Distant bounded variation and products of derivatives 11

it follows that

x

1
lim —(D) | g(Ndt = g(0) =0.

x=0 X
o
It f(x)g(x) is not D-integrable, there is nothing to prove. If it is, then
b bn .

o
5@ Jf(X)g(x) dx >bin ff(x)g(»c) @t
0 an

Since 7(0)g(0) = 0, f(x)g(x) cannot be a derivative and the proof .of Theorem 10
is complete.

THEOREM 11. A function f(x) belongs to A if and only if it is of distant bounded *
variation at each point x of [0, 1].

Proof. Necessity is shown in Theorem 10. To see that this condition is suf-
ficient, we note that the definition of distant bounded variation entails that f(x)
be a bounded derivative. If there were infinitely many points at which f{x) is of
unbounded variation, they would have a limit point xo in [0, 11. Then f(x) would
be of unbounded variation in every interval of the form [xo 48y, %9+8,] (or
[xXo—85, Xo—8;] for all §,>0 and all sufficiently small §,>0. Consequently,
fé&BVD at x,,. Hence, there are at most finitely many such points and fis of distant
bounded variation at each of them. Thus sufficiency follows from Theorem 7 and
the proof of Theorem 11 is complete.'
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Baire category from an abstract viewpoint *
by

John C. Morgan I (Syracuse, N. Y.)

Abstract. The object of Point Set Theory is the investigation of methods of classifying point
sets, their common properties, and their interrelationships. Included in the domain of this subject
are Baire category, Lebesgue measure, Hausdorff measure, dimension, and sets of uniqueness for
trigonometric series. In this paper we present a general framework for these investigations.

Introduction. In 1905 H. Lebesgue proved some basic theorems concerning
sets which have the Baire propérty and, in particular, he proved the fundamental
theorem that a linear set of the second category is everywhere of the second category
in some interval (see [10], pp. 185-186). This theorem was undoubtedly known to
R. Baire and he had stated earlier the analogous. theorem for sets of the second
category in the space of all infinite sequences of natural numbers (see [1], p. 948).

S. Banach [2] generalized the fundamental theorem to arbitrary metric spaces
in 1930 and subsequently to topological spaces (see [9]). A further extension of
this theorem was obtained in [13] (see Theorem 2 below). This new generalization
forms the basis of an abstract theory of Baire category, an outline of which is
presented in this paper. One of the main consequences of this abstract point of view
is the unification of certain analogies which have been observed between properties
of Lebesgue measurable sets and sets which have the Baire property (see [51.
pp. 19-22, [7], [17], [20]; and [22] concerning these analogies).

1. Si-familieé. Let X be a (nonempty) set. Members of any family & of sub-
sets of x will be called o7-sets.
DerNITION 1. A family € of subsets of X is called a K-family if the following

axioms are satisfied. .
1. For each point x € X there is a @-set containing x; i.e. X = U¥%.
2 Let 4 be a @-set and let 2 be a nonempty family of disjoint @ -sets which

has power less than the power of %.

* Research supported by the Air Force Office of Scientific Research, Office of Aerospace
Research, United States Air Force, under Grant AFOSR-71-2100.
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a. It A (U 9) contains a -set, then there is a @-set D such that 4 n D
contains a %-set.

b. It 4 n (U D) contains no ¥-set, then there is a #-set Bc A which is disjoint
from all 9-sets.

The notion of a K- famlly generalizes that of an M-family introduced in [13],
Section 2 (see also Section 4 of the present paper).

Note that if the @-sets containing a given point x are called neighborhoods
of x, then Hausdorff’s Neighborhood Axioms A and C for a topological space,
given in [4], p. 213, are satisfied. As is evident from examples below, Hausdorfl’s
Axioms B and D are not true for all R-families. The concept of a ]- family is thus
intermediate between that of a Fréchet (V) space (see [21], p. 3) and that of
a topological space.

Unless otherwise specified, the symbol 4 will denote a R family.

DErRINITION 2 (see [13], p. 8). A set S=X is ¥-singular if each ¥-set 4 contains
a @-set B which is disjoint from S. The family of all countable unions of 4 -singular
sets is denoted by %;. The family of all subsets of X which are not #-sets is
denoted by %y If X is a ¥y-set, then the complement of a %;-set is called a %-re-
sidual set.

