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On point-countable collections
and monotonic properties

by

J. Chaber (Warszawa)

Abstract. A class of spaces is introduced containing both p-spaces and semimetrizable spaces.
It is shown that the intersection of this class with the class of regnlar spaces with a point-countable
base is contained in the class of monotonically developable spaces. We generalize number of
theorems which assert that a semimetrizable space or a f-refinable p-space having a certain ad-
ditional property has a development. Besides, we generalize some results which assert that count-
ably compact spaces are compact.

The aim of this paper is to give a unified method of proving theorems which
assert that certain spaces are developable. Our main purpose is to find a general-
ization of the following two results:

A) [15] A semimetrizable spaces with a point-countable base is developable.

B) [14] A paracompact p-space with a poini-countable base is metrizable.

In order to do this we introduce the class of monotonically semistrafiable
spaces and the class of monotonic f-spaces. These classes do not seem to be as
important as the other classes of monotonic spaces (see [11]) but they allow us to
find a joint background of various characterizations of developable spaces.

We shall use the terminology and notation from [13] and [11]. All spaces are
assumed to be regular. If M and N are families of subsets of a certain space X,
then M < denotes that each element of M contains an element of M. . If § is
a well-ordered cover of X and x € X, then x($) denotes the first element of $ which
contains x.

1. Preliminaries. Let us recall that a property 8 of sequences of sets is said
to be monotonic if the following condition is satisfied:

{Halm=1€P and 6{W ;L <{H,}m-, implies {W,}; e .

In [11] the concept of a sieve was introduced in order to simplify the gener-
alized base of countable order theory.

DeriNiTIoN 1.1, A séquence & = {(®,, 4,, 7,>};r, will be called asieve
of X if, for an arbitrary n, ®, = {G(0)},.4, is an open covering of X and 7,
A,y —4, is such that if xed,, then G(o) = {J {G(&): m,(&') = a}.


GUEST


210 J. Chaber

_A'sequence {G(a,)}n= 1, where a, € 4, and 7,0t 4 1) = 0, Will be called a thread

of . I each thread of G satisfies a monotonic property (in), then & will be called .

an (im)-sieve.

Tt is easy to see that the proof of Lemma 1.1 from [11] can be used in order
to prove

LEmMA 1.2. Let () be a monotonic property. The following conditions are equiv-
alent for an arbitrary space X:

(@) X has an (m)-sieve,

(b) if, for each xe X, {B, (D}, is a (decreasing) sequence of bases of X at
the point x, then, for.each x € X, there exists a (decreasing) sequence {I,(x)}:%, of
bases at x such that W(x)=B,(x) and {{J {W,(x): x e X}y is an (n)-sequence
of bases of X.

We shall define the class of monotonically semistratifiable spaces.

DermNITION 1.3. A space X is said to be monotonically semistratifiable if, for
each point x € X, there exists a decreasing sequence {B,(x)}.; of bases of X at
0

the point x such that if B, e B,(x,), B,+;=B,, forallne N, and xe | B, then x is

no

n=1
a limit point of the sequence {x,};%. The family {{B,(x)}: x e X} will be called
a monotoric semistratification of X.

Note that if, in the above definition, we do not assume that the sequence
{B,}s., is decreasing, then we get a characterization of semistratifiable spaces [12].
The foliowing two easy propositions show that monotonic semistratifiability is,
in fact, a monotonic equivalent of semistratifiability.

PrOPOSITION 1.4. A space X is monotonically semistratifiable if ond only if,
for each closed subset F of X, there exists a decreasing (W)-sequence {B,(F)};=, of
‘bases of F in X (%) such thar FSF' implies B,(F)<B(F') for ne N.

ProrosiTionN  1.5. Monotonically developable spaces are monotonically semi-
stratifiable.

An example of a semimetrizable nondevelopable space [18, Example 3.1]
shows (see, for example, [11, Theorems 2.8 and 4.2(d)]) that there exist monotonic-
ally semistratifiable spaces which are not p-spaces.

In order to obtain a class of spaces which contains all semimetrizable spaces
and all p-spaces, we introduce the class of monotonic f-spaces.

