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Cozero and Baire maps on products of uniform spaces
by

Gloria J. Tashjian (Hamilton, N. Y.)

Abstract, The main result is this: THEOREM. A uniform Baire function from a product of uni-
form spaces into a metric space depends on bly many coordi The proof uses a set-theoretic
result: let X be a cartesian product and let X denote the collection of subsets of X which depend
on countably many coordinates. LEmMMA. If Us is a family of subsets of X such that U e X
whenever U C U, then U depends on bly marny coordi . Corollaries describe the cozero
and Baire-fine coreflections of a product of uniform spaces in terms of its countable subproducts,
and it follows in particular that metric-fine coreflections of products of metric spaces and measur-
able coreflections of products of complete metric spaces are proximally fine. (The various classes
of uniform spaces mentioned above are discussed in recent papers of A. W. Hager, Z. Frolik, and
M. D. Rice.)

In this paper we study cozero and Baire-measurable functions defined on
uniform products and the cozero-fine and Baire-fine uniformities derived from
these functions. The basic result is that these mappings, with metric range, depend
on countably many coordinates. We then prove that the cozero-fine, Baire-fine,
and proximally-fine coreflections of a product of uniform spaces are generated by
the cozero maps, Baire maps, or proximally continuous maps when the coreflections
on each countable subproduct are so generated.

1. Basic result. We begin with some definitions. Let uX be a uniform space
where % denotes a family of covers of X satisfying the usual axioms for a uniformity,
as in [11]. A cozero set in uX is a set of the form {x e X: f(x) s 0} for some uni-
formly continuous real-valued function f: uX—R. Let Coz(uX) denote the family
of all cozero sets in X, and let Baire (uX) be the o-algebra on the set X generated
by Coz(uX). Baire (uX) is classified in the same way that the Borel sets of a metric
space are classified, replacing open set by cozero set, in [5], [9], or [13]. Then,
a family % of Baire sets is said to be of bounded class if there exists an ordinal a< w,
such that each element of % belongs to additive or multiplicative Baire class <.
Given uniform spaces X and v7, a function f: uX—vY is a cozero or Baire map
if f~3(U) is a cozero or Baire set in uX for every cozero or Baire set Uin vY.

Now let X =[] X, be a cartesian product of sets. A function f: X—¥ to
ag4

another set ¥ depends on the index set I= 4 if f(x) = f(¥) whenever 7,(x) = m(y).
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(Here, 7;: X——»HX denotes the projection mapping to the subproduct nXa,

ael
which we sometimes denote by X;. Similarly for a point x of X we may Wnte x;

for m(x).) When I is countable, we say that the function f depends on countably
many coordinates.

A subset U of X depends on [ if 7y *(m(U)) = U, ie., if xe U and x; = y;,
then y & U. A collection % of subsets of X depends on I if each element of % depends
on I If % is a family of subsets of X, there exists a smallest cardinal y such that %
depends on a set of power y. We denote this cardinal by y(%). Similarly, we write
y(f) for the smallest cardinal y such that the function f depends on a set of power y.

With these definitions, it is easy to prove the following:

(@) A cozero set in a uniform product depends on countably many coordinates.
(Use the theorem of Vidossich in [17] which says that a uniformly continuous
map from a product into a metric space depends on countably many coordinates.)
By transfinite induction, Baire sets in a uniform product depend on countably many
coordinates.

(il) Suppose X = HAX,, is a product of topological spaces X, and U is an open

subset of X. Let J, = A—{a}, for each a € A. Let r(U) = {q ed: n}f(n,ﬂ(U)) # U},
This is called the restriction set of U. Then U depends on r(U).

Proof. Write U as the union of basic open subsets of the product topology:
U = | B,, where each set B has a finite restriction set 7(By); let I = r(U). Claim

seS
ny (i (BJ)S U, for every seS; to prove this, we write r(B)—I = {ay, ..., a,},
and use induction on this finite set. Let R, = r(B)—{a,}. Then ng, (nR,(Bs))c U:
let y € ng,' (ng,(B)). Then Ax € B, such that y, = x,Va € R,. Define a point z in X
by z, = x,Yaer(B) and z, = y,Ya ¢7(B,). Then ze B, U; also z, = y,Ya # a,.
Since a, ¢ r(U), this means y e U. By induction, then, we may eliminate all indices
in r(B)~I, so that n; '(n,(B))= U. So U can be expressed as the union of basic
. open sets, each having restriction set contained in r(U) = I. Hence, 7y 1(TEI(U))
= U, i.e., U depends on I.
DerFmvimioN. If X = [] X, is a product set, let Z(X) denote the family of all
acd
subsets of X" which depend on countably many coordinates. Then it is easy to see
that 2(X) is a g-algebra on the set X. We say that a family % of subsets of X is
a completely additive (c.2.) Z(X) family if % =2 (X) and the union of each subfamily
of % belongs to Z(X).