Clearly, the %-singular sets form an ideal. Hence % is a o-ideal.

The following are some of the main examples of R-families. Additional ex~
amples are given in Szction 4.

ExAMPLE 1. Let € be the family of all nonempty open sets in a topological
space. Then the %-singular and the %,-sets coincide with the nowhere dense sets
and the sets of the first category, respectively.

ExAMPLE 2. Let (X, &, p) be a o-finite measure space and let € be the family
of all «-sets of positive measure. Let (X, &7, i) be the completion of (X, o, p).
In this example the €-singular and %)-sets are the same and coincide with the sets
of p-measure zero.

Remark. This example can be generalized as follows. If o is a o-field of
subsets of X and .# is a proper o-ideal in o such that & —f satisfies CCC (the
countable chain condition), then 4 = & — % is a &-family in which the %-singular
and %,-sets coincide and

%, = {ScX: ScI for some Ie £} .
Indeed, suppose S=X is @-singular. There is then a @-set A such that AcX—S§
and B¢ % whenever BcX—S and A n B = . Hence ScX—~4 and X—4 e .
ExaMPLE 3. Let X = U A, be a decomposition of a set into nonempty disjoint

sets and let € consist of all the sets A,. The empty set is then the only #;-set.

ExampLE 4. Let X be an uncountable, complete separable metric space and
let € be the family of all uncountable Borel sets. Then the % -singular and %,-sets
coincide (see [24], p. 25).
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In Examples 2 and 4 it is easily seen that Hausdorfl’s Axiom B concerning
the intersection of neighborhoods need not be satisfied. For the intersection of
two @-sets we do however have the following result which will be used frequently.

THEOREM 1. If A and B are €-sets, then either A 0 B contains @ -setor AN B
is €-singular.

Proof. Assume 4 n B contains no %-set and let C be any #-set. If Cn A4
contains a #-set D then D N B=A n B and consequently D'~ B contains no
@-set. Therefore, there is a ¥-set EcD—B which is disjoint from 4 N B. On the
other hand, if C n A4 contains no %-set then there is a %-set EcC—4 which is
disjoint from A4 n B. Thus 4 n B is %-singular.

DEFINITION 3. A set ScX is a @y-set on a G-set Aif Snd is a Gy-set.
S is a yy-set everywhere if S is a Gyp-set on every @-set. S is a Gy-set everywhere
on a €-set A if S is a €-set on every @-set Bc A.

The next two lemmas were originally formulated in [13], pp. 9-10, for M-fam-
ilies. However, as noted in a remark on p. 11 of that paper, these lemmas are
also true for K-families. Lemma 2 below states an additional property which is
easily verified.

Lemma 1. If € is a K-family of subsets of X and A is a subfamily of € with
the property that each €-set contains an A'-set, then A is a K-family of subsets
of Y=\ A and the A -singular sets coincide with the @ -singular subsets of Y.
In addition, if U is a subset of Y and Y~ U is A -singular, then X~ U is 4 -singular.

‘LemMa 2. Each R-family N of subsets of a set Y contains a maximal subfamily, M

of disjoint sets such that Y— \J M is N-singular. Moreover, # may be so selected
that for every N'-set N there is an M -set M such that N 0 M contains an N-set.

The generalization of Banach’s Theorem given in [13] was proven by means
of a game-theoretic argument and the preceding two lemmas. It can also be es-
tablished using these lemmas and a slight modification of Banach’s proof (see [2]
and [3], p. 132). Thus we have the following fundamental theorem.

THEOREM 2 ([13], Corollary 1). If S is afﬁn-,s‘et then S is a %y -set everywhere
on some ¥-set.

In the following, & will denote the family of all sets which are complements
of members of ¥.

THEOREM 3. If 4 satisfies CCC then each b - singular set is contained in a €-singu-
lar .&5-set, and each @-set is contained-in an (B35, by)-set.

Proof. Let S be ¥-singular and let A" be the family of all @-sets disjoint
from S. Apply Lemmas 1 and 2 to obtain a maximal family # = {M,, M,, M;, ...}
of disjoint #-sets such that X — U M, is ¥-singular. Then we have S ﬂ (X~ M),

establishing the first assertion. The second assertion about - scts is an 1mmed1ate
consequence of the first.


