The real closure of 2 commutative regular f-ring *
by

L. Lipshitz (West Lafayette, Ind.)

Abstract. In this note it is shown that every commuiative reguldr f-ring has a unique, prime
real closure and a unique prime extension to a model of the theory of real closed commutative
regular f-rings without minimal idempotents, which is the model completion of the theory of
commutative regular f-rings (cf. A. Macintyre, Model- 1l Jor sk of structures,
Fund. Math. 81 (1973)).

In [4] and [5] it has been shown that the theory, K:‘ﬁ of real closed commuta-
- tive regular f-rings without minimal idempotents is the model completion of the
theory Kcpp of commutative regular f-rings. In this note it is shown that every
commutative regular f-ring has a unique prime real closure (i.e. a prime extension
to a model of the theory Kgg of real closed commutative regular f-rings) and
a unique prime extension to a model of K:;—F. (See definitions below.) These results
are in contrast to the results of [3] where necessary conditions were given for a com-
mutative regular ring R to have a prime integral closure. The following example
illustrates the contrast. Let R; be the subring of Q¢ of all sequences which are
constant except on finite sets. Let ‘e; be the function e(j) = 8;; and let R
= R,[\/2Zej| iew]. Then R, viewed as a commutative regular ring has no prime
extension to an integrally closed commutative regular ring (see [3]), but R, viewed
as a commutative regular f-ring has a prime real closure. The reason is as follows:
In R (as a modél of Kp) there is no canonical way to adjoin a global square root
of 2. In R (as a model of Kegy) there is, viz. the largest square root of 2.
DEFNITIONS. (1) Kcg is the theory of commutative regular rings with unit
(cf. [31, [4] or [5]).
(ii) Keg = Kcg v {every monic polynomial has a root} is the theory of inte-
grally closed commutative regular rings.
(iii) An /-ring is a ring which in addition is a lattice under the operations A and
v, such that, if < is the lattice partial order, then x20 and y>0=xy>0,
and x=y=>z+x2z+y.
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(@iv) An f-ring is an I-ring in which aAd = 0 and ¢20=canb =acab =0
(see [1] and [4]). - :

(V) Kegp is the theory (in<+,-, v, A,0,1)) of commutative regular f-rings,
with unit. '

(v) Kezg = Kegr U {every monic polynomial of odd degree has a root} u
U {a20=>x"—a has a root}.

(vi) Kgr = Kep U {there are no (s 0) minimal idempotents}.

(vit) If T} T, are two theories and Uk T, ALk T, then @ is called a pri-
me extension of U to a model of T, if whenever 2’k T, and ¢: A—Q8" is an em-
bedding, then ¢ extends to an embedding of £ into 2. If RE Ker (Kegp) then
a prime extension of R to a model of Kz (Kere) is called an integral (real) clos-
ure of R. )

For other definitions the reader is referred to [3] and [4]. We shall need the
following elementary facts. For proofs the reader is referred to [3]-and [4] § 6 and
the referénces therein. :

(2) If RE Kpy then every maximial ideal of R is an /-ideal and R can be re-
alized as a ring (as global sections of a sheaf of tings) of functions on the maximal
ideal space Sy of R. Sy is the Stone space of the Boolean algebra of idempotents
By of R. ‘

(6) It Ry, Ry F Kepr and @: Ry— R, is an embedding of l-rings then @*:
Sgy~> Sk, defined by o*(s) = o~ (s), for § € Sy, is a comntinuous mapping of Sg,
onto Sg,. If p*~(s) contains more than one point of S, we say that s(e Sg,) splits
in Ry. X no se Sy, splits in R, then ¢* is a homeomorphism.

(O X Rk Kegw and Y(ay,...,a,) is a variable free formula_(al, s @, €R)
then the set of points s € Sy such that ¥ holds in R/s (i.e. in the stalk at $) is a clopen
subset of Sy and hence corresponds to some idempotent of R. If p(x), q(x) € R[x]
then (p, q)(x) € R[x], i.e. thereis a polynomial (p, g)(x) which is the g.c.d. of p(x)
and g(x) at each point of Sg. If p(x) € R[x] then using the definition of a Sturm
sequence given in [2] p. 281 there exists a Sturm sequence po(x), ..., p,(x) for p(x)
in R[x]; po, ..., p, is 2 Sturm sequence for p at each point of Sg-

The following lemma was proved in [3].

Lemma 1. If ReR; are models of Kog and we Ry satisfies p(a) = 0 for some
p(x) € R[x], then R[e]F Kep and every maximal ideal of R[x] is of the form
(s v {g(0)}) where s€ Sy and q(x) is irreducible at s and q()|p(x) at s.

LEMMA 2. Let RE Kegg, p(x) € R[x] be a monic polynomial of odd degree or
a poly{wmz‘al_ of the form x*—a (@>0) and let R=R F Kexe and let o be the largest
root of p in R, then R[u]k Kegp and no point of Sy splits in Rlo] (R[a] is the subring
(not sub-L-ting) of R generated by R and o).

