elements
of S,~07%0). Since
0 = 0(0) =00 Af2) = 00D A0(0),

and since 8(j) # 0 # 0(j,), we conclude that 6(j;) # 0(j,).
(2) It follows from Lemma 3.3 that 0[S,]1<T,.
Lét te T, with ¢ = 6(s), and let j<s where j& §,.
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Since 0 # j<s, and since 671(0) = 0 or @, we have
0#£0()<0(s) =¢.

Thus, 8(j) = ¢ because ¢ is an atom, and so 0[S,] = T,

(3) Let Ie §a~9‘1(0) with I<k. Thus, (/) € 6[S,] and

0#6(D<0(k).
Now suppose that z = 8(f) with 1€ S, and 0 # () = z<0(k). To prove that
ze0[{leS,~07*(0): I<k}],

we need only prove 1<k.

Since

B Ak) = 0(OA0K) =00 #0,

we have tAk # 0. Since ¢ is an atom, it follows that 1<k.

3.7 Remark. The requirement of Theorem 3.6 that S and T have zeros can
be removed with the obvious modifications. However, if a poset has more than
one atom, then it has a zero in any case.

3.8. CorOLLARY. Let S and T be atomic semilaitices with < p-zero’s. If 0 is
a meet morphism of S onto T with 67*(0) = {0}, then 6 is a meet isomorphism.

Proof. Let @ and b be distinct elements of S, and let 4 (B) be the, set of atom
predecessors of a (b). By atomicity, a = sup4 and b = supB, and since « # b,
we have 4 # B.

Thus, since 87%(0) = {0},

{zeT,: 0 # z<8(a)} = 0(4) # 6(B) = {weT,: 0 w<0()},
with the first and third equalities following from part (3) of Theorem 3.6, and the
second from part (1) of Theorem 3.6. Thus, 0(a) # 6(b), and the corollary is proved.
3.9. DermNviTION. If 6 is a set valued map whose domain is a subfamlly of
exp X containing the singletons, then we define X, by
X, = {xeX: 0({x}) # 0}.

3.10. COROLLARY. Let 0 be an intersection morphism of & Sexp X onto ¥ Sexp ¥
where X and Y contain at least two points, & and % are closed under finite inter-
sections and & and ¥ contain the singletons of X and Y respectively.

Then

(1) the map §: Xy—Y, defined by {8(x)} = 0({x}) is one-to-one;

(2) if 07X(D) = (B}, then 0 maps X onto Y: and

(3) for every KeZ, k

61K 0 X5] = 6(K) ~ 6[X,].
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Proof. Let x; and x, be distinct elements of X. Thus, & = {x,} n {x,} €%
Similarly, ¢ contains 9.

Parts (1) and (2) follow obviously from parts (1) and (2) respectively of
Theorem 3.6.

Ad (3). The following statements are equivalent: yef[Kn X;]; ¥ = 8(k)
for some ke K n Xp; {y} = 0({k}) for some {k}<K and {k} eZ,~07%(0); {y}
€0[%,]-and 0 # {y}<O(K) (by part (3) of Theorem 3.6); ye 0(K) n H[X;]. This
establishes part (3).

3.11. Remark. The hypotheses “Z and % are closed under finite intersections,
07Y(Q) = {@} and O(A N B) = 6(4) n 6(B) for all A and B in & can, in Cor-

ollary 3.10 be replaced by “Z and # are any famlhes, ﬂ 6(D;) # @ for every finite

subfamily {D;, D,, ..., D,} of & with ﬂ D, # @, and if {4,,4,, .., 4,} and

=1
m n m
{By, B3, ..., B,} are finite subfamilies of % with () 4; = () B;, then () 6(4)
j=1 i=1

i=1
n

= () 6(B,)”. A similar replacement is possible in the case of unions (see § 5)-
j=1

This follows from the observation that if ‘S is a subset of a semilattice Gy, .
and 6 maps S into any semilattice G, such that for every pair {4y, 5, ..., a,,} and
{by, by, ..., b, =8 satisfying a,a, ... a, = byb,...b,, we have 8(a,)0(a,) ... 0(a,)
= 0(b,)0(b,) ... 0(b,), then 6 can be extended to an epimorphism of [S] onto
[0(S)]. By [T] we denote the subsemigroup generated by T.)