DrFiNiTION 1.6. A space X is said to be a monotonic f-space if, for each point
xe X, there exists a decreasing sequence {8B,(x)}, of bases of X at the point x

Ll .
such that if B, € B,(x,), B,,; =B, and () B, is non-empty, then the sequence {x,}:%;
n=1

() Let us recall that a sequence {B (F))m_l of bases of Fin X is called a (W)-sequence if
each decreasing sequence {B }"_x such that B, ¢ B (F) satisfies the condition [ "\ B cF.

n=

n=t
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nas a cluster point. The family {{8,(x)}2
B-system of X.

The class of monotonic f-spaces is a monotonic eqmvalent of the class of
B-spaces [16] (again, dropping the assumption that B,,, < B,, we obtain a charac-
terization of f-spaces).

It is easy to see that the following proposition holds.

- xe X} wilt be called a monotonic

PROPOSITION 1.7. Each morotonic p-space is a monotonic B-space.
Let us recall that a monotonic p-space is monotonicaily developable if and
only if it has a W;-diagonal. Using Lemma 1.2, we obtain

PropoOSITION 1.8. A monotonic B-space is monotonically semistratifiable if
and only if it has a Wys-diagonal.

2. Non-complete monotonic properties and point-countable collections. A mono-
tonic property (m) will be called non-complete if it contains all sequences with the
empty intersection.

We shall consider the following non-complete monotonic properties of
sequences of subsets of a space X:

0
(d) N B,>x, then {B,}, is a base at x,
n=1

o0 w0
(A) ﬂ B,>x, then () B, = {x},
n=1

(p) ﬂB 3 X, for each centred family A, SU<{B,}; implies

N{4: Ae"[}#@

then,

(cp) ﬂ B, > x, then, for each centred and countable family %, sU<{B,};=,
n=1
implies () {4: 4eU} # O.

DeFINITION 2.1. A sequence {$;}7%., of well-ordered open covers of a space
X is said to be an (m)-sequence of ordered covers if, for each x € X, the sequence
{x($)}7- satisfies (m) (3.

1t is easy to observe that the concept of a primitive base [25] is equivalent
to the concept of a (d)-sequence of ordered covers. Hence, according to [25], if
a space X has a (d)-sequence of ordered covers and closed subsets of X are Ws-sub-
sets, then X is monotonically developable (*). Since, obviously, each quasi-de-
velopable space [6] has a (d)-sequence of ordered covers, it follows. that we may
regard the concept of a primitive base ((A)-sequence of ordered covers) as a mono-
tonic equivalent of the concept of a quasi-development (quasl-Ga -diagonal [17]).

(® (m) will always denote a monotonic property.
(®) It can be shown that if (m) is 2 non-complete monotonic property, X has an (m)-sequence
of ordered covers and closed subsets of X are Wjs-subsets, then X has an (m)-sieve.
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The following theorem shows that, in the result announced in [25], the as-
sumption that closed subsets of X are Wj-subsets can be replaced by the as-
sumption that X is a monotonic f-space (compare with [22]).

THEOREM 2.2. Ler (m) be a non-complete monotonic property. A monotonic
B-space X has an (m)-sieve if and only if X has an (m)-sequence of ordered covers.

The “only if” part follows from

Lemma 23. If 6 = {KB,, 4,, m,p}eey is a sieve of X, then, for each neN,
there exists a well-ordering of ®, such that {x(®,)};%, is a thread of ® for xeX.

One can prove Lemma 2.3 by using a method exhibited in [21] (see also the
proof of Lemma 1.1 in [11]).

Proof of Theorem 2.2. Let {{B,(x)};~,: xe X} be a monotonic B-system
of Xand let {§;},%; be an (m)-sequence of ordered covers of X. One can construct
a sieve 6 = {(B,, 4,, m,>}iz; of X such that 4, X", =, is the restriction of the
projection of X*** onto X" to the set 4,,, and ‘

@ (g, .y X,) € 4, then G(xy, ..., x,) € B,(x,),

(D) (x1s ons Xp) € 4y, then G(xy, ..., x)S N {x,(H)): j<n}.