We are now ready to state the basic result:

LemMA 1. Let X = [1X, be a product of sets. 4 dtSJomt completely additive
acd

Z(X)-family depends on countably many coordinates.

Proof. Let % be a disjoint completely additive Z(X)- famlly, and let y(%)
denote the minimal cardinality of all index sets on which % depends
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Suppose that y(%)>w,. Then we can define by transfinite induction two se-
quences of sets,

dpcd;c .. 4 ... <4
and

Uo, Uys ey Upy 6%,

each of length w,, and two sequences of points of X, {x;:
such that the following conditions hold for each i<w,:

(@) 14| = x0;
(b) U; depends on A4;, but U; does not depend on the set B; = UAj,

(C) X; € Un yl U and oA (xz) = 7rB((yt)

@ U;n {y;: ]<1} = }

To do this, let i<w,; and suppose that the sets 4;, U; and the points X;a ¥i
are defined for all j<i so that conditions (a)-(d) hold for each j. Since % is a disjoint
family and {y;: j<i} is countable, there are at most countably many elements of %
which contain some y; for j<i. However, there are uncountably many elements
of % which do not depend on B;, since y(%)>¥,. Hence, there exists U; e % such
that U; n {y;: j<i} = & and U; does not depend on B;. Then we may choose
x;€ U;and y; ¢ U; such that 7y (x;) = ng(y;). Note that y; ¢ U, for any j<i, since
%;¢ U and U; depends on B;. Finally, let I be a countable set on which U; depends,
and let 4; = I U B;. This completes the induction, so that conditions (a)-(d) hold.

Now let U = |J U;. Then Ue Z(X) by complete additivity of %, so it depends

i<oy
on some countable set 7= 4. But U also depends on the set | 4;, so U depends
i<oy
on In |J A4;. Hence there exists i<w, such that U depends on A4;. Note that con-
i<oy
ditions (c) and (d) for every i<w, imply that U n {y;: i<w,} = @, so in particular
we have points x;,, € U and y;,( ¢ U such that mp, (X;4;) = 75, (7;+1)- But
B;,1 = A;, so U does not depend on 4;, yielding a contradiction.

i<ws} and {y;: i<w,},

Remark. The above lemma, whose proof was suggested to me by the referee’s
comments, generalizes and simplifies an earlier version. The proof actually intended
by the referee uses a recent set-theoretic result of D. Preiss [14, Lemma 1 p. 342]
which we present below:

THEOREM (Preiss). Let a be a regular ordinal, ler A be a set and let P: exp(A)—ua
be « function. Suppose that there is a function f: axa—x such that ¥(4; n'Ay)
<f(¥(4y), Y(4y) for all Ay, A, in exp(A). Then there exists i<u such that Y ({a})
<i for each ae A.

To use this result we suppose y(oll)>x0, and we define two sequences of sets,
Apcd,c ... 4;= ... 4 and Uy, Uy, ..., .. €%, of length w,, such that |4;|<x,
and U; depends on 4; but not on | 4;. For any EC o, the set Uy = |J {U;: ie E}

i<i
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depends on some countable set I, and it also depends on {J {4;: i<w;}. Hence,
there exists i<, such that Uy depends on A;. Thus we may define a function
¥: exp(w,)—w; by ¥(E) = min{i: Uy depends on 4;}. Now if E;, E;Sw,,then
Y(E, n E;)<max{¥(E,), ¥(E,)}. Hence, by the theorem of Preiss thereexists
i<w, such that ¥ ({j})<ifor all j<w,. This implies, for j = i+1, that U;,; depends
-on A;, a contradiction.