GUEST


16 J.C. Morgan II

2. The Baire property. -

DEFINITION 4. A set ScX has the Baire property with respect to & if fo‘r
every @-set A there is a @-set BcA such that either Bn S or Bn (X—8) is
a @y-set. . .

The family of sets which have the Baire property with respect to € will be

ted by B(%). ) , ' -
dCHOIn Emeple 1, B(%) is the family of sets which have the ere.property in the
classical sense (see [9], p. 88, condition 4); in Example 2, B(%¥) is the famllly of
sets of: in Example 3, B(%) consists of all those sets representablfﬂ as a umon'of
% -sets Y and in Example 4, B(%) is the family of Marczewski sets, i.e. all sets with
property (s) (see [24], 2.1).

THEOREM 4. B(%) is a o-field containing all €-sets and all Gy-sets.

Proof. A simple transposition of Lebesgue’s proof ([10;], Pp. 186—187? for
the classical case shows B(%) is a o-field. That B(¥) (.:ontams all @-sets is an
immediate consequence of Axiom 2 of Definition 1. Obviously, all #;-sets belong
to B(®).

THEOREM 5. If S € B(%) and S is a €\-set everywhere on a @-set A, then 4A—S
is a by-set. .

Proof. Assume 4~ is a %y-set. Then, by Theorem 2, A—S is a &y-set
everywhere on some %-set B. By Theorem 1, 4 N B contains a ¢-sct C. The sets S
and XS are then both @y -sets everywhere on C. Therefore S ¢ B(%).

TuEOREM 6. If € satisfies CCC then the following statements are equivalent for
a set S=X.

(i) SeB®).

(i) S = (A—P)U R, where 4 is a %,-set and P, R are %\-sets.

(iii) S = (B— Q) v T, where B is an &;-set and Q, T are € \-sets.

(iv) S is the union of a % .5-set and a €-set.

(v) S is the difference of an &;,-set and a %y-set.

Proof. ()—(ii). By a %,-set we mean the union of a countable family of
@-sets. Being the union of the empty family of %-sets, the empty set is thus a % ,~set.
Therefore, condition (ii) is obviously satisfied whenever S is a %-set. .

Suppose S is a @;-set in B(¥). We shall prove by induction that there exlSFs
a countable family # = {M,: k =1,2,..} of disjoint #-sets such that S is

a @,;-set everywhere on each M, and S—(U M) is a @-set. According to

. k
Theorem 5, the set {J (M,—S) is then a %-set and
k -
§=[(U M)~ Kk) M=S)] oS- &J M
k

is a representation of the desired form.
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Denote by A the smallest ordinal number whose power is equal to the power
of the family €* of all %-sets on which S is a %\y-set everywhere and let
(1) BO:-Bl;~-~:st---s
be a well-ordering of #*.

Set Ty = § and 4, = B,. Assume O<o<A and we have already defined
a family 9, = {4, E<a} of disjoint @*-sets.
I 7T,=8~U9,is a %-set then we already have the decomposition

S = [(59 A)— {9 A=Y u[S— {9 4]

a<A

in which, by virtue of CCC, o is a countable ordinal number. In this case we define
A = A4g for all f>a.

Suppose T, is a %y-set. By Theorem 2, we know T, is a @;-set everywhere
on some ¥*-set. Let B be the first such set in (1). We show first that B n ( U 2
contains no %-set. Assume, to the contrary, that B n ( U 2,) does contain a @-set C.
Since T, is a ¥-set everywhere on B and C< B, the @-set C is a @y-set and con-
sequently B n (U 2,) is a @y-set. The family 9, being countable, it follows from
Theorem 1 that there is an ordinal number f <o such that B n 4  contains a ¥-set D.
The set T, has the Baire property and is a %y-set everywhere on D. Hence there
is a ¥-set EcD such that

En(X—T,)=[Er\(X—S)]u[En(§L<)A¢)]

is a #-set. But this contradicts the facts that E <Ay and E is a %y -set (because
ENT,is a @y-set). Therefore B n ({J 9,) contains no #-set. Now, the family D,
has power less than the power of #*, hence has power less than the power of €,
and it follows from Axiom 2b of Definition 1 that there are %-sets contained in
B~ | 2,. Moreover, such 4-sets are also %*-sets. Accordingly, we define A, to
be the first #*-set in (1) which is contained in B— () 9,.