We shall show that & is an (m)-sieve. Let {G(x,)};1, be a thread of ® such‘

o

0
that () G(x,) # @ and let {x,};2; be a sequence of elements of X such that a,
n=1
= (X{, ..., X,) for n e N. From condition (i) we infer that {x,};%, has a cluster point
ye ) Gla,).
n=1
Since (m) is a monotonic property, it suffices to show that 5{G (o)}
<{r&Pi..
Let je N. From the fact that y($;) is a neighbourhood of y it follows that,
for a certain n2j, x, € y(9;). On the other hand, (i) implies that y e G (o) S%,(9))-
Hence G(o,) =x,(9)) = y(H)).
COROLLARY 2.4 (compare with [7, Theorem 3.1]). 4 space X is monotonically

developable if and only if X is a monotonic B-space with a (d)-sequence of ordered
covers.

CoRrOLLARY 2.5 (compare with [17, Theorem 3.2]). A monotonic f-space has
a W;-diagonal if and only if X has a (A)-sequence of order covers.

COROLLARY 2.6. 4 space X is a monotonic p-space if and only if X is a mono-
tonic B-space with a (p)-sequence of ordered covers.

DeFNiTION 2.7. A point-countable open cover M of a space X is said to be
an (m)-cover if, for each x € X, the family U(x) = {UeU: xe U} satisfies (m).

THEOREM 2.8. Let () be a non-complete monotonic property. If a monotonic
B-space X has a point-countable (m)-cover, then X has an (m)-sieve.

Proof (*). Let U be a point-countable (m)-cover of X and, for each x e X,

(*) We use an idea from [15].
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let U(x) = {Uy(x): ie N} be a fixed enumeration of U(x). Let {{B,(x)},: xe X}
be a monotonic f-system of X. :

As in the proof of Theorem 2.2, we construct a sieve & = {{(,, 4,, 7>},
of X such that 4,=X™, =, is the restriction of the projection of X”** onto X™ and

@ Xy, -.or Xp) € 4, then G(xy, ..., x,) € B,(x,),

@) (x4, ..., X,) € 4,, then G(xy, .., x, ) N {Ufx): i, k<n dnd x,e Uyfx)}

Let {G(,)}, be a thread of & such that (| G(a,) # @ and let {x,}2, be
n=1

such that o, = (Xy, ..., X,). As in the proof of Theorem 2.2, {x,};%, has a cluster
point ye X.
Since () is a monotonic property, it suffices to show that 6 {G (&)} 1 =W (Y).
Let Ue U(y). From the fact that y is a cluster point of {x,};= it follows that,
for a certain ke N, x, € U. Hence there exists an i e N such that U = Uyx,). Let
n>i+k be such that x, e U. From condition (ii) we infer that G(x,)< U.

COROLLARY 2.9 (compare with [15], [14], [8, Theorem 2.10] and [10, The-
orem 2.71). A monotonic B-space with a point-countable base is monotonically de-
velopable.

COROLLARY 2.10- (compare with [20], [16, Theorem 3.6] and {11, The-
orem 4.2 (b)]). A monotonic B-space with a point-countable separating open cover
has a W;-diagonal. Hence a monotonic p-space with a point-countable separating
open cover is monotonically developable.

The following concept generalizes the concept of a point-countable (1m)-cover.

DeFiNITION 2.11. A sequence {1}, of open covers of a space X is said to
be a o-distributively point-countable (m)-sequence if, for each xe X, the family
U(x) = {Ue ;i je N(x)and x € U}, where N(x) = {je N: [{UeU;: xe Ul <%},
satisfies ().

Spaces with a - g-distributively point-countable (d)-sequence of covers are
defined in [3] as spaces with a 60-base. In [4] it is shown that a semistratifiable
space with a 80-base is developable. The following, more general, theorem holds.

THEOREM 2.12. Let (m) be a non-complete monotonic property. If a monotonically
semistratifiable space X has a o-distributively point-countable (m)-sequence of covers,
then X has an (m)-sieve.