As we noted earlier, the family Z(X) is a o-algebra on the set X; hence we'
may define = (X)-measurable functions from X into a metric space M to be those f
such that f~*(U) e Z(X) for every open set USM. Then we have the following
result:

ProPOSITION 1. Let X = [] X, be a product of sets. A map f: X—M, where
acd
M is metric, is X(X)-measurable iff it depends on countably many coordinates.

Proof. Suppose f is Z(X)-measurable. The metric space M has a countable
base of uniform covers {.#,}, where %, is the family of spheres of radius 1/n. Each
cover £, has a o-uniformly discrete open refinement ¥7,, by Stone’s theorem.
Now write ¥, = |J ¥, Where ¥, is a discrete family of sets in M. Then f~*(¥ )

meN

is a disjoint c.a. Z(X) family in X, so it depends on some countable set I,,, by
Lemma 1. Let I = ) I,,,- Then f depends on I.

n,m
Conversely, if f depends on the countable set 7, then f~*(U) depends on I for
every subset U of M, so fis 2(X)-measurable.

2. Application to Baire-fine and cozero-fine spaces. We consider Baire and
cozero sets in products of uniform spaces. A completely additive Baire (cozero)
family is a family of Baire (cozero) sets such that the union of every subfamily is
also a Baire (cozero) set. Such families are all completely additive X (X) families,

~so that we have immediately the following tesult:

PROPOSITION 2. Let uX be a product of umiform -spaces, where u denotes the
product uniformity. If % is a completely additive disjoint Baire family in uX, then %
~depends on countably many coordinates.

We may rephrase Proposition 2 in terms of Baire and cozero mappings on

a product. If X = HAX‘, is a product of topological spaces, define a uniformity ¢
ae.

on X to have base # = {%: % is an open normal cover of X which depends on
coordinates}. Note that ¢ does not change the topology on X.

PrOPOSITION 3. Let uX be a product of uniform spaces, and let 8 be any uni-
formity on X such that us§<g.
@ Iff: X—vY is a Baire map to a uniform space vY and if ¥ & v, then f ~1(¥7)

is refined by a completely additive Baire partition of X which depends on countably
many coordinates. ) '
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(b) If f: 8X—vY is a cozero map and ¥ € v, then f ~'(¥) is refined by a com-
pletely.additive cozero cover of 8X which depends on s, coordinates and which starts
a normal sequence of such covers.

Proof. Since §<g, 6X has a basis consisting of covers which depend on %,
coordinates, so any cozero or Baire set in X must depend on x, coordinates.

(a) Given ¥ v, there exists a c.a. Baire partition #" of v¥ which refines ¥
(as in [7] Lemma 3.3). Then f~*(#") is a c.a. Baire partition of 6X which refines
F~Y(¥"), and by Proposition 2, f™(#") depends on x, coordinates.

(b) Given ¥ €v, there exists a o-uniformly discrete c.a.-cozero cover #~

of vY which star-refines ¥, by Stone’s theorem. Write # = () #",, where each
neN

4, is uniformly discrete. Then f~}(#) = U *(#",), and each family f~*(#",)
neN

is a disjoint c.a. cozero family in 6X. By Proposition 2, each f ~*(#,) depends on %,
coordinates, so f ~1(#") depends on %, coordinates. Clearly, f ~*(#") starts a normal
sequence of such covers.

We now consider the cozero-fine and Baire-fine coreflections for products:
of uniform spaces. A uniform space uX is cozero-fine, Baire-fine, or proximally-fine
(p-fine) if every cozero-map, Baire map, or proximally continuous map (p-map)
f on uX is uniformly continuous. The collection of all cozero-fine, Baire-fine, or
p-fine spaces forms a coreflective subcategory of uniform spaces. Let @co,, Ppas
and &, denote these coreflective functors; we write @ (uX) for the coreflection of
a uniform space uX.

These coreflections may be described as follows; given a uniform space uX,
let #°“X denote the uniformity on X projectively generated by the family of all
cozero maps on #X. Repeat for ZX: let u™=X be the set X with the uniformity gener-
ated by all cozero maps on #°“X. Continue this operation inductively, taking
suprema at limit ordinals. A limit uniformity is obtained, and this is clearly the
cozero-fine coreflection of uX. The Baire-finé and p-fine coreflections are
obtained in a similar way, replacing cozero maps by Baire or p-maps. (We
write #5%X, #°X for the intermediate uniformities, and when there is no con-
fusion about the coreflection being discussed, we write #X or even X.) (These facts
are all proved by Hager and Frolik in [2] and [7].)

