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Weak contractibility and hyperspaces
by

D. G. Paulowich (Eugene, Oregon)

Abstract. Weak contractibility is studied for compact connected Hausdorft spaces and their
hyperspaces. The two hyperspaces dealt with in this paper are the space of all nonempty closed
subsets of a given compact connected Hausdorff space and the space of all nonempty closed con-
nected subsets. These hyperspaces are known to be acyclic. M. Wojdyslawski has shown that the
hyperspaces of any locally connected compact connected metric space are absolute retracts. An
example is presented of a locally connected compact connected Hausdorff space that does not
have weakly contragtible hyperspaces. A weakly contractible compact connected Hausdorff space

- has weakly contractible hyperspaces.

1. Introduction. In this paper we examine some theorems of M. Wojdyslawski
[24] and J. L. Kelley [9] and establish whether or not they generalize to nonmetric
spaces. Some results in [23, Chapter XI] are extended to give an affirmative answer
to a question of A. D. Wallace [20]. Part of the material presented here is summar-
ized in [15] and is contained in the author’s master’s thesis at Dalhousie University
under S. B. Nadler, Jr. The author is pleased to acknowledge the considerable as-
sistance given by Professor S. B. Nadler, Jr., and Professor L. E. Ward, Jr., in the
preparation of this paper.

2. Definitions and preliminary results. All spaces in this paper are nonempty
Hausdorff spaces. A continuum is a compact connected space. A map is a continu-
ous function.

An are A is a nondegenerate continuum with a simple order “<” such that
4 has a first point ¢ and a last point d and the topology on A is the order topology.
Let x,ye 4, x<y. We use the notation:

[x,y] == {aeA: xsasy}, ]x,y[ = {aEA: x<a<y} .

Thus [¢, d] = 4. The notation [x, x] stands for {x}. The notation (x, ) does not
stand for an open interval, but for a point in 4Ax 4.

A simple closed curve is a space obtained by identifying the endpoints of
some arc. We note that an arc may also be defined as a nondegenerate continuum
with exactly two non-cutpoints and a simple closed curve as a nondegenerate
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continuum Z such that the removal of any of distinct points disconnects Z. A separ-
able arc is homeomorphic to [0, 1], the unit interval in the real line R*, and a separ-
able simple closed curye is homeomorphic to S*, the unit circle in the complex
plane (see [6, pp. 54-55]).

Two maps f, g: X—Y are said to be homoropic (weakly homotopic) if there
exist an arc (continuum) W, distinct points ¢,de W, and a map h: X'x Ws ¥
such that, for each xe X, i(x, ¢) = f(x) and h(x,d) = g(x). If W is arcwise con-
nected (in particular, if W is an arc) we may restrict the map 4 to the product of X
and an arc A=W with endpoints ¢ and 4. Let X< ¥, X nonempty. The subspace
X is said to be (weakly) contractible in Y if there is a constant map f: X— ¥ which
is (weakly) homotopic to the inclusion map g: X— Y. The subspace Z is said to
be a (weak) deformation retract of Y if there is a retraction r: Y—2Z such that
fi Y=Y (defined by f(3) = r(y), for each ye ¥) is (weakly) homotopic to the
identity map g: ¥—Y. Any space Y is a deformation retract of itself. A space Yis
(weakly) contractible in itself if and only if there is a point x € ¥ such that {x} is
a (weak) deformation retract of .

Note that the definitions of “arc”, “simple closed curve”, “homotopic”, and
“contractible” given in this paper are nonstandard. Two maps f, g: X—Y are said
to be [0, 1]-komoropic if there exists a map h: X'x[0, 1]1—Y such that, for each

xeX, h(x,0) = f(x) and A(x,1) = g(x). We define “[0, 1]-contractible” in the °

patural way. Our “[0, I]-homotopic” is the same as Whyburn’s “homotopic”
(see [23, p. 225] also [4, p. 315] and [6, p. 150]). Any nonmetrizable arc serves as
an example of a contractible continuum which is not [0, 1]-contractible.

For any two spaces X and. ¥, ¥* denotes the space of all maps from X to i;,
with the compact-open topology [4, p. 257]. It X is compact and ¥ is metrizable,

then ¥* is metrizable (using the supremum’ metric, see.[4, 8.2(3), p. 270]). Let .

h: Xx W—Y be an arbitrary function, where X is compact. Define 4': WYX
by (FW)(x) = h(x, w), for all we W and x € X. Then A is continuous if and only
if A’ is continuous [4, Theorem 3.1, D. 261]. Thus a continuum X is weakly con-
tractible if and only if there exists a continnum in X* containing both the identity
map and some constant map. Since the continuous image of an arc is arcwise con-
nected (for a proof by J. K. Hayris see [17]) we have the result that a nondegenerate

continunm X is contractible if and only if there exists an arc in XX with the identity '

map and some constant map as endpoints. If X is a contractible metric continuum,
then X is [0, I]-contractible (recall that X* i metrizable).