Proof. By virtue of Theorem 2.2, it suffices to show that X has an (wm)-se-
quence of ordered covers.

Let {U;}%., be a o-distributively point-countable (m)-sequence of covers of X'
and let {{B,()}s1: xeX Y be a monotonic semistratification of X.

As in the proof of Theorem 2.8, for each x e X, we fix an enumeration W(x)
= {Uyx): ie N} of U(x).

Let X; = {xeX: je N(x)} and let &; = {K8,js Anjs T, jdlne1 be @ sieve
of X; in X which satisfies the same conditions as the sieve constructed in the proof
of Theorem 2.8 (4, ;S(X)")-
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By virtue of Lemma 2.3, for each n € N, there exists a well-ordering <, ; of 6, ;
such that {x(®, )}, is a thread of ®; for xe Xj.

Hence, the reasoning used in the proof of Theorem 2.8 shows that, for each
xeX, the family {x(6,)): ne N and je N(x)} satisfies (m). Therefore the family
{6,, 3 =1, where 6, ; = 6, ; U {X} (6, ;is well-ordered by <, ; and X is added
as the last element of @, ;) is a countable (m)-family of ordered covers of X.

COROLLARY 2.13. 4 monotonically semistratifiable space X with a o-distribu-
tively point-countable (p)-sequence of covers is monotonically developable.

If X is a first countable space, then the assumption that X is monotonically
semistratifiable can be replaced by the assumption that X is a monotonic B-space.
In order to prove this result, we need the following simple lemma.

Lemva 2.14 (%). If W is an open cover of a first countable space X, then
{xeX: {Uel: xe U}y, is closed in X.

THEOREM 2.15. Let () be a non-complete monotonic property. If a first countable
monotonic B-space X has a o-distributively point-countable (in)-sequence of covers,
then X has an.(m)-sieve.

Proof. Let {M;}7.; be a o-distributively point-countable (m)-sequence of
covers of X. As before, we fix an enumeration U(x) = {U;(x): ie N}. Let
{{SB,,(x)}f,‘;‘l: x e X} be a monotonic f-system of X.

~ From Lemma 2.14 it follows that the sets' X = {x € X je N(x)} are closed
in X. Hence we can construct a sieve G = {{(G,, 4,, 7,5} of X which satisfies
the same conditions as the sieve constructed in the proof of Theorem 2.8 and

(i) (1 s %,) € 4,, then Glxy, .o, x,)E ) {X\X;: j<n and x, ¢ X}}.

Let {G(e)};%; be a thread of G such that o, = (x,, ..., W and N G(e,) # 9

© n=1

and let ye OIG(zx,,) be a cluster point of the sequence {x,}:> 1. We have to show
that §{G(e)}ix , <U(y).

) Let UeU(y) and let je N(y) be such that Ue ;. From condition (iii) we
infer that x, e X; for n>j. Hence, the reasoning used in the proof of Theorem 2.8
shows that there exists an-n3>j such that G (o) U.

COROLLARY 2.16. A monotonic f-space with a 860-base is monotonically de-
velopable.

COROLLARY 2.17. A monotonic p-space with a o-distributively point-countable
(A)-sequence of covers is monotonically developable. Hence a paracompact p-space

X is metrizable if and only if X has a o-distributively point-countable (A)-sequence
of covers (8).

() This lemma was suggested to the author by K. Alster.
() Corollaries 2.16 and 2.17 give positive answers to Questions 2 and 3 from [5].
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Corollary 2.17 gives a new metrization theorem for paracompact p-spaces
‘We shall show that a similar theorem holds for the class of M-spaces [19]. This is
a consequence of the following result:

ToroREM 2.18 (cf. [1]). 4 countably compact space X with a o-distributively
point-countable (A)-sequence of covers is compact.

Proof. Let {U;}, be a o-distributively point-countable (A)-sequence of
covers of X. Assume that X is not compact and let B be an open coyer of X such
that no countable subcollection of B covers X.

