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On the Baire order of concentrated
spaces and L, spaces

by

Jack B. Brown (Auburn, Ala.)

Abstract. The main purpose of this paper is to prove that the Continuum Hypothesis implies
the existence of a concentrated subspace of the reals which has Baire order at least 3. It i is also shown
that L, spaces have Baire order =% 2,

Introduction. Section 40 of Kuratowski’s Topology 1 is devoted to the study
of certain “singular™ separable metric spaces. This paper is concerned with certain
of these notions. Only separable metric spaces will be considered, and of special
interest will be spaces X which have one of the following properties.

DeriNiTioN 1. X is a ¢ space if and only if every F, setin X is a G setin X,
X is a A space if only if every countable subset of X is a G; setin X. X is a v space
if and only if every nowhere dense in X subset of X is countable. X is a concentrated
space if and only if there is a countable subset 4 of X such that every open set
containing 4 contains all but countably many points of X.

Itis clear that every countable space has all of these properties, and it is shown
in Section 40 of [3] that .

(1) o—2A—always st category — totally imperfect, and

(2) v—>concentrated — C""—C-+totally imperfect,

The notions “always Ist category”, “totally imperfect”, C’’, and C are not
of immediate interest in this paper and will not be defined here. It is obvious that
an uncountable space cannot simultaneously be concentrated and 1.

Examples based on the Continuum Hypothesis (CH) and other set theoretic
assumptions have been given to show that most of the implications (1) and (2).
are not reversible. The so-called “Sierpifiski set” S [8], [10], [3, p. 523] is a o space
which is not countable, and the so-called “Lusin set” L [5], [3, p. 525] is a v _space
which is not countable. . .

ExXAMPLE 1. It is easy to construct an example ‘of a concentrated space which
is not a v space. Let C;, C,, ... be a sequence of disjoint Cantor sets. with union
dense in the reals. Then, for each positive integer 7, use Lusin’s technique (and CH)
to construct an uncountable subset C; of C; which is uncountably dense in:C; but
o+
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such that no nowhere dense in C; subset of C; contains uncountably many points
of C/. Then L' = C; u C; U ... is clearly not a v-space, but it is easily seen to be
concentrated about the countable set 4 = 4; U A, U ..., where for each 7, 4, is
a countable subset of C; which is dense in C;. :

Tt is also known that CH implies the existence of A spaces which are not o spaces.
The original argument [6], [3, p. 524] for the existence of such spaces is based upon
theorems concerning the possible dimensions of 4 spaces and ¢ spaces. In particular,
it is shown (using CH) that there is a 1-dimensional A space (contained in fhe plane),
but that there are no 1-dimensional ¢ spaces. More recently, Mauldin [4] has de-
scribed a A space which is not a o space by exhibiting a subspace of the reals which
is a A space of “Baire order” o, (where w, is the Ist uncountable ordinal).

Indeed, much of the early interest in these singular spaces, and in the Sier-
pifiski set and the Lusin set in particular, was due to the use of these sets in at-
tacking the “Baire order problem” of Mazurkiewicz [7]. The Baire order of a space
X is defined as follows. Let Go, Gy, ..., G, ... be the usual transfinite sequence
with union the Borel subset of X, where G, contains the open sets, G, contains
the G; sets, G, contains the Gy, sets, etc. (for details see [3, p. 345]). Of course, if
o = w,, then G, = G,,; = ... consists of the Borel sets. The Baire order of X is
the first ordinal o such that G, = G,,,. This notion can be defined equivalently
in terms of the corresponding classes By, By, ..., B,, ... of Baire functions. The
reals have Baire order w, [3, Section 30], and countable spaces have Baire order 0
or 1 [9]. The “Baire order problexﬁ” [7] is to determine whether it is true that for
each countable ordinal « there is a space with Baire order «. The Sierpinski'set
[10], [3, p- 523] was the first example of an uncountable space with Baire order 1,
as it was shown that S was an uncountable ¢ space with Baire order =1 and every
o space has Baire order <1. So Mauldin [4] has shown in a very strong way that
this last theorem on the Baire order of ¢ spaces does not extend to A spaces. Mauldin
did not assume CH, but instead assumed a certain “generalized rectangles hypoth-
esis” which is known to follow from CH.