For every element a,a, ... g, of [S], we define 8,(a,a, ... 4;) by 0,(a,a5 -.. a)
= 0(a,)0(a,) ... 0(ap). The hypothesis ensures that 0, is well defined on [S]. The
map 60, extends 0 because if a4, ..a, €S, then since

Qo = (a,0; ... @)?
we have, by hypothesis,
0(a)0(ay) ... 6(ap) = [0(as0, .. @),

and so
0(a,ay ... a) = 0(aa, . ) -
Using these observations, we can state the following set-theoretic result of
Corollary 3.10.
3.12. COROLLARY. Let Z cexp X contain & and the singletons. Let 0: Z—exp ¥

n
be such that 0(%) contains & and the singletons of Y. Suppose also that () (D) # &

i=1

»
Sor every finite subfamily {Dy, D,, ..., D,} of X with (\ D; # @, and tﬁatfor every

i=1
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m n
pair {Ag, Agy ooy A} and {By, By s B,} of finite subsets of & withi_(] A4; =jOlBj,
m n .
we have [)08(4;) = (\ 6(By)-
i=1 j=1 -
Then there is a one-to-one map 6 of X onio Y for which 0(F) = O(F) for every F
in X. (In particular, X and Y have the same cardinality.)

3.13. Let X and Y be sets, and, & and & be families of subsets of X and ¥
respectively, which are closed under finite intersections and which c-generate T’y
topologies. The following example shows, inter alig, that the existence of an inter-
section morphism 6 of Z onto & for which 6~4(@) = {@} does not necessarily
imply that the topologies c-generated by & and ¥ are homeomorphic. Cot~
oltary 3.15 shows that if both & and & contain the singletons, then these conditions
are indeed sufficient.

The example shows, in fact, that sets X and Y exist with respective closed
bases & and @ which are closed under both finite intersections and finite unions
and which are lattice -isomorphic, but which generate nonhomeomorphic T
topologies, even though & contains the singletons, and & generates a compact
topology. i

These refinements show firstly that the well known result (Corollary 3.18
below) that T; topologies (and thus T, topologies — see [4)) are characterized by
their lattices of all closed sets, cannot be extended without modification to lattices
of closed sets which form bases. '

Secondly, the refinements in this example are relevant to Theorem 44 and
Corollary 5.10 below. i

3.14. EXaMPLE. Let & (%) be the family consisting of all finite subsets of N(Z ),
together with all subsets of Z* whose complements are finite subsets of g(ZJr).

The families & and % are closed under finite unions and finite intersections.

The topology # (say) on Z* for which # is a closed basis, is the discrete
topology. The topology ¥~ (say) on Z* for which & is a closed basis, is the one
point compactification of (I, #) —#’ being the discrete topology —with 0 as
compactification point. In particular, then, (Z*, ¥ and (Z™, %) are nonhomeo-
morphic Ty topological spaces. '

For DEN, define Dy=Z™ by

Dy = {n: n+1eD}.
Define 8: Z—% by
ZrT~D)=Z "~y and B()=J,

for every finite subset, J, of N.

The map 0 is a one-to-one epimorphism.

We show that 84N B) =0(4)n6(B) and 0(4 U B) = 0(4) L 6(B) for
every 4, B in &. i

icm
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Let S and T be finite subsets of ]\\[ The foregoing assertion is established by
the following equalities:

0(SnT) = (Sr\T)Ok= Se N Ty =0(S) N 6(T);
0[S N (ZF~T)] = B(S~T) = (S~T)y = So~Tp = Sy N (ZF ~Ty)
‘ = 0(S) 1 0(Z* ~T);
O(ZY~S) N (Z ~T)] =0[ZF~(SU T =Z ~(SUT)y =ZF~(Sy U Ty
= (Z¥~8) N (ZF~T) = 0(ZF ~S) nO(Z" ~T);
ISUT) =S uT)y=SouT,=08(S)ub);
0[SV @Z*~T)] = 0[Z ~(T~S)] = ZT~(T~S)y = Z¥ ~(Ty~So)
=S U(Z¥~Ty) =0(SYuO(Z*~T);
Z ~S) U (Z AT = O[ZY (S AT = ZF~(S A Ty = Z* ~(Sy N Ty)
' = (ZT~S) U (ZF~Ty) = 0ZFT~S) UO(EZ T ~T).
3.15. COROLLARY. Let (X, %) and (Y, "//') be spaces containing at least two
elements, with respective closed subbases & and % which contain the singletons and
are closed under finite intersections. If an intersection-morphism 8 of & onto ¥ exists
with 0~4Q) = {@}, then (X, %) and (Y, ") are homeomorphic.