Proceeding in this manner, we obtain a family # = {4,: a<A} consisting
of countably many distinct, disjoint @*-sets M, My, ..., My, ...

Assume T = §— |J 4, is a @y-set. For each a<A, the set T, will then be
a<d

a @y-set and the sets 4,, a<, will all be distinct. Define, for each a< 4, By to
be the first set in (1) on which T}, is a €;-set everywhere. Note that, by the definition
of 4,, we have 4,=B,, for each . We show ¢ is a strictly increasing function.
Suppose 0 f<a<A. The set TpoT, is a @y -set everywhere on B, Hence, by
definition of B, we must have ¢(B)<¢(x). But we cannot have ¢(B) = p(a).
For, if this were the case, then T, would be a #y;-set everywhere on B, = By
and, as A;< By, the set T, N 4, would be a %-set, which is impossible. Thus
¢ is defined for all a<A and is strictly increasing; in particular, we have a<o(a)
for all x<A. Now, we know from Theorem 2 that there is a #*-set in (1), say B,,
on which T is a #y-set everywhere. On B,, the set T, is then also a @y-set
everywhere. Consequently we must have @(y) = y. But this implies 4,=B, and
2 — Fundamenta Mathematicae t. XCIV
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T n 4, is a %j-set; whereas T~ 4, = @. Therefore T=8- U4, =85— UM,

a<A k
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is a #;-set. )

The implication (i)—(ii) is thus established. -

(i))—+(iv). By Theorem 3, there is an (&ss n‘ﬁl)-seF Q containing P. Hence
we have

S=(-Q)u[RU (Sn(C-P)].

The implication (iv)—(i) is a simple consequence of Theorem 4.

Finally, the fact that (iii) and (v) are equivalent to (i) follows from (ii) and (iv)
by considering complements. .

In connection with Theorem 4, we have the follqwing consequence of Theorem 6.

COROLLARY 7. If % satisfies CCC, then B(%) is the smallest o-field containing
all ¢-sets and all ,-sets.

TuroreM 8. If € satisfies, CCC, then B(%)—% satisfies CCC.

Proof. Assume the conclusion is false. Then there exists a transfinite sequence

1)} 1y Spsvees Sy s AR

(where Q is the first uncountable ordinal number) of disjoint % -sets with the
Baire property. We shall define a transfinite sequence

(2) -Al‘: AZ’ ey —Am ey {X<Q

of disjoint @-sets such that S, is a % -set everywhere-on 4,, for each'a<Q.

By Theorem 2 we know each set S, is a #y-set everywhere on some @ -set.
Moreover, no two distinct sets S, can be %;-sets everywhere on the same %-set.
For, if f<a and both S; and S, are y;-sets everywhere on the same #-set A, then
X—S,, which contains Sp, is also a %y-set everywhere on 4, contradicting the
fact that S, & B(%).

Let 4, be a ¥-set on Which S is a %y-set everywhere. Assume a<Q and
the sets 4, have been defined for all f<a. Let B, be a ¥-set on which S, is a @ ~set
everywhere. Then B, n ( | 4;) contains ‘no %-set. For, suppose it did contain

p<a

a ¥-set C. From the inclusion C< B,, we know C n S, is a %y;-set and hence B, N
N (U 4p) is also a #y;-set.” An application of Theorem 1 shows that there exists
RS :

an ordinal number f<a such that B, n 4, contains a ¥-set D. But then both Sy
and S, are @p-sets everywhere on D. Thus, B, n{ U 4p) does indeed contain
<a

no ¢-set. We know, by the preceding paragraph, that the family @ is uncountz\ble."
Using Axiom 2b, we define 4, to be a #-set contained in B,~ U 4,. Proceeding

. . . . - . ﬁ<u
in this manner, we establish, by transfinite induction, the existence of the
transfinite sequence (2), which contradicts the hypothesis that & satisfies CCC.

This theorem is utilized in the proof of the next two theorems.
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THEOREM 9. If ¥ satisfies CCC, then for each set ScX there is an &z4-5et A
containing S having the property .
(*) if BeB(¥) and ScB then A—B is a ¥,-set.