The Lusin set is the only known example of a space with Baire order 2 [7]
[3, p. 526], as it follows from a theorem concerning subsets with the “Baire prop-
erty” of v spaces that every uncountable v space has Baire order 2. Tt is the main
purpose of this paper to show that this theorem about the Baire order of v spaces
does not extend to concentrated spaces because of the following:

THEOREM 1. CH implies that there exists a subspace X of the reals such that X is
concentrated about the rationals but in which there exists an F 5 set which is not « Gy, sel.

The space X of Theorem 1 will clearly be a concentrated space which is not
a v space, as is L’ of Example 1. Notice that L', while not a v space, is the union
of countably many v spaces. Such spaces, called L, spaces in [2], were found to
be essential in [1] and [2] in characterizing the spaces in which certain variations

of Blumberg’s theorem hold. For example (assuming CH),.if X is a subspace of the

reals, then in order for it to be true that for every real function defined on X there
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exist an uncountably dense in itself subset W of X and a dense in W subset D of W
such that f|W is differentiable on D (infinite derivatives are allowed), it is necessary
and sufficient that X not be an L, space. It is clear that property L, fits into the
list of implications (2) as follows:

(3) v—L,—concentrated.

. Example 1 shows that ve+L,, and Theorem 1 will show that L ++concentrated,
as it will be shown that the theorem [3, p. 526] concerning sets with the Baire prop-
erty in v spaces extends to some extent to L, spaces, and L; spaces have Baire
order 2.

Proof of Theorem 1. In construcling the desired space X, certain notions
will be defined as they are needed. The notions of a scattered set and a kernel are
used in the usual sense [3, p. 78]. The statement that a number set J contains
a rational kernel R, means that there exists a set R<J of rational numbers, R dense
in itself, and Ry is the union of all such sets R. If G'is a collection of sets, G* denotes
the union of the sets in G.

Now, assume CH, and well order the Cantor sets which contain no rationals
into a sequence C(1), C(2), ... indexed on the countable ordinals, and well order
the Cantor sets which contain a rational kernel into a similar sequence K(1), K(2),...
Now, a certain subsequence C(a}), C(a?), C(a2), C(o2), C(), ... of the first se-
quence will be defined inductively. «f is the first ordinal such that C(al) is a sub-
set of K(1). Then suppose y is an ordinal such that C(a}) has been defined for every
1<6<A<y. Then, &} is the first ordinal such that C(«}) is a subset of K(1)—{C(B)|
for some 1<8<d<y, f<af}*. Then proceed inductively so that for 1 <8<y, o} is
the first ordinal such that C(af) lies in K(5)—{C(B)| for some 1<A<é, B<Ka}*,

Each step in this process can be completed because it only requires the existence
of a Cantor set containing no rationals lying inside any set of the form K—W*,
where K is a Cantor set containing a rational kernel, and Wis a countable collection
of Cantor sets which contain no rationals. ‘

Now, {C(@})| 1<f<y<w,} is a collection of mutually exclusive Cantor sets.
Let X contain the rationals and just one point from each set in this collection and
no other points. 1t is clear from the construction that X has the following two
properties: (i) if K is a Cantor set which contains a rational kernel, then K n X is
uncountable, and (ii) if C is a Cantor set whichcontains no rationals, then Cn X
is at most countable. It is because of this second property that X is concentrated
about the rational numbers.