(More generally, the subspaces X, and 0(Xy) are homeomorphic for every inter-
section morphism 0 of & onto ¥.)

Proof. The map  defined in Corollary 3.10 is one to one on Xj dnd, by part (3),
maps elements of X, 0 % onto elements of §[X,] n ¥.
_ Let FEX be closed in (X, %). Thus,

F=N{LivLiu..uLj,: acd}
for some set A, and some elements Lf of %. We have
0F N Xp) = 0N{L] n Xp) U L5 N Xp) oo Ly 0 Xp): € A}
=0 N X)L X U ..Uy N Xy): aed}
(since & is one to one on Xj)
= {[0(LY n T Xp] v [0S n (XU ... v 0 o) 0 0(Xg)]: we A}
(by part (3) of Corollary 3.10) :
= 0(F) n 0(Xo),
which is closed in §(Xp).
Now let J be closed in (¥, %), and let

m(p)
J= n{.pl vE: pe D, Vied).
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For every (8, i), let J? be such that 6(J%) = V7. Since § is one to one on X, and
6Uf 0 Xp) = 607 n 6(X,), we have
P n b)) =JnX,.
Thus,

I

(0 8%) = 01U 0-1(7 ~ 0CE9): e D}
i=1

i

m(B)
N{U ¢ 0 Xo: fe D}

m(B)
=IN{U 7/ peDlIn ks,

which is closed in Xj.
3.16. Corollary 3.15 should be contrasted with Theorem 9 of [1, p. 225] (which
is generalized by Theorem 4.5 of the present paper). We assume neither compactness,

icm°®

nor that & is a basis nor that & is closed under union. We do assume, however,

that # contains the singletons.

3.17. CorOLLARY. Let X and Y be T, spaces. Every intersection morphism 0
of 2% onto 2% induces a homeomorphism between X, and 9[X,).

3.18. CorOLLARY (Birkhoff [1, p. 217]). Any T space is determined up to homeo-
morphism by the atomic dually Brouwerian lattice of all its closed sets, ordered by
inclusion.

3.19. CorROLLARY. A continuous map f from a T; spaée X onto a Ty space Y is
a homeomorphism if and only if £~12%) = 2%,

Proof. Consider the meet epimorphism f~* of 2¥ onto 2%, and apply Cor-
ollary 3.15.

3.20. Remark. The preceding corollary is easy to see, independently of Cor-
ollary 3.15.

3.21. We shall study some topological properties of the set X where 0 is a set
valued map whose domain is a subfamlly of exp X" which contains the singletons.
Recall that

X, ={xeX: 0{x} = @}.

3.22. Remark. Given a Ty space (X, %) and a subset 4, there is always an
intersection epimorphism 6 on X for which 4 = X, viz. the map 0: ¥—Z N 4
defined by 8(F) = Fn A.

3.23. THEOREM. Let & and % be the families of closed sets of Ty spaces X and ¥
respectively, and let O be an intersection morphism of & onto %. Then

0(Xp) = 0(X,),
where § is defined by {0(x)} = 0({x}).

i1s
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Proof. Since {x}<X, for every x in X,, we have
0Xp=6(Xs),
and since 0(X,) is closed, it follows that
) (X =O(Xy) .
-+t On the other hand,
I = 0(L)
for some LeZ.
We show that L2 X,.

If LD X), then L n X, # Xp, and since § is one to one on X, this implies
that 6(L n Xy) # §(X;). But then

B(Xy) # 0L A Xp) = (L)  8(X;)
= 0(X) 0 6(X,)
=0Xy).

Since L=X,, and L is closed, we have L2X,, and so

(by part (3) of Corollary 3.10)

9(1)26(X,).
Thus, B(Xp)=20(X,), 2nd so
0(Xs) = ().

-~ § 4. Intersection morphisms II: compact spaces.