It is not known whether ¢(uX) = X always holds, for any of the three co-
reflections. In the case of cozero-fine spaces, Z. Frolik has given a description of
the coreflection in [2]: it is asserted that @,,,(uX), for any space uX, is projectively
generated by all mappings f: X—M to metric spaces M which satisfy the following:

1. f = ho g, where g: X— [ S, S, is metric Va, and =, ° g is a cozero map Va.

agd

2. h: g(X)—M is a cozero map. (Note that any cozero map on X is such
a generating map.) In showing that the space so generated is cozero-fine, it is claimed
that the reduced product of two generating maps is a generating map.. This
statement implies that the reduced product of two cozero maps on X is a cozero
map on X: let fi, fo: X— My, M, be cozero maps to metric spaces My, M.
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Now X is generated by all cozero maps on X, so the evaluation map e: X—T118,
acd

of all cozero maps on X is an embedding of X into [] S,, (where {S,: a 4} is the
collection of all cozero images of X). Then the mappings f; o e: X—M; are gener-

ating maps, for i = 1, 2. (We identify X with the image of X under e, so X =[] S,).
agd
Hence the reduced product (f; o €)X (fy°€): X—M;x M, is a generating map.

Note that (f;c@)x(fr08) = (fixfo)ee
[15.
u
S, SLLELS VNS VA
AN /
~N
g(xX)
nl
1R

'By definition of generating map, there exists a product of metric spaces [] R; and

iel

maps g: X—[] Ry, h: g(X)—M; x M, satisfying:

(1) m;0 g is a cozero map on X Viel;

(2) h is a cozero map on g(X),.

(@) hog = (fixfr)ee

For each i eI, there exists a;€ 4 such that x,, o e = m; 0 g, since eis the evaluation
of all cozero maps on X. Therefore, if we let B = {a;: ieI} and C = 4—B, we
have e = gxj for some function j: X— [] S,. Hence, the map f; xf, depends

aeC

on the index set B. Let U e coz(My x M), and let ¥V = (f; xf2)*(U). Then mz(¥)
= b~} (U), where ng(V)< [] S,, which equals [ R;; 3 is defined on X. Hence
aeB iel

(V) is a cozero set since  is a cozero map, so-¥ = mg *(nx(F)) is a cozero set
in X. Hence, the reduced product f; X/, of cozero maps f; and f; is a cozero map
on X. .
Now, using Proposition 1.5 of [7], this implies that X is cozero-fine. This
shows that for any space X, if the reduced product of two generating maps as
defined in [2] is a generating map, then X is cozero-fine. )
We will show that if X is a product of metric spaces, then #X is cozero-fine.

. DErINITION. Let X be a product of uniform spaces. Define two uniformities .

v, & on X as follows:
(i) Let v have subbase {%: % is a c.a. cozero cover of uX, y(%) = »,, and ¥
starts a normal sequence of such covers}. (Note that ucv=g.)
(i) Let ¢ have subbase {%: % is a c.a. Baire partition of uX and y(%) = %,}.
 CorROLLARY 1. Let uX be a product of uniform spaces. Let i be the uniformity
on X generated by all cozero maps on uX. Then:
(a) 7 =w.
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(b) If coz(X;) = coz(Xy) for every countable subproduct X of X, then coz(uX)
= coz(iX).
(©) If coz(uX) = coz(uX), then ﬁX is cozero-fine.

Proof. (a) By Proposition 3.2 of [7], #X is generated by all c.a. cozero covers
of uX which start a normal sequence of such covers. Hence v<#i. Also, by Prop-
osition 3(b) any cozero map on uX is uniformly continuous on vX. Hence #<wv.

(b) Suppose coz(X) = coz(X;) V countable I< 4. Let f: iX~>R be uniformly
continuous, and let U = coz(f). To show that U is a cozero set in uX, we need the
following fact:

LemMa 2. Let uX = [| X, be a product of uniform spaces. If U is a cozero set
acd

in uX which depends on the countable set I, then n(U) is a cozero set in X}.