Now, certain facts concerning the category of X will be established, and certain
definitions will be needed. By a right endpoint of a Cantor set C is meant a point
of C which is not a limit point of C from the right (analogously for a left endpoint).
The extreme endpoints of a Cantor set are its maximum and minimum elements.
By a section A of a Cantor set C is meant a set of the form C n I, where I is an
interval having as right endpoir;t some right endpoint of C and having'as left end-
point some left endpoint of C.
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If Jis an interval, thén J n X is second category in J; indeed, if C'is a Cantor
set having only rational endpoints, then C n X'is second category in C. The second,
less apparent claim will be proved. Let C be a Cantor set having only rational end-
points, and suppose CnX = N; U N, U ..., where each N; is nowhere dense
in C. Let R, consist of the extreme endopoints ¢ and b of C, and let Q,
={..., 45, Ay, By, B;, ...} be a collection of sections of C which do not intersect N
such that {a}<4,,,<4,<B,<B,,. <{b} for each n, where “<” means “ies
entirely to the left of”, and such thata and b are both limit points of Q¥. Let R,
consist of all the extreme endpoints of elements of Q;. For each element D of Q,
having extreme endpoints o' and b, let Qp = {.., 45, 4, B}, B;,..} be
a collection of sections of D which do not intersect N, such that {a'} <€A, <4,
<B,<B,,,<{b'} for each n, and a'and b’ are both limit points of QF. Let Q,
= {0p| De Q,}* Let Ry denote the collection of all extreme endpoints of ele-
ments of 0. Continue this process. Then, let M = CI(R; v Ry v ..). Mis a Cantor
subset of C, and M contains no elements of Ny U N, U ... except possibly for
elements of R, U R, U ..., which is countable. But M contains a rational kernel,
so M contains uncountably many elements of X. This is a contradiction, so X n C
is second category in C. The proof that X is second category in every interval is
similar.

Now it will be shown that there is an F; set in X which is not a G, set in X.
Let G, be a countable collection of disjoint Cantor sets, each having only rational
endpoints, such that every rational number is an endpoint of some element of G,.
Then produceed inductively as follows. For each CeG,_;, let G be a countable
collection of disjoint Cantor subsets of C, each having only rational endpoints,
. such that each endpoint of C is an endpoint of some element of Gc. Then let
G, = {g| g € G¢ for some set Ce G,_,}. Notice that M = G% N G N ... is an F,;
in the reals E which is not a G;, in E. Now for each n and each Ce G,, let C’
=CnX, and let G, = {C'| CeG,}, and let M’ = M N X. M' is an F,; in X.
Suppose M’ is a Gy, in X. Then M’ = H, U H, U ..., where each H, is a G5 in X.
Since H; = G%, it is first category in E. Indeed, H, is nowhere dense in E, for sup-
pose there is an interval J in which H, is dense. There exists a sequence Oy, 05, ...
of open in E sets such that H; = X " O; n Oy, n ... Then J—~(0; n O, N ..) is
first category in J, so since X is second category in J, there must be an element of
X O; " Oy ... which is not in H,. This is a contradiction, so H, is nowhere
dense in E. Let R, be the set whose only elements are 0 and 1, and let Q,
= {.., 45, 4y, By, B,, ..} be a collection such that for each n, 4, and B, arc
sections of elements of G, {0}<4,,;<4,<B,<B,,,<{1}, 4, and B, do not
intersect Hy, and 0 and 1 are both limit points of 9%. Let R, be the collection of
all extreme endpoints of elements of Q,. Now, consider an element D of Q, with
extreme endpoints @ and b. H, n D is a subset of G n D, which is first category
in D, and since H, is a G, set in X and X ~ D is second category in D, it follows
that H, is nowhere dense in D. So let Qp= {..., 43, 47, By, B;, ...} be a collection
such that for each n, 4, D and B, < D are sections of clements of G,, 4, and B,
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do not intersect Hy, {a} €Ay, <A4,<B,<B, .1 <{b}, and @ and b are both limit
points of Q}. Let @, = {0yl De Q;}* Let R, denote the collection of all extreme
endpoints of elements of Q,. Continue this process. Then W = CI(R; U R, U...)
is a Cantor set containing a rational kernel, so it contains uncountably many el-
ements of X, But W contains no points of H; U H, U... except possibly for the
points of Ry U Ry U ..., which is countable. On the other hand, W—(R, u Ry u..)
=0t N Q¥ N ..€CG% N G} n ... = M. Therefore, W containsa point of M’ which

-is not in H; w H, U..., which is a contradiction.