4.1. LeMMA. Let X be a compact Ty space for which & is a closed subbasis which
is closed under finite intersections. Then, for every distinct pair, (x4, x,) of elements
of X, disjoint. elements B, and B, of & exist for which x, € B; and x; € B,.

Proof. For i = 1,2, let

B(x;) = {BeB: x,€ B}.

If the conclusion of the lemma were false, then, for all finite families

{B}, B?,..,Bi}=@B(x;) and {B}, B}, .., BRcd(x).

we would have
.NB} £ D,

BABin.ABInBsABIn

Thus, Z(x;) U #(x,) would have the finite intersection property. Since X is com-
pact, it would follow that

& G# N[BEIVBE)] =[N ﬂ(xl)] AN RARZIE-YIE

3 ~— Fundamenta Mathematicae t. XCIV
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Since X is Ty, {x;} (i =1,2) is an intersection of finite unions of elements
of 4, and therefore {x;} = ()} #(x,). Thus, equation (%) implies & # {xdn
n {x,} = @, and this contradiction establishes the lemma.

4.2. The following example shows that sets X and ¥ exist with respective
closed bases & and % which are closed under finite unions and which are union
isomorphic, but which generate nonhomeomorphic compact T, topologies. The-
orem 4.5 establishes the validity of the corresponding statement for intersections.

4.3. ExaMPLE. Let

X ={zeC: Im(z) = 0 and ~I<Re(z)<1},
Y2{zeC:Im() =1 and 0<Re()<1},
U {zeC: Im(z) = —1 and ~1<Re(2) <0},

and let 8; be the projection of ¥ onto X. ‘

Let Z (%) be the family of finite unions of closed intervals of X (Y), where
each of the intervals contains either no elements or infinitely many elements.

The point map 6, generates a union isomorphism of % onto @ ; however,
(X, %) and (¥,%) are nonhomeomorphic compact T, spaces.

44. Example 3.14 shows that if # and % are closed subbases (even bases)
for T, topological spaces X; and X,, which are closed under finite intersections
(and even unions as well) and if X, is compact, then the existence of an inter-
section morphism 8 of & onto % with 6~(@) = {@} (even the existence of a lattice

isomorphism) does not necessarily imply that X 1and X, are homeomorphic (or
even that a continuous map of X; onto X, exists).

The following theorem shows, however, that the compactness of X, ensures
such a homeomorphism.

4.5. THEOREM. Let (X, %) and (Y, V) be_compact Ty Spaces with closed subbases
% and ¥ respectively which are closed under finite intersections. If an intersection
morphism 6 of & onto ¥ exists with §~Y(@) = {0}, then (X, %) and (Y, V) are
homeomorphic.

4.6. Remark. This generalizes Theorem 9 of [1, p. 225].
4.7. Proof of Theorem 4.4. For each x in X, let

%,={BeZ: xeB}.
n
For every finite family {B,,B,, ..., B}c%., we have N B, # @. Since
m=1
n n
674(2) = {@}, ﬂlﬂ(Bm) =0l B,] # .
m= m=1
Thus, 6[%,] has the finite intersection property, and since (¥, #7) is compact,

eIz, = o. '
We show now that ) 0[%,] is a singleton.

Semilattice theory with applications to point-set topology 117

Let {a, b} < () 0[%,] with @ # b. Let L be an element of & for which b e (L)
and a ¢ 0(L).
For every element P of &, we have

B(PAL)=0(P)nOL) # T,

and'so P n L # @. The family &, U {L} therefore has the finite intersection property
(%, being closed under finite intersections), and so

G#Ln (%, =Ln{x}.
From this it follows that x €L, and so Le%,. Thus,
0L)=2N0(%Z,)=2{a, b},

which contradicts a ¢ (L), and so () 6(%.) is a singleton.
Define §: X—Y by

‘

UGHENIICAR
The map § is one-to-one since if x # y, then by Lemma 4.1 disjoint elements

B, and B, of & exist with xe B, and ye B,.

Thus, )

{000} n {00)) = (N 8(Z) ~ (N 6(Z,)S6(By) N 6(By)
=0(BnB)=0B)=0,

and so 0(x) % 8(»).

We show that § is onto. Let ye ¥. Now, {3} = ¥, where &, = {De¥:
ye D}. Let

A =671a,].
For every finite subfamily {K, K;, ..., K,} of A,

e[blKi] = _bIG(Ki 2N% ={}.