G. T. Whyburn [23, Chapter XI] proves several results on unicoherence and
property (b) for metric continua which easily generalize to arbitrary continua.
Among these are the following. If a continuum X has property (b), then so does
any retract of X. If a continuum X has property (b), then X is unicoherent. A con-
tinuum X has property (b) if and only if (S1)* is arcwise connected. A continuum
X has property (b) if and only if (SM% is connected.

THEOREM 1. 4 weakly contractible continuum has property. (b).
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Proof. Let X be a continuum which is weakly contractible to the point p e X.
Let fe (SH¥. The map f is weakly homotopic to the constant map sending all of X
to f(p). Since any two constant maps in (SH¥ are weakly homotopic, we conclude
that any two maps in (S*)* are weakly homotopic. Thus (SH¥ is connected, and
so X has property (b).

3. Semigroups and. hyperspaces. A continuum is said to be acyclic if it has
the Alexander cohomology groups of a point-space. Any weakly contractible
continuum is acyclic [7, 1.3, p. 336]. If X is an acyclic continuum, then X also has
the Cech cohomology groups of a point-space [18] and so (S1)¥ is arcwise connected
[1, Theorem 9.5, p. 230]: By results stated in Section 2, X has property (b) and is
therefore unicoherent, R

Let X be a space and m: X x X—X an associative map. Then (X, m) is called
a topological semigroup. Tt follows directly from the definitions that a compact
connected topological semigroup with a right identity d and a right zero ¢ is weakly
contractible. A, D. Wallace obtained the result that a compact connected topological
selﬁigroup with a right identity and a zero is acyclic (and so is unicoherent) as
a consequence [19, Corollary I, p. 48] of a theorem on topological semigroups.
In [20, P. 333] he asks if there is a proof of the fact that any compact connected
topological semigroup with identity and zero is unicoherent using only set theoretic

" topology. Since only set theoretic topology is used in Section 2 of this paper, The-

orem 1 provides an affirmative answer to Wallace’s question.

Let X be an arcwise connected continuum such that for any map f: XX
which is homotopic to the identity map, f(X) = X If (X, m) is a topological semi-
group with identity it follows that m(X'x {c}) = X, for each ce X, and so (X, m)
is a group. Then (X, m) is a topological group [7, 2.3, p. 17].

Let Z be a simple closed curve which admits the structure of a topological
semigroup with identity. We shall prove that Z is homeomorphic to S. By the
remarks in the preceding paragraph, Z is a topological group. This fact also follows
from [10, Theorem 3, p. 279]. Then Z is homogeneous and so is first countable
(a proof of this statement can easily be adapted from the proof of [8, 4.3, p. 326]).
But a first countable (Hausdorff) topological group is metrizable [5, Theorem 8.3,
p. 703. Thus Z is homeomorphic to S*.

For any compact space X, S(X) denotes the space of all nonempty closed
subsets of X (with the finite topology [12]) and C(X) denotes the subspace of S(X)
consisting of all nonempty closed connected subsets of X. The spaces S(X) and
C(X) are compact, and are connected (locally connected) if X i§ connectm'i (locally
connected). The subspace J,(X) = {{x}: x € X'} is homeomorphic to X. It is known
[12] that J,(S(X)) is always a retract of S(S(X)).

A semilattice is a commutative idempotent semigroup. M. M. McWaters [11]
proves that (S(X), U) is a topological semilattice for any continuum X and shows
that S(X) and C(X) are arcwise connected.

THEOREM 2. Let X be a continuum. Then S(X) and C(X) are acyclic.
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Proof. By the remark preceding this theorem, (S(X), u) is a compact con-
nected topological semilattice and so is acyclic [21, Corollary 1, p. 103]. Since the
union of two subcontinua of X may fail to be connected, C(X) is not, in general,
a subsemilattice of (S(X), U). However, for any Be C(X), B = {De C(X): DoB}
is a compact connected subsemilattice of (S(X),u) and so is acyclic (indeed,
B has an identity B and a zero X and so B is weakly contractible). We can now
apply [22, Theorem 3.1, p. 149] to the partially ordered space (C(X), ») to
conclude that C(X) is acyclic.