Remark. The author is unable to determine whether the Baire order of X
is w, or whether it is countable. Tf the latter is the case, then X'is an example perti-
nent to the Baire order problem.

Baire order of L, spaces. A sct A4 in a space X is said to have the Baire property
or to be a B set in X if and only if 4 = (G—P) U R, where G is open and P and R
are first category in X, It follows that 4 would necessarily be the union of a G; set
and a'set of first category. 4 is said to have the Baire property in the restricted sense
ortobea .B:'set it and only if it is true that for every subset P of X, XnPisaB set
relative to P. It is known that every Borel set is a B, set [3, p. 93], and every B, set
is clearly a B set. Tt is known [3, p. 526] that every B set in a v space is the union
of a Gy set and a countable set. I CH holds, this theorem does not extend directly
to L, spaces, for consider the space L/ = Cj U C3 U... of Example 1. Every subset
of Cy is nowhere dense in L' and therefore a B set in L', but if CH helds, there are
more subsets of Cj than there are Borel sets in L; so the theorem could not hold
in L'. However, a similar theorem does hold for L, spaces. But first, the following
theorem concerning the properties of the v spaces which make up an L; space must
be proved.

. TueoreM 2. If X is an L, space, then X is the union of countably many v spaces,
each « Gy in X.

Proof. Let X = X, U X, u..., where the X; are disjoint v spaces, and let
0,, 05, ... be a countable basis of open sets for X. First, a G, set Gy which isav space
and 4 countable set €, will be constructed such that X, G, u C'i‘ Let X 1
= {X;n 0, n CIXY)| i,j are positive integers and X; n 0;n CI(XI) is de.nse in
0; n CL(X )} Tt is clear that X e X =ClXy) = CL(X}), so X; is dense in X7,
and X7 is dense in CL(X) = CL(X7). ) ,

X! is a v space, for suppose NeX| is nowhere dense in X {.ISupp'ose N
=NnX,n0,nClIX,) is uncountable for some pair f,] of-posmve integers
for which X, n 0, ~ CL(Xy) is dense in 0, n CL{X;). Since N is .nowhere dense
in X1, N' is nowhere dense in 0; N X, and therefore now.here dense in O; n'Cl (0.6))
But X~ O; n CL(X}) is dense in 0, A Cl(Xy) so N’ is nowhere dense in XJ n
A 0, A CL(X,). Thus, N’ is an uncountable nowhere dense subset of X;, which is
*a contradiction. It follows that N is countable, because it is the union of countably
many countable sets &' of the form N "=ENnX;n0;0 Cl(Xy). -
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Now, for each i = 2,3 let X; = X;—X;, which will be a v s

0 i 535 ey s pace such
that X; n CI(X) is nowhere dense in CI(X;) = CI(X?). Now, set

G, = ClXD— U ClCIX) N X7).
i=2 .

It is cle,ar from the definition that G; is a G; set in X, G, is also a sub-
set of X7, f?r suppose X & G;—X]. Then xe CI(X;) and x € X forsome i>1. So
xeCl(CL(X}) N X;), but none of the points of this set are in G,. Thus, G, X}
and G; is a v space. o

Furthermore, the' set' C; = X;~G, is countable, because if x ¢ X7 ~Gy, then
for some z>l,'g‘ceX 1N CI(CI(X7) N X7), which is nowhere dense in CI(X)) and
nowhere dense’ in X7, and therefore countable. Thus, since C; is the union of
countably many such sets, it is countable.