Thus, F]K,- # @, and A has the finite intersection property. Since X is-compact,
i=1
NA # @.
Let xe () . Thus,
{0} = N{0B): xeBeZ s N{0(K): KeA} = ¥, = {3},

and so 0(x) = y.

The map & has the property that §(F) = 8(F) for every F in %.

It is clear from the definition of & that §(F)=0(F).

Let y e 6(F). Defining # =% as before by A = 07![%,], we have Fe &
As shown above, if xe () &, then f(x) = y. Since x € F, this proves that 8(F)
s 4(F). ‘

The proof that # is closed and continuous follows in the same way as in
Corollary 3.15 since § is a one-to-one map of X onto Y.
3*
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§ 5. Union morphisms.

5.1. ExaMpLE. The existence of a union morphism 0 from even the totality
of closed sets of a T} space onto that of another T, space for which 0™} @) = {9}
does not generally imply that the two spaces are homeomorphic. Let X and Y be
nonhomeomorphic T, spaces for which a closed continuous map f of X onto ¥
exists. (E.g. X = unit square, Y = unit interval and f = projection.) A union
morphism § of 2% into 27 is thereby induced, and since f(f (X)) = X for every
Ke2¥, 0025 =2%.

5.2. Results concerning union morphisms which are dual to those for inter-
section morphisms, however, are easily arrived at. The following corollary, for
example, is the dual of Corollary 3.10. ‘

5.3. COROLLARY. Let o be a union morphism of of SexpX onto B <Sexp Y where
X and Y contain at least two points and of and & are closed under finite unions and
contain the cosingletons of X and Y respectively.

Define X* by

X = {xeX: a({x}) Y}.

Then

(1) the map &: X*—Y, defined by {a(x)} = a({x}")’, is one-to-one;

@) if a7 X(Y) = {X}, then & maps X onto Y; and

(3) for every L in o, &[L n X" = a(L) n &[X"].

Proof. Let & and % denote the families of complements of & and & re-
spectively, and define 6: F—% by

8(4) = a(4’).

The families & and % and the map 0 satisfy the conditions of Corollary 3.10.
We note too that for every x in X,

()} = a({x}) = {g@)} -
(Also, X, = X*)
Parts (1) and (2) therefore follow easily from parts (1) and (2) of Corollary 3.15.
Part (3) is proved as follows.
For every L in o+,
a[Ln X =8[Ln X,
= 0(X)~0[L' A X,] (since  is one-to-one on X
= (X~ n 6(X)1 (by part (3) of Corollary 3.15)
= (8)) ~ 0(X) = a(L) n&XY.
5.4. Lemma 3.3 shows that meet epimorphisms between méet-semilattices map

atoms to atoms or to 0. (If (S, <) is a semilattice, (S, <) is called the correspond-
ing meet semilattice.) :
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Join epimorphisms between join semilattices with zeros do not necessarily
map- atoms to elements which are either zero or atoms, as the following example
shows.

5.5. EXAMPLE. Let f be any one-to-one map of (0,1) onto R, and define
G: R—expR by
if
if

xe(0,1),
x¢(0,1).

The map G extends in a natural way to a union morphism 6 of expR onto expR,
defined by 0(S) = {G(s): s& S}. ExpR is a semilattice under U, Sy is equivalent
to &, AvB=AUB, and 9 a join epimorphism. However, the image of the
atom {1} is R, which is neither zero nor an atom.

5.6. Note. The set of <-atoms of a semilattice L will be denoted L=

5.7. LemMA. Every join-isomorphism between atomic semilattices maps atoms
to atoms in the <y ordering.

ot = (L)

Proof. Let S and T be atomic semilattices and #: S—T a join isomorphism.
Let je S° and let z be a <y-atom of T with z<8(j). Suppose that z = §(b)
for be S.
Now, :
80U vE) = 0()vO() = 6(j)vz=0()),
which implies that jvb = j, and so b<j.
Since je 87 either b = j or S has a zero and b = 0. If 5 = 0, then

0#z=00)=600)=0
by Lemma 3.2, and so b = j. Thus,
‘ 0() = 6(b) = z,

which is an atom.