Proof. By an argument similar to that of Marczewski ([23], p. 235) there is
a set. T in B(%) containing S which satisfies (¥). Using the equivalence of con-
ditions (i) and (v) of Theorem 6, we have T = AU where 4 is an &,,-set and U is
a %-set. Clearly, 4 satisfies (*). )

THEOREM 10 (see[23]). If € satisfies CCC then B(%) is closed under operation (sf),

Remark. The more general theorems about the classical Baire property

(Example 1) are established in the same manner. For instance, if S has the Baire
property, then

S=[U4)-U—]0[S-UA4].

In this representation, |J 4, is an open set, S— |J 4, is of the first category, and
« @

it can be shown by Banach’s method (see [2]) that U (4,—S) is a set of the first
category (see [8] and [22]). .

We next define the notion of equivalent R-families, examples of which may
be found in [13] and in Section 4 below.

DEFINITION 5. Two S-families € and 9 of subsets of a set X are called equiv-
alent if €y = 9D, and B(¥) = B(2).

Remark. If ¥ and & are K-families such that each #-set contains a 2-set
and conversely, then % and @ are equivalent.

3. Localization.

DEFINITION 6. A set ScX is a %;-set at a point xe X if for each €-set 4
containing x, there is a #-set B< 4 such that x € Band B n Sis a %;-set. Otherwise,
S is a %y-set at the point x. )

As immediate consequences of Theorem 2 we have .

THEOREM 11 (see [2]). A necessary and sufficient condition that a set S<X be
a €y-set is that it be a %y-set at every point x € X.

THEOREM 12 (see [2], Section 2). The set of all points of a set S at which S is
a €-set is itself a €y-set.

DEFNITION 7. A set Sc X has the Baire property at a point x € X if for each
%-set A containing x, there is a #-set BcA such that x e B and B n S has the
Baire property. i

THEOREM 13. A necessary and sufficient condition that a set S<X have the Baire
property is that it have the Baire property at every point.

Proof. Necessity is obvious, since @-sets have the Baire property. For suf-
ficiency, assume S & B(%). Then there is a #-set 4 on which both § and X—S are
2*
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@,;-sets everywhere. The set 4 N S being a @y-set, we can choose a point x & 4.
Suppose B is any ¥-set with x € B and B=4. For every @-set CcB, the sets SN C

=(NnB)nCand (X—-5)nC=[X—(Sn B C are both %y -sets, so Bn S

does not have the Baire property. Hence S does not have the Baire property at
the point x.

4. M-families.

DerFNiTION 8 (see [13], p. 8). A family ¥ of subsets of X is called an
M-family if € is a {-family and the following conditions are satisfied.

" 3. The intersection of any descending sequence of #-sets is nonempty.

4. For any xeX, the set {x} is %-singular.

Throughout this section, # will denote an M-family.

There are four basic M-families which illustrate and motivate the general
theory. Three of them are connected with some ideas of Cantor, Baire, Borel, and
Lebesgue, and the fourth has been defined by Marczewski in [24], 1.1.

ExaMPLE 5. Let X be an uncountable set and let ¥ be the family of all sets
whose complement is finite. The %-singular sets, #;-sets, and %y-sets coincide
with the finite sets, countable sets, and uncountable sets, respectively. B(%) is the
family of all sets which are countable -or whose complement is countable.

ExampLE 6. Let (X, d) be a complete, separable metric space with no isolated
points, let Q be a countable set dense in X, and let % be the family of all closed
balls {xe X: d(x,n<1/n}, re Q, n = 1,2, ... By Baire’s and Cantor’s theorems,
%€ is an M-family. In view of the Remark following Definition 5, ¥ is equivalent
to the K-family of all nonempty open subsets of X (see Example 1).

Denoting by G the interior of () M, where the M, are as in the proof of The-

k

orem 3, we see that X— G is a nowhere dense closed set containing S. Consequently

each set of the first category is a subset of an % ,-set of the first category. Also,

it follows from Theorem 6 that a set has the Baire property if and only if it is the
union of a %;-set and a set of the first category.