Proof. Suppose f: uX—R is u.c. and U = coz(f). There exists a countable
set J4 such that f depends on J, and I<J. Let £, be a basic cover of R. Choose
finitely many indices o, ..., o from J and covers 77 in X,,-i<k, such that

k
A7 F)<f L. I we dothis for each ne N, we obtain, for each ae/, at
i=1

most countably many covers ¥7 in X, which are required to make f uniformly
continuous. For each @ €J, let ¥, be the set X, with the uniformity generated by
these countably many covers. Then Y, is a pseudometric space for each aeJ. Let
Y= ] X,x [] ¥.. Then f: Y—R is uniformly continuous. Also, 7, (U) is an

aed—-J aelJ
open set in [| ¥,, which is a pseudometric space; hence m(U) is a-cozero set in

ael

that space. Since ] ¥, is coarser than [] X, then my(U) is a cozero set in X;.

ael ael
This proves the lemma.

Returning to the proof of (b) let {.£,} be a conntable base for R. For eachne N
k
we may choose finitely many subbasic covers %7, ..., %; of X such that N\ Ut
i=1

< f~Y(#,). Each cover %} depends on a countable index set, so there exists a count~
able set I such that all covers %} depend on I. Then we have

x x
_/=\1751(%?) = 7’1({__\1 U <m(f L) -

By Lemma 2, 7,(%7) is a c.a. cozero cover of X7, so it belongs to X,. Hence 7;f ~1(5,)
is a uniform cover of X also, Vre N. Now U is a union of elements chosen from
U S, so n(U) is a union of elements from U 7;f ~1(#,). Therefore, 7 (U)

neN neN
is a cozero set in X;. Now cozX; = cozX; by assumption, so 7,(U) is a cozero
set in Xy. It follows that U is a cozero set in uX, since U = m7 *(m,(U)). Hence,
coz(iX) ccoz(uX).

(¢) M.coz(uX) = coz(@X), then any cozero map on #X is a cozero map on uX,
and therefore it is uniformly continuous on #X. Hence #X is cozero-fine.
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COROLLARY 2. (2) 4 product uX of uniform spaces is cozero-fine if and only if
each countable subproduct is cozero-fine.

(b) If uX is a product of metric spaces, then &, (uX) = uX.

Proof. (a) If the product is cozero-fine, then the countable subproducts are
cozero-fine since they are quotients of the product. Conversely, any metric-valued
cozero map on uX factors as a cozero map through a countable subproduct, using
Proposition 3(b) and Lemnma 2. Hence if each countable subproduct is cozero-fine,
a cozero map on the whole product must be uniformly continuous.

(b) Any countable subproduct X; of X is metric, so coz(Xy) is the family of
all open subsets of X7. Hence coz(X)) = coz(X}) since X, has the same topology
as X;. By Corollary 2, coz(uX) = coz(@#X), so #X is cozero-fine.

Remark. Coz(X;) = coz(X;) whenever X; has a Lindeldf topology. Hence
by Corollary 1, @,,,(uX) = #iX whenever uX is a product of uniform spaces such
that each countable subproduct is Lindeldf.

We now prove analogous statements about the p-fine and Baire-fine co-
reflections. If »X is a uniform space, let puX denote the set X with the uniformity
consisting of all finite uniform covers of uX.

COROLLARY 3. Let uX be a product of uniform spaces.

(a) If pX% = pX; for every countable I, then puX = puX.
() If piuX = puX, then uX is p-fine.

(c) The product uX is p-fine if and only if each countable subproduct is p-fine.

Proof. (a) Let % e puX. We may assume that % is a finite cozero cover of 7X.
By definition of #X, there exist p-maps fi, ..., f,: uX—Y;, for i<n, and uniform

covers ¥ of ¥; such that A fi Y(#")<%. The maps f; are all cozero maps on 1X,
i=1

so by Proposition 3 each one depends on a countable set; choose a countable set I
such that all the f; depend on I and also % depends on I. (We may do this since
cozero sets in #X depend on &, coordinates). Then
Tcl(i/_\lfi— 1(‘1/1)) = i/—\1 nl(fi_ I(Vi)) < (%) .