5.8. THEOREM. Let S and T be semilattices with (T, <) atomic. Let 8: S—T
be a join isomorphism. For every ke S,

0f{le 8 ISk} = {zeT" z<0(k)} .
Proof. Let /e $° By Lemma 5.7, 0() e T°. If I<k, then 8(J)<6(k). Thus,
' 0[{le " I<k}]s{ze T z<0(k)} .

The converse inclusion follows similarly from the fact that 071 is a join isomorphism.

5.9. Let 2" and % be families of subsets of X and Y respectively and suppose
that they are closed under finite unions and C-generate T, topologies. Example 3.14
shows that, without the additional condition that & contains the singletons, the
existence of a union morphism of & onto % is not generally sufficient to ensure
that the topologies which they C-generate are homeomorphic. (In this example,
% also contains the singletons.)
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Example 4.3 illustrates the same point when & and % both generate compact T,
topologies. (In this example, neither space contains singletons.)

5.10. COROLLARY. If (X, %) and (Y,¥") are spaces having closed subbases
which (i) contain the singletons, (ii) are closed under finite unions, and (i) are union
isomorphic, then (X, %) and (Y, ¥") are homeomorphic.

Proof. Let % and % be the respective closed subbases in (X, %) and (¥, ¥"),
and let @ be an isomorphism of % onto %. By Lemma 5.6, the equation (x)

= {B({x})} defines 2 map of Z to %, and this map is clearly a bijection.

By Theorem 5.8, we have f(K) = '9(K) for every K in #, and the reasoning
of Corollary 3.15 is applicable to showing that # is & homeomorphism.

References

[Il G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications 25, Providence,
R. 1. |1967.

[2] .G. Gratzer, Lattice Theory, First Concepts and Distributive Lattices, San Francisco 1971.

3] D. Drake and W.J. Thron, On the representations of an abstract lattice as the family of
closed sets on a topological space, Trans. Amer. Math. Soc. 120 (1965), pp. 57-71.

[4] W. J. Thron, Lattice equivalence of topological spaces, Duke Math. J. 29 (1962), pp. 671-680.

Accepté par la Rédaction .le 17. 9. 1974

On s,-categoricity and the theory of trees
by

James H. Schmerl * (Storrs, Conn.)

Abstract. The principal result is: every ¥,-categorical tree is decidable. This follows from
a general theorem which asserts that every nuclear, ¥,-categorical structure is finitely axiomatizable.
Other facts about trees are also proved. For example, the finitely axiomatizable, ¥,-categorical
trees are characterized.

In this paper we investigate wy-categoricity, in general, and w,-categorical
trees, in particular. The concept of a nuclear structure is introduced in § 1, where
it is shown that each nuclear, %p-categorical structure is finitely axiomatizable.
Any sy-categorical, linearly=ordered set is easily seen to be nuclear, so we get the
result of Rosenstein [4] that every w,-categorical linearly ordered set is finitely
axiomatizable. This result is extended in § 2, using the notion of nuclearity, to show
that every w,-categorical tree is decidable. In addition, those w,-categorical trees
which are also finitely axiomatizable are characterized.

Our method of proof is quite different from Rosenstein’s. His is based on an
analysis of linear orderings similar to ones given by Frdss and Hajnal [2], or by
Liuchli and Leonard [3] in their proof of the decidability of the theory of linearly
ordered sets. It is hoped that-our method can more easily be applied to other the-
ories. More generally, it is hoped that the notion of a nuclear structure will lead
to a classification of those w,-categorical theories which are finitely axiomatizable.

For a first-order theory T’ we denote by o(T) the similarity type of T. We will
consider only T for which ¢(T) is finite. For convenience we assume that ¢(T)
contains only relation symbols (although none of our results depends on this re-
striction). A theory iIs w,-categorical iff all of its countable (and here we include
the possibility of finite) models are isomorphic, so that an s,-categorical theory
is automatically complete. If T is a theory then an n-fype (of T) is a maximal set
of n-ary formulas (i.e. those formulas all of whose free variables are among
Vg5 o> Uy—y) Which is consistent with T. We denote the set of n-types of T by S,(T).
We will often attribute to a structure 2 a property that Th() has (e.g. Ng-cat-
egoricity, decidability).

* Many of the results contained herein were annouced in [6]. The intended proof of The-
orem 1 in [6] was erroneous; however, this has no effect on the contents of this paper.
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