By virtue of Lemma 2.14, each set X; = {xe X: je N (x)} is closed and, obvi-
ously, {X;}7= is a covering of X.

We shall construct sequences

() 0<j; <jp <« <ju< ... of natural numbers,

(i) X2 F;2F,2... 2F,2... of closed subsets of X, such that

(iii) fu41 is the smallest natural number which is greater than j, and is such
that F,, n. X, ,, cannot be covered by any countable subcollection of B,

(i) F, = Fpey 0 X;,N\U B, where B'SB is = countable -cover of
U {F -1 0 X]‘ jm—1<j<jm}5

(V) F S ﬂ X’jk\U {XI jgjm and ]¢ {jia -"ajm}}:

k=1

(vi) F, cannot be covered by any countable subcollection of B. .

We can construct sequences (i) and (i) by induction. We define F, = X. Using
the assumption that X cannot be covered by any countable subcollection of B,
we can define j,; as the smallest natural number j such that F, n X; cannot be
covered by any countable subcollection of B.

Having F,,_, and j,, for m>1, we use (iv) as the deﬁnilio.r.l of F,. In order
to define j,., satisfying (i) we have to show that, for a certain j>jm, F,nX;
cannot be covered by any countable subcollection of B.

Assume that there exists a countable subcollection B’ of B which covers
U{F, n X;: j>ju}. Let F=FNJ%3 and M = {J1s s Jup EN. From (v) and (vi)
we infer that .

() F cannot be covered by any countable subcollection of B and xeF
implies N{x) = M. . )

Hence F is a countably compact non-ccmpact space and W = {U n F:Uel;
and je M} is a point-countable separating open cover of F. This is a contra-
diction [1]. . ) o

We have shown that condition (iii) and (iv) define sequences (i) and (ii) satis-
fying (v) and (vi).

Let F = ﬁ F, and M = {j,: meN}. From condition (vi) and countable

m=1 .

compactness of X it follows that F cannot be covered by any cou'nt‘able sub-
collection of B. Using (v) we infer that F and M satisfy (*). The contradiction shows

that X is compact. .
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COROLLARY 2.19. An M-space X is metrizable if and only if X has a o-distri-
butively point-countable (A)-sequence of covers.

Condition (A) in Theorem 2.18 can be replaced by the condition
®) N B,>x, then, for each centred family U, SU<{B,};%, implies
n=1
N{4: 4e¥} + @.
THEOREM - 2.20. A countably compact space X with a o-distributively point-

countable (p')-sequence of covers is compact.
It is easy to observe that Theorem 2.20 follows from

Lemma 2.21 ([24, Theorem (iV)]). If U = ) U; is an open cover of a countably
j=t

compact space X and, for each x € X, there exists je N such that x e JW; and
{UeW;: xe U}y, then X can be covered by a countable subcollection of M.

Lemma 2.21 is announced in [24, Theorem (iv)]. One can reduce Lemm 2.21
to a result from [2] using the construction exhibited in the proof of Theorem 2.18.
Let us finish this section with some remarks.

Remark 2.22. If Fis a closed subset of a space X, then Fis a W;-subsct of X
if and only if X has an (in)-sieve, where (m) is the following non-complete mono-
tonic property:

©
{Bus=ie(m) iff N B,=F or, for a certain n, B,n F = @.
n=1

Hence we can apply the results of this section in order to show that a closed
subset F of X is a Wj-subset of X.

Remark 2.23. We have used the terms monotonically semistratifiable and
a monotonic f-space. This terminology is not fully justified, for we do not know
whether the class of monotonically semistratifiable spaces (monotonic f-spaces)
can be defined with the use of a monotonic property. Consequently, we cannot
apply the results from [11] to these classes. In particular, we do not know whether
2 (closed) subset of a-monotonically semistratifiable space (a monotonic f-space)
is a Irlonotonically semistratifiable space (a monotonic f§-space). One can prove,
by using a method from [24, Theorem 1], that these properties are hereditary with
respect to open subsets. Furthermore, we do not know whether the class of semi-

stratifiable spaces is equal to the class of subparacompact monotonically semi-
. stratifiable spaces.