The maps f; depend on I, so they factor as p-maps through Xp; ie., there exist
p-maps g;: X—Y; such that g;om; = f; Vign. Then n(f7 1("I/,)) = g7 Nv),
a uniform cover of X;. Hence n,(%) e pX; since (%) is finite. By the assumption
X =pX;, we have m(%)epX;. Then % epuX, since % = ny ' (n(%)). So,
puX = puX.

(b) Trivial.

(¢) Suppose each countable subproduct X;is p-fine. Let f: uX—Y be a p-map
to a metric space Y. Then f = g o n; for some countable I and p-map g: X;—7.

Since g is uniformly continuous if X is p-fine, f is also uniformly continuous.
Hence, uX is p-fine.

" Cnomy(B) is a Baire set in X, where C N my(B) =
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Remark. M. HuSek has proved independently in [10]: a product of uniform
spaces is p-fine if and only if each finite subproduct is p-fine; a proximally continu-
ous map from a uniform product into a metric space depends on countably many
coordinates; the statement of Corollary 4(a) below.

DEeFINITION. A uniform space zX is metric-fine if each uniformly continuous
map f: uX—M to a metric space A is uniformly continuous with respect to the
fine uniformity o on M. (Here a has base consisting of all open covers of M.) The
metric-fine spaces form a coreflective subcategory of uniform spaces. (Metric-fine
spaces were originally defined by Hager in [6], where separable metric-fine spaces
are discussed. The non-separable theory is developed by Frolik in [4] and by Rice
in [15].)

COROLLARY 4. (a) A4 product of metric spaces is p-fine.

(b) The metricfine coreflection of a product of metric spaces is p-fine.

Proof. (a) All countable subproducts of uX are metric. By a theorem of Svarc

‘Gn [11] p. 38) metric spaces are p-fine. Since all p-maps on uX factor through

a countable subproduct, they are then uniformly continuous on the whole product.
Hence uX is p-fine.

(b) It is easy to see that if #X is a product of metric spaces, the metric-fine
coreflection of uX is 0X. We have shown that ¢X is cozero-fine (here ¢X = vX
= 71X) in Corollary 1. Hence, ¢X is p-fine, since all p-maps are cozero maps.

COROLLARY 5. Let uX be a product of uniform spaces.

(2) @X = ¢X, and if Ba(X;) = Ba(XF®), for every countable I, then Ba(uX)
= Ba(#X).

(b) If Ba(uX) = Ba(uX), then uX is Baire-fine.

Proof. (a) u has sub-base consisting of all completely additive Baire partitions
of uX which, by Proposition 2, all depend on x, coordinates. Hence & = o.

Assume now that Ba(X;) = Ba(X;) for every countable subproduct X;. To
prove that Ba(uX) = Ba(iiX), we need the following fact:

LemMa 3. Let uX be a product of uniform spaces. If B is a Baire set in X of class o
which depends on the countable set I, the n/(B) is a Baire set in X of class <a+1,

Proof. First, suppose uX is a product of metric spaces. The Baire set B
originates from a countable number of cozero sets in X, so we may choose a count-
able set J=A4 such that all of these cozero sets depend on J, and I<J. Since 7;:

_X—X, preserves unions and intersections of sets in X which depend on J, n;(B)

is a Baire set in X;. Now let K = J—1I. Fix a point p'in X, andlet C = {p} % X}.

Since Xy is metric, {p} is a Baire set in Xk, so C is a Baire set in X. Then
{p} x m;(B\. Finally, we note
that 7,(B) is a Baire set in X7, since it is the inverse image of the Baire set {p} x 7;(B)
under the uniformly continuous map f: X;—X; defined by f(x) = (p, x), (where
X; = Xgx X). ’
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Now if uX is an arbitrary product of uniform spaces and if Be Ba(uX) and

J is a countable index set as above, we may define pseudometric spaces .Y, weaker

than X,, for each a € J, such that B is a Baire set in the product [ X, xT] ¥, (as
. agJ

agJ
in Lemma 2). Then m;(B) is a Baire set in the pseudometric space ¥ =[] 7,.

aelJ
If we let M, M, be the metric identifications of Y, ¥, respectively, Va eJ, then
M =[] M,. Let f: Y—M be the canonical map. Then f(m,(B)) is a Baire set in

ael
the metric space M, and it depends on the index set 7, so that by the first part it
projects onto a Baire set in M;. This implies that =;(B) is a Baire set in Y, hence
it is a Baire set in the finer space X;. This completes the lemma.