Thus G, and C, are such that X, =G, u Cy,where Gy isa G;in Xandav space

and C, is countable. In a similar manner, sets G, and C, can be constructed for -

each positive integer # so that G, is a G;in X and a v space, C, is countable, and

,,gG,, v C,. Then C; U C,U... can be written as D, v D, u..., where ’each
D, is a single element set and therefore a G, and a v space. So X ; G,uDu
U G, D, U... is the desired decohnposition of X. ' '

E)fAMPLE 2. Theorem 2 is primarily a Lemma in the process of establishing
the Baire order of L, spaces, but it is of interest to note the degree to which it cqr%
be strengthened. First it may be noted that /e G v spaces that make up an L, g [;
can be assumed to be disjoint, for if X = G, U G, U..., where each G, is a G1 ilj'l C;
and a v space, then set H, = G, and H, = G,~(G,u G, u...UiG ) 6for n
=2,3,.. Thfen for each n, H, is a Borel set relative to G, and therefor:;he union
of a G; relative to G,, H,, and a countable set C,. Then H, is also a G, relative
to X'and of course 2 v space. So if Cy U Cy U... Is rewritten asz. D, uD u6 wh
the D, are single element sets, then X = H uD;yuH,uU ]D ) : VS.I.(.)’lld el:e
a decom‘position of X inte disjoint G, sets which are v spzu:cs. P ' )

Notice that the space L’ of Example 1 can actually be decomposed into closed
v spaces. Hoyve.ver, this is not generally possible for L, spaces, for let L be the Lusi‘
is:tt (;.SSLIZ[C it 3s uncountably dense in the reals and co.ntainé no points of L") emg
i i;} [1;' . I:;wnsipposely = ,Fl U F, Ve where each F, is a v space which
T e n(;Wheer e such that F, containg uncountably many points of L.
s; ot ere dense in E, so tl}ere must be an interval J in which F, is dense.

nce F, is closed in ¥, it must contain all of Y'nJ, and for some j, ¢ nJ i
countable and nowhere dense in F,, which is a contradiction HransR

na
'

THEOREM 3. Every B, set'in an Ly space X is a Gy, in X,
° s *

Proof. = i
- bon: BLZ;); XG% v G, L;, gvhere each G, is a G; in X and a v space.
A - For each n, C n G, is a B set relati é "
orere i n ve to G,, and therefore
= H, U C,, where H, is a G, relative to G, and C, is first cnategory relative
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to G,. C, would necessarily be countable. Then writing C; U C, v... = D; U.
u D, U..., where each D, is a single element set, C = H; v D; U Hy v Dy u...
is the desired decomposition.

ExampLE 3. Note that since the G; v.space Gy, G,... can be made disjoint,
then the Gy sets that make up the arbitrary B, set C can be made disjoint. However,
in contrast to Theorem 2 of [3, p. 526], B, sets in L, épaces cannot necessarily be
written as the union of a G, set and a countable set or even the union of a G, set
and an F, set. Let ¥ be the space ¥ = L U L' of Example 2, where L' = C{ U
U C; U... as described in Example 1. Now, for each positive integer n, let c,’
be C, minus a countable dense subset of C;. D = Cy' U C;' U...isa Gy, in ¥ and
therefore a B, set. Suppose D = G U C, where Gisa G;in Yand Cisan F,in Y.
C would necessarily be countable because since C is an F,, then for each n, C 1 c,
would be first category in C, (because it contains no points from a countable dense
subset of Cj) and therefore countable. Since C is countable, G would have to be
dense in Y. Since G is also a Gj, it follows that L u C is first category in Y. So
LuC = N;uUN,;U..., where each N; is nowhere dense in Y. Since L is dense
in Y, then N, n L is nowhere dense in L for each / and therefore countable. It follows
that L is countable, which is a contradiction.

THEOREM 4. Uncountable L, spaces have Baire order 2.

Proof. Let X = G, U G, U..., where each G; is a v space. It follows from
Theorem 3 that X has Baire order <2. For each n, let C, be a countable dense
subset of G,. Then C = Cy U C; U ... is countable and therefore'an F,. But C could
not also be a G, because if C = 0; n O, N ..., where the O, are open, then G;—0;
would necessarily be countable for each i and j, and the whole space would necess-
arily be countable. Therefore the Baire order of X is exactly 2.

L)
Remark. The author would hope that the uncountable L, spaces are precisely
the spaces which have Baire order 2, but has been unable to determine whether

this is the case.

Added in proof. Settled in negative by R. J. Gardner.
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