Proof. At each point s e Sg, p has a largest root o,. a, is the largest root of p in
some neighborhood of s and hence using the compactness of Sg, o exists. First
we show. that no seSy splits in Rla]. Let (su {g(@)}) e Sgpg 20d let p(x)
= q1'(x) ... g(X)™ at s, with the ¢; irreducible at s, and (g, g) =1lats, forisj.
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Hence at s there is no common root of g; and ¢; (i>1). Let gi®) = cg i+
ek Cig-

Using the elimination of quantifiers for real closed fields there exists a quantifier
free formula ¥ (yy, ..., y,) (m = [](k;+1)) such that ¥ (c,o, €igs s Cpy) holds at
a point 5" of Sg if and only if the largest root of q4(x) at " is largec than all the
roots of g,(x), .., g(x) at s". By (c) above i holds on some clopen neighborhood N
of s (in Sg), corresponding to idempotent ¢ of R. Hence « satisfies g(@)=0o0ne
(in R) and hence since (g;,4) =1 at 5, Te (s u {g(x)}) for i>1 and 50 s does
not split in R[x]. Hence Sy = Sg.

To show that R[a]F Ky it is sufficient to show that if q(e) € R[o} then
g(@)v0eR[e] (=R). For this il is sufficient to show that the set of points E,
= {5eSz| g9(@)=>0 at s} is clopen in Sz = Sgpag> and hence corresponds to some
idempotent e, of R. Then g(e)v0 = g(a)e,. From Lemma 1 we know that E,o
= {se Skl g(&) = 0 at s} is clopen in Sg. Hence it is sufficient to show that E, .
= {se Sg| ¢(®)>0 at s} is open in S, for then by symmetry E, - = {5e5g| g(@)
<0 at s} is open and the result follows. Again, using the elimination of quantifiers
for real closed fields there is 2 quantifier free formula ¢ (in the coefficients of p(x)
and ¢(x)) such that ¢ holds at s’ e Sy if and only if q(%)>0. Since g(x)>0 at s then
again by (¢) ¢ holds on an idempotent f containing s and hence ¢(#)>0 on some
neighborhood of s.

I would like to thank L. van den Dries for pointing out an error in an earlier
proof of Lemma 2. -

LemMA 3. If ReRy, Ry; Ry, R, F Kezrs RE Kepe and p is as in Lemma 2
and «y, o, are the largest roots of p in Ry, R, respectively, then R[a,]=~R[u,].

Proof. From Lemma 2 we see that R[] and R[a,] are both rings of functions.
on Sg and that o; and a, are the same function, considering R[x;] as a sub-fring
of T] ‘(RJs), where F is the real closure of field F. Hence Rlo ]~ R[0,].

seSr

THEOREM 1. If RE Kegp, then R has a unique real closure.

Proof. Let R be obtained from R by repeatedly adjoiming the largest root
of a monic polynomial of odd degree or of a polynomial of the form x?—|a], until
we have a real closed f-ring. Thén Lemma 3 shows that R is prime over R. The
minimality of R follows in exactly the same way as the corresponding result in [31
(for definition of minimal see [3]). Hence R is unique.

THEOREM 2. If Rk Kcpy then R has a prime extension to a model of Ky and

*
. also a prime extension to a model of Kegw.

Proof. The proofs are very similar to those in § 5 of [3], and so we omit them.
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Cozero and Baire maps on products of uniform spaces
by

Gloria J. Tashjian (Hamilton, N. Y.)

Abstract, The main result is this: THEOREM. A uniform Baire function from a product of uni-
form spaces into a metric space depends on bly many coordi The proof uses a set-theoretic
result: let X be a cartesian product and let X denote the collection of subsets of X which depend
on countably many coordinates. LEmMMA. If Us is a family of subsets of X such that U e X
whenever U C U, then U depends on bly marny coordi . Corollaries describe the cozero
and Baire-fine coreflections of a product of uniform spaces in terms of its countable subproducts,
and it follows in particular that metric-fine coreflections of products of metric spaces and measur-
able coreflections of products of complete metric spaces are proximally fine. (The various classes
of uniform spaces mentioned above are discussed in recent papers of A. W. Hager, Z. Frolik, and
M. D. Rice.)

In this paper we study cozero and Baire-measurable functions defined on
uniform products and the cozero-fine and Baire-fine uniformities derived from
these functions. The basic result is that these mappings, with metric range, depend
on countably many coordinates. We then prove that the cozero-fine, Baire-fine,
and proximally-fine coreflections of a product of uniform spaces are generated by
the cozero maps, Baire maps, or proximally continuous maps when the coreflections
on each countable subproduct are so generated.

1. Basic result. We begin with some definitions. Let uX be a uniform space
where % denotes a family of covers of X satisfying the usual axioms for a uniformity,
as in [11]. A cozero set in uX is a set of the form {x e X: f(x) s 0} for some uni-
formly continuous real-valued function f: uX—R. Let Coz(uX) denote the family
of all cozero sets in X, and let Baire (uX) be the o-algebra on the set X generated
by Coz(uX). Baire (uX) is classified in the same way that the Borel sets of a metric
space are classified, replacing open set by cozero set, in [5], [9], or [13]. Then,
a family % of Baire sets is said to be of bounded class if there exists an ordinal a< w,
such that each element of % belongs to additive or multiplicative Baire class <.
Given uniform spaces X and v7, a function f: uX—vY is a cozero or Baire map
if f~3(U) is a cozero or Baire set in uX for every cozero or Baire set Uin vY.

Now let X =[] X, be a cartesian product of sets. A function f: X—¥ to
ag4

another set ¥ depends on the index set I= 4 if f(x) = f(¥) whenever 7,(x) = m(y).
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