Now, to show Ba(uX) = Ba(iX), it suffices to show that coz(iX)<=BauX).
Let coz(f) e coz(X). For each basic cover £, of R choose finitely many subbasic

K
covers U5, ..., Uy of #X such that A\ @} <f~*(F,). Bach cover %} is a completely
i=1 . .

additive Baire partition of #X, so by Proposition 2 it depends on a countable set I;,,.
Let I = {J {I;: ne N, i<K}. Then I is countable and each cover %, depends on I,
so by Lemma 3 m;(%;,) is a c.a. Baire cover of X7, i.e., a uniform cover of X;. Now

K K
N\ = m{/\ ) <7 {F7S))

So, m,(fX(#,)) is a uniform cover of X;. Then m,(coz(f)) is a cozero set in X,
so by our assumption it is a Baire set in X;. Therefore, coz(f) = m; *(m;(coz(f)))
isa Baire set inuX.

DEerNITION. A uniform space uX is measurable if every pointwise limit of
uniformly continuous metric-valued functions is uniformly continuous. The measur-
able spaces form a coreflective subcategory of uniform spaces. If X is a uniform
space, its measurable coreflection myuX is generated by all o-uniformly discrete
c.a. Baire covers on uX. (Measurable spaces are discussed in [3], [5], and [15].)

COROLLARY 6. Assume GCH. Let uX be a product of uniform spaces such that
|Baire(Xp)|<c for every countable 1. Then the measurable coreflection muuX is
Baire-fine. )

Proof. Tt is known that if |Ba(uX)|<c, then each c.a. Baire partition of uX is
countable (Corollary 7.9 in [7]). Hence for each countable 7, all c.a..Baire partitions
of X are countable. Then m,X; = X;. Now, Ba(uX) = Ba(m,uX) for any space
uX, as in [3] or [16], so Ba(uX;) = Ba(X,;) V countable I. Hence X; is Baire-fine.
Now if f: myuX—Y is a Baire map, it is a Baire map on uX; using Proposition 3
and Lemma 3, there exists a countable set I and a Baire map g: X;— ¥ such that
f=gom;. Now g: mX,—Y is u.c. since m,X; is Baire-fine, so f: muu¥—Y
is w.c. Hence myuX is Baire-fine.

Remark. Corollary 6 applies to products of separable metric spaces since
|Ba(X))|< ¢ ¥ countable subproduct I.
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i 3. Further applications. We now consider the recent result of D. Preiss in [14]:
- (@) Any completely additive disjoint system of Baire sets in a topological space
is of bounded class.

It is known that this is equivalent to the following three conditions, for com-
plete metric spaces gM:

(b) Any Baire map f: gM—Y to a metric space Y is of bounded class (i.e., there
exists o.<wy such that for any open subset U of Y, f ~*(U) is a Baire set of class a).

(c) The measurable coreflection my oM is p-fine.

(d) The meet of two c.a. Baire covers is a c.a. Baire cover on oM.

"7 Proof. The equivalence of (b) and (c) was proved by M. Rice in [14, II, The-
orem 2.2, p. 6]. The equivalence of (c) and (d) was shown by M. Rice in[14, 1, The-
orem 2.2, p. 8].

(b)—(2) Let % be a c.a. disjoint Baire family in ¢M, where % = {U,: ae 4}.
Let D be the discrete metric space of power |4]. Define f: gM—D by f(x) = 0 if
xé& U% and f(x) = aif xe U,. (D = {0} U 4.) Then fis a Baire map, so by (b) it
is of bounded class. Hence dar<iv, such that U, = f~*({a}) is a Baire set of class
o YaeA. ’

(a)—(d) Let %, 7" be c.a. Baire covers in gM, let D, E be the discrete spaces
of power |#%], [#7| respectively, and let £, g: ¢M—D, E be maps which are constant
on each element of % o1 #". Now the meet # A¥" is a c.a. Baire cover if and only
if the reduced product fxg: M—Dx E is a Baire map. By a theorem of Hansell
[8, Theorem 5, p. 163] it suffices to show that f and g are g-discrete and of class a,
some a<w,. Again, we apply theorems of Hansell: fand g are of class « by Cor-
ollary 5, p. 159 in[8], and %, ¥" are o-discretely decomposable by Theorem 2, p. 156
in [8], so it follows that f and g are o-discrete.