ExamrLE 7. Let P be the completion of a non-atomic probability measure P
defined on the Borel sets of a complete separable metric space and let % be the
family of all compact sets which have positive probability. Since P is tight, € is
equivalent to the {-family of all Borel sets of positive probability (see Example 2).
Hence the %-singular and %;-sets coincide with the sets of P-measure zero and
B(%) is the family of all P-measurable sets.

From Theorems 3 and 6 it follows that every set of P-measure zero is contained
in a %;-set of P-measure zero and that B (%) coincides with the family of all sets
representable as the.union of an #,-set and a set of P-measure zero.

ExaMeLE 8 (see [13], Example 4). Let (X, d) be a complete separable metric
space with no isolated points and let % be the family of all compact perfect sets.
By the Alexandrofi-Hausdorff Theorem, & is equivalent to the K-family of all
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uncountable Borel subsets of X (see Example 4). Hence the %-singular sets are
. thp same as the ¥i-sets and B(®) is the family of Marczewski sets.

Note that the assertion of Theorem 3 fails to hold for this M-family, since
there ate no uncountable %-sets which are Borel sets, while uncountable @\-sets

- exist (see [24], 5.1(iii)). Also, the assertion of Theorem 6 does not hold. For, in

this example, a Borel set which is not an & «3-Set is not representable as the union
of an & ,;-set and a %;-set.

The following facts are easy consequences of Axioms 3 and 4.

(i) All countable sets are #;-sets.

(ii) Every @-set is a %\1-set.

(iii) X is a ¥y-set at every point.

(iv) The intersection of a @p-set and a @-residual set is a B-set.

(v) The coaverse of Theorem § holds; i.e. if B (%) —%, satisfies CCC, then ¥
satisfies CCC.

Two decomposition theorems of Ulam can be easily generalized to the case
of an arbitrary M-family. }

THEOREM 14 (see [27], Satz 1). If S X is a Gy-set of power m and if there is no
weakly inaccessible cardinal number <w, then S can be decomposed into an un-
countable family of disjoint €yy-sets.

THEOREM 15 (see [27], Satz II). If S<X is a set of power m which does not have
the Baire property and if there is no weakly inaccessible cardinal number <m, then
S can be decomposed into an uncountable family of disjoint sets, none of which has
the Baire property.

Using Sierpifiski’s generalization ([19], p. 214) of a theorem of Ulam ([26],
p. 145), one can easily establish the following result concerning the existence of
sets which do not have the Baire property.

THEOREM 16. If € satisfies CCC, X has power m, and there is no weakly inaccess-
ible cardinal number <m, then there is a set whick does not have the Baire property
with respect to €.

DEFINITION 9. A set S X is said to have property (L) with respect to ¥ if S is:
uncountable and has at most countably many points in common with each % -set;
equivalently, if S is uncountable and every uncountable subset of S is a @11-set.

The proof of the existence of sets having property (L) was first given in the
case of Baire category by P. Mahlo (see [12], Aufgabe 5, pp. 294-295) and, shortly
thereafter, by N. Lusin (see [11], Théoréme TI). Reasoning by analogy, W. Sierpiriski
([18], pp. 184-185) established the existence of sets with property (L) in the case:
of Lebesgue measure. The existence of sets having property (L) with respect to the:
M-family of all complements of countable unions of finite-dimensional Borel sets.
in Hilbert space is due to W. Hurewicz [6]. In all cases, the Continuum Hypothesis.
is assumed. More generally, we have
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THEOREM 17. Assume the Continuum Hypotheszs If € has power at most oMo
and satisfies CCC, then every %y -ser contains a set of power 2% ywhich has property (L). .

Proof. Under the given hypotheses, the family # of all (&5, N Ep)-sets
has power <2% and, by Theorem 3, each &-set is contained in a #-set. The con-
clusion then follows from Proposition Pg of [20].

5. Concluding remarks. After establishing in [22] that the classical Baire property
(in the wide sense) is the appropriate category analogue of Lebesgue measurability,
E. Marczewski considered the question: What is the measure analogue of the Baire
property in the restricted sense? In [25] he suggested that it was the concept of
absolute measurability. Indeed, this is the case, and one can unlfy the notions of
absolute measurability and the Baire property in the restricted sense within the
above theoretical framewotk. For the real line, this unification may be accomplished
in two different ways; by means of order isomorphic mappings of the real line into
itself (see [15]) or by means of homeomorphic mappings of the set of irrational
numbers into the real line (see [16]). The latter method generalizes to complete
separable metric spaces with no isolated points.