?. Paracompactness and monotonic properties. The results proved in the
previous section show that various conditions imply the existence of (in)-sieves
(for non-complete properties (m)). It is easy to see that, in order to obtain similar
results for arbitrary monotonic properties, it suffices to replace the assumption
that X is 2 monotonic f-space by the assumption that X has a monotonic B-system
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({B0O}~(: xeX} such that B,eB,(x,) and B,.;SB,, for neN, implies
N B, # (.
n=1

The purpose of this section is to discuss conditions which allow us to convert

certain monotonic. structures into corresponding non-monotonic structures.
For non-complete monotonic properties we have

THEOREM 3.1 (see [11, Theorem 2.8] and [23, Theorem 3.1}). Let (1) be\a non-
complete monotonic property. If a 8-refinable space X has an (w)-sieve, then X has
a sequence {1} | of open covers such that W, € B,, for n € N, implies that {W,};_,
has the property ().

Example 2.9 from [11] shows that the assumption that () is non-complete
cannot be dropped even if X is assumed to be a metacompact Moore space. On
the other hand, for paracompact spaces, we get

THEOREM 3.2 (compare with [23, Corollary 2.9 and Theorem 3.1]). Let (i) be
a monotonic property. If a paracompact space X has an ()-sieve, then X has a se-
quence (M}, of open covers such that W, e ¥, and W, n W,, # @, for n,me N,
implies that {W,}w. has the property (m).

Proof. By virtue of Lemma 1.1 from [11], X has a sequence {B,}:2 4 of bases
such that B, B, and B,;;<B,, for ne N, implies that {B,}51 has property (m).

We can define by induction a sequence {I8,};L, of open covers of X such
that each element of 3, , intersects only a finite number of elements of 25, and
M, , refines {Be®B,: B W for a certain WeiB,.

Assume that W, e, and W, n W, # @ for n,me N. Tt is easy to observe
that the collections M, = {We,: 8{W,}mey<{W}} are finite. Hence, for
each ne N, there exists a finite subcollection B, of B, such that 98, refines B,
and B’ refines ;. Therefore, we can find (see, for example, [11, Lemma 1.4])
a decreasing sequence {B,}=, such that B,e€®, and each B, contains elements
of the sequence {W,}:> 4. This implies that 3{W,) 5 <{B,}x and, consequently,
{W,}> has property (m).

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1 (see [11, foto-
note 7]). This suggests that the assumption that X is paracompact can be replaced
by the assumption that X satisfies the condition

(P) for each open cover X of X there exist a sequence {U,}7% 1 of open covers

o0
of X and an open cover B = |J B, of X such that each U, refines W and each el-
a=1

ement of B, intersects only a finite number of elements of .

Property (P) is related to paracompactness in the same way as 6-refinability
is related to metacompactness. It is known [9] that there exist normal 8-refinable
spaces which are not metacompact. On the other hand, we have

() Weakly complete semimetrizable spaces [18] and monotonically Cech complete. spaces
have monotonic f-systems which satisfy this condition.
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THEOREM 3.3. A space X is paracompact if and only if X satisfies condition (P) (%).

Proof. Assume that X satisfies condition (P). It is easy to observe that X is
a normal space. We shall prove that X is countably paracompact.
Let & = {Gm}f,f:l be a countable open cover of X. Using (P), we can find

{1

“,and B = U B, which satisfy (P) with respect to ©.

Let
E,.=X\U{Uel,: ULG, for k<m}.

It is easy to check that E, ,< U G, and, for each Ve B,, there exists an me N
k=

such that V< E, ,,. Hence {Wm},,,=1, where W, = G,\[) {E, : n, k<m},isalocally
finite refinement of ®.
Now, we are able to prove that X is paracompact Let ¥ be an open cover

of X and that {2,};2, and B = U B, satisfy (P) with respect to . Using normality

and countable paracompactness of X, we can find a locally finite cover {U,}:%,
of X such that U,= U3, for ne N. It is easy to check that § = {Un U,: Uel,
and ne N} is a locally finite refinement of .
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