There is an alternate proof of Theorem 2. In [16] J. Segal proves that C(X)
acyclic, for any metric continvum X. Using results from [3], together with [14,
Theorem VIL3, p. 303], one can similarly establish that S(X) and C(X) are acyclic,
for any continuum X. This fact was pointed out to the author in 1969 by S. B. Nadler,
Jr.,"who independently proved some of the results in [3],

THEOREM 3. Let Y be a compact space such that J,(Y) . is a retract of C(Y).
Let X be a compact subspace of Y. If X is weakly contractible in Y, then X is con-
tractible in Y.

Proof. By hypothesis, there exist a continuum W, distinct points ¢, d e W,
apoint pe ¥, and a map f* X'x W—Y such that, for each x e X, f(x,¢) = pand
fx,d) = x. Define g: C(Xx W)—C(Y) by g(B) = {f(@): ze B}, for each B
€ C(X'x W). The function g is continuous [12, Theorem 5. 10.1, p. 170]. Clearly
C(X) x C(W) is homeomorphic to a subspace of C(X'x W). Since C(W) is arcwise
connected [11], there exists an arc 4 contained in C(W) with endpoints {c} and {d}.
Define h: J,(X) x 4—C(Y) by h({x}, B) = g({x} xB), for each x & X and each
Be A. Thus Jy(X) is contractible in C(¥). But J1(X) is contained in J,(¥), which
is a retract of C(Y). It follows that J1(X) is contractible in J,(¥).

Let X be a continuum. Then S(X) is said to be contractible using an order
preserving homotopy if there exist an arc [¢, d] and a map h: S X)x[c, d]—S(X)
such that, for each BeS(X), h(B,c) = X and h(B,d) = B, and given points
B>Din §(X) and s<tin [e, d], then h(B, $)2h(D, 7). The proof of the following
theorem is omitted, as it is a straightforward generalization of the proof of 3.1
Lemma of [9]. ,

THEOREM 4. Let X be a continuum. The Jollowing three statements are equivalent:

(2) Ji(X) is contractible in SX).

(b) S(X) is contractible using an order preserving homotopy,

(©) C(X) is contractible (in itself) using an order preserving hormotopy.

COROLLARY. If X is « weakly contractible continuum, then S(X) and C(X) are
contractible (using order preserving homotopies).

Pro'of. ‘If X is weakly contractible, then we certainly have J,(X) weakly
contractible in S(X). But J,(S(X)) is a retract of C (S(X)). Now we can apply

Theorem 3 (with ¥ = S(X)) to conclude that J1(X) is contractible in S(X). Now
Theorem 4 applies.

icm®

Wealk contractibility and hyperspaces 45

Remark. It is known (see [2], [13]) that C(S?) is a two cell with J,(S?) a5 its
boundary. This result can be generalized to arbitrary simple closed curves.

Let 4 = [a, b] be an arbitrary arc and let Z be the simple closed curve obtained
by identifying the endpoints of 4, with p: 4—Z the identification map. We note
that C(4) is clearly homeomorphic to T = {(x, ) e 4 x 4: x<y}. Let {0, 1} have
the discrete topology and let T'x {0, 1} have the product topolegy. Let M = T'x
% {0, 1} and define f: M—+C(Z) by, for all (x,y)eT:

SO, 3,0 =px, 3D, flx,y,1) =p(a,x]uly,b].

Define the equivalence relation ReMx M by (m, n) e R if and only if f(m) = f(n).
Let D = M/R (with the quotient topology),. with g: M—D the projection map.
Then h: D—C(Z) is a homeomorphism, where & is defined by h(g(m)) = f(m),
for each m e M. While all of the results of this paper can be proved without referring
to the space D, it is convenient to have this representation of C(Z) at hand.

Let 8 be a cardinal number (= an ordinal number such that if a<p, then « is _
not equipollent to B). Let A have the dictionary order and the order topology,
where:

A = ({a: 0<a<p}x[0,1D v {(B.0)}.

Then A4 is an arc [0, ], wheré 0 and B denote the points (0, 0) and (8, 0), re-
spectively.

Consider the case where = @, the first uncountable ordinal. Let Z be the
simple closed .curve obtained by identifying the endpoints of 4 =[O0, Q] and let
p: A—Z be the identification map. The space Z is connected by separable arcs but
is not itself separable.

Let )

C = {p([x, y]): 0<x<y<Q},
D = {p([0, x]u[y, Q) O<x<y<Q} v {Z}.