There are also theorems involving translation invariance of Lebesgue measure
and Baire category which can be unified (see [14]).

6. Acknowledgment. I am grateful to a referee of Colloquium Mathematicum
for several suggestions which have been incorporated above.

References

[1]1 R. Baire, Sur la théorie des ensembles, Comptes Rendus Hebdomadaires des Séances de
I'Académie des Sciences, Paris 129 (1899), pp. 946-949.

[2] S. Banach, Théoréme sur les ensembles de premiére catégorie, Fund. Math. 16 (1930),
pp. 395-398.

{31 H. Hahn, Reelle Funktionen, New York 1948.

[4] F. Hausdorff, Grundziige der Mengenlehre, New York 1965,

{51 — Nachgelassene Schriften, Band 1, Studien und Referate, Stuttgart 1969.

{61 W. Hurewicz, Une remarque sur I’hypothése du continu, Fund. Math, 19 (1932), pp. 8-9.

{7} M. Kond®, Sur les notions de la catégorie et de la mesure dans la théorie des ensembles de
poimts, J. Fac. Sci., Hokkaido Imperial University, Ser. I, Math. 4 (1935), pp. 123-180.

{8) K. Kuratowski, La propriété de Baire dans les espaces métriques, Fund, Math. 16 (1930),

pp. 390-39%4.
191 — Topology, Vol. 1, New York-London-Warszawa 1966.
{10] H. Lebesgue, Sur les fonctions repré bles analytiy 1, J. Math. Pures et Appliquées,

Série 6, 1 (1905), pp. 139-216.

{11} N. Lusin, Sur un probléme de M. Baire, Comptes Rendus Hebdomadaires des Séances de
I'’Académie des Sciences, Paris 158 (1914), pp. 1258-1261.

{12] P. Mahlo, Uber Teil en des Konti von dessen Machtigkeit, Sitzungsberichte der
Sachsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Naturwissenschaftliche
Klasse 65 (1913), pp. 283-315.

{13] J. C. Morgan ll, Infinite games and singular sets, Colloq. Math. 29 (1974), pp. 7-17.

Baire category from an abstract viewpoint 23

[14] J. C. Morgan 11, On transiation invariant families of sets, ibidem 34 (1975), pp. 63-68.

[151 — The absolute Baire property, Pacific J. Math. 67 (1976), pp. 1-16.

[16] — On the absolute Baire property (to appear).

[17] J.C. Oxtoby, Measure and Category, New York 1971.

[18] ‘W. Sierpifiski, Sur Ihypothése du continu (2% = wy), Fund. Math. 5 (1924), pp. 177-187.

[19] — Sur un théoréme de recouvrement dans la théorie générale des ensembles, ibidem 20 (1933),
pp. 214-220.

[20]1 — Hypothése du Continu, New York 1956,

[211 — General Topology, Toronto 1961.

[22] E. Szpilrajn (Marczewski), O mierzalnosci i warunku Baire'a (On measurability and the:
condition of Bairé), Comptes Rendus du Premier Congrés des Mathématiciens des Pays.
Slaves, Varsovie 1929, pp. 297-303.

[231 — Sur certains invariants de I'opération (A), Fund. Math. 21 (1933), pp 229.-235.

[24] - Sur une classe de fonctions de W. Sierpifiski et la classe corresp d bles,
ibidem 24 (1935), pp. 17-34.
[25]1 — O zbiorach i funkcjach bezwzglednie mierzalnych (On absolutely measurable sets and

functions), Sprawozdania z posiedzen Towarzystwa Naukowego Warszawskiego, Wydziat 1
(Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, Classe 1IT)
30 (1937), pp. 39-68.
[26] S.Ulam, Zur Maptheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), pp. 140-150.
[27] — Uber gewisse Zerleg von Mengen, ibidem 20 (1933), pp. 221-223.

DEPARTMENT OF MATHEMATICS

SYRACUSE UNIVERSITY

Syracuse, New York

CALIFORNIA STATE POLYTECHNIC UNIVERSITY
Pomona, Culifornia

Accepté par la Rédaction le 18. 11. 1974


GUEST