This shows that conditions (2)-(d) are true for complete metric spaces oM, °
and it is not hard to see that they hold for products of complete metric spaces also.

ProposiTION 4. Let uX = [| X, be a product of complete metric spaces.
acd

(1) Any Baire map f: uX—Y to a metric space Y is of bounded class.
(ii) The measurable coreflection myuX is p-fine.
(iii) The meet of two completely additive Baire covers on uX is a c.a. Baire cover.

Proof. (i) By Proposition 3(a), f depends ona countable index set I 4. Let
g: X;—Y be the map such that f = g o 7;. Then g is a Baire map on X, where
X; is a complete metric space, so by condition (b) above g is of bounded class.
Hence, f is of bounded class.

(i)°Let f¢ myuX~—Y be a p-map, where Y is metric. Then fis a Baire map
on myuX; by a theorem of M. Rice in [15], Ba(muX) = Ba(uX), so f: uX—Y is
a Baire map. By Proposition 3, f depends on a countable index set I, so there exists
a Baire map g: X;—Y such that f = g ¢ ;. We know that m, X; is p-fine; hence,
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it is Baire-fine, by a theorem of A. W. Hager in[7]. Thus g: m, X;— Y is uniformly
continuous, so f: my X—Y is uniformly continuous.

(ifi) If %, ¥ are completely additive Baire covers on uX, there exists a count-
able index set I on which % and ¥ depend, so % = n;'(n(%)) and ¥
= (nf Y(z#")). By Lemma 3, m,(%) and m,(¥") are c.a. Baire covers on X}, so by
condition (d), 7 (%) An(¥) is a c.a. Baire cover on X;. Then

UNY = np N (U) Ang(97))

is a c.a. Baire cover on uX.

Finally, we make some observations about other subclasses of uniform spaces.
Let & be a class of functions each having domain and range in uniform spaces.
Let & be a reflective subcategory of uniform spaces (i.e., Z is closed under product
and closed subspace formation). Define the class of uniform spaces #-2 as follows:
uX € F-4 iff each image of uX under a function in & belongs to . For example,
we may let # = cozero, Baire, or p~-maps, and £ = £ or &. (Here 2 denotes the
precompact uniform spaces, and & denotes the separable spaces, i.e. those uniform
spaces having a basis of countable covers). Then, a space is in Coz-¢ or Ba-¢ iff
each c.a. cozero cover or c.a. Baire partition has a countable subcover. These notions
are discussed by Hager in [7].

1t is known that Coz-# and 2-2 are closed under arbitrary product formatlon
(see [12] for #-2 and [7] for Coz-#.) In addition, we have the following:

(i) A product of uniform spaces is in Coz-& iff each countable subproduct is in
Coz~8. A product of separable metric spaces is in Coz-&.

(ii) Assume GCH. A product of uniform spaces is in Ba-&
subproduct is. A product of separable metric spaces is in Ba-&.

iff each countable

Proof. (i) Let uX be a product of uniform spaces. Assume that uX e Coz-&.
If X; is a countable subproduct'and f: X;—Y a cozero map with image Y, then
fomy: XY is a cozero map, so Y e &. Hence X; e Coz-&. Conversely, suppose
that X; € Coz-# V countable I. Let f: uX—Y be a cozero map. Then & factors
through a countable subproduct as a cozero map, so Y e &. Hence uX e Coz-8.

Suppose uX is a product of separable metric spaces. Then each countable
subproduct X; is a separable metric space, so itis tépologically separable. Then
any cozero (i.e. continuous) image ¥ of X, is topologically separable, hence any
compatible uniformity on ¥ is in &. So X; € Coz-¢. By the first part, uX e Coz-6.

(i) The proof is similar to the proof for (i). Note that we must factor Baire
maps through countable subproducts. For the second statement, we use the fact
that, assuming the continuum hypothesis, any c.a. Baire family in a separable metric
space is countable. (This fact also holds for any uniform product uX whose count-
able subproducts satisfy [Baire(uX)|<c.)

I would like to thank A, W. Hager and M. D Rice for their many valuable
comments concerning this paper.
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