Let E = {p(0)}. Then E€C, ZeD, C(Z)=CuD, and Cn D is empty. It is
easily verified that C and D are each connectqd by separable arcs, but C(Z) is not
connected by separable arcs. )

Consider the “picture” of C(Z) given in the preceding Remark. if C(Z) was
contractible to the point Z, then the “bounding” simple closed curve JL(Z.) could
be continuously deformed to the point Z. But this means that at some‘tlmve the
image of J,(Z) (which is connected by separable arcs) would have nc?nempty mte_:r-
section with both C and D, thus contradicting the fact that C(Z) is not arcwise
connected by separable arcs. This is the basic idea underlying the proof of the
following theorem.

THeOREM 5. Let A =[0, Q] and let Z be the simple closed curve ob
identifying the endpoints of A, with p: A—Z the identification map. Thezf Zis a locally
connécted continuum and neither S(Z) nor C(Z) is weakly contractible.

obtained by
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Proof. Suppose that either S(Z) or C(Z) is weakly contractible. Then J,(Z).is
weakly contractible in S(Z). By the proof of the Corollary to Theorem 4, C(Z) is
contractible (in itself) using an order preserving homotopy. Thus there exist an
arc [¢, d] and a map f: C(Z)x[c¢, d]—C(Z) such that, for each Be C(Z), f(B, c)
= Z, f(B,d) = B, and given points s<7 in [c, 4}, f(B, s$)=/(B, #). For each ¢ in
[e, d] let Z, denote {f({x}, ©): xeZ}. Then Z, is a subcontinuum of C(Z) which
is connected by separable arcs, and so Z, is contained in either C or D. Let ¢ denote
the greatest lower bound of {we[e,d]: f(E, w) = E}. Then f(E,f) = E and c<t
<d. Thus E€Z, and so Z,=C.

Let

¢ = {p(x,¥]: 0<x<y<Q},
" = {p([0,y]): 0<y<Q}.

Then C’ is an open subcollection of C(Z). as C’ is the collection of all K'e C(Z)
such that K is contained in (Z— {p(0)}), which is an open subset of Z. Also Ee C",
-C=C'uC" and C' N C" is empty.

Suppos¢ Z,=C”. If 0<x<Q then f({p(x)}.?) = p([0, ¥]), for some y such
that x<y<Q. Since Ec Z, and Z, is connected, it follows that Z, = C”, But Z, is
compact and C’’ is not.

Thus there exists 2 point xeZ (x # p(0)) such that f({x},?) e C". By the
continuity of f, there exists a point s €[c, d] such that c<s<t and f({x}, 5) e C".
Then Z,=C. By the definition of ¢, f(E, 5) # E. Let B = f(E, 5). Now r(0eBeC,
and 5o B = p([0, x]), for some x such that 0<x<Q. Consider the net {{p(»)}:
ye[0,Q[} converging to E in C(Z). Let B(y) = f({p(»},s). Then the net
{B(): y€[0, @[} converges to B = p([0, x]). Pick a point w such that x <w<.
Let U denote the subcollection of C(Z) consisting of all Ke C(Z) such that K
<p([0, w[). Then U is open in the space C and B € U. Thus the net {B»:yelo, o}
is eventually in U. But for all y such that w<y<Q, p(y) € B(») and p(») is not in
(0, w]). Thus for all y such that w<y< @, B(y) is not in U, and so a contradiction
has been reached.

Let § be a cardinal number greater than Q. Let Z be the simple closed curve
obtained by identifying the endpoints of [0, B]. The proof of Theorem 5 generalizes
to give the result that neither S(Z) nor C(Z) is weakly contractible. We note that
nonmetrizable simple closed curves exist which have weakly contractible hyperspaces,

THE(?REM 6. Let P= {0} U {l/n:n =1,2,..} with the fopology inherited from
the real line. Let X be obtained from [0, 2] x P by collapsing the set ([0, 2] x{0h v
U ({0, Q}xP) to a single point, denoted by (0,0) e X. Then X is a locally connected

continuum such that neither S(X) nor C(X) is weakly contractible or locally wealkly
contractible. '

. Proof. Any neighborhood of (0, 0) e X contains (as a retract) a copy of the
§1mple closed curve Z referred to in Theorem 5. Thus any neighborhood of {(0, 0)}
in S(X) contains a retract which is homeomorphic to §(Z), and so the neighbor-
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hood is not weakly contractible. Thus S(X) is not weakly contractible and is not
locally weakly contractible. Tne space C(X) can be handled by a similar proof.
We note that the procedure outlined in the Remark following Theorem 4 can be
extended to give a “model” of C(X). )
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