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Abstract. In this paper we prove that a generalized ordered space is not paracompact if and
only if one of its closed subspaces is homeomorphic to a stationary subset of some ordinal having
uncountable cofinality. We use that characterization to give easier proofs of two known results
and to obtain two new theorems. We prove that a generalized ordered space X is paracompact
if it satisfies any of the following: (A) X is perfectly normal; (B) X has a compatible complete
uniformity; (C) X is c-semistratifiable in the sense of Martin; (D) X has a @-Souslin diagonal.
Certain relevant examples are also presented.

1. Introduction. In this paper we present a new theory of paracompactness
in generalized ordered spaces based on the notion of a stationary set of ordinals.
A generalized ordered space is a triple (X, 7, <) where < is a linear ordering of
the set X and where 9 is a topology on X that is T, and has a base consisting of
open sets which are order-convex (*). Obviously any linearly ordered topological
space (abbreviated LOTS), i.e., a linearly ordered set equipped with its usual open-
interval topology, is a generalized ordered space, as is any subspace of a LOTS
when endowed with its relative topology, and one easily verifies that.the familiar
spaces known today as the Sorgenfrey line and the Michael line (see [S] and [M])
are also generalized ordered spaces. Our characterization of paracompactness in
generalized ordered spaces hinges on the motion of a stationary set of ordinals.
Let @ be a limit ordinal. A subset S of Q is stationary in Q if for each cofinal closed
subset (*) C of Q, S~ C % @. Obviously, if the cofinality of @ is uncountable
and if a subset §' of @ contains a closed cofinal set, then S is stationary in Q. It is
known, however, that there are much more complicated stationary sets: for example,
o, contains disjoint stationary subsets [R]. Nevertheless, the technical lemmas
which we present later in this section will show that stationary sets in large ordinals
have many features in common with closed cofinal sets in large ordinals.

(") A subsct ¢ of a lincarly ordered set (X, <) is order convex (or simply convex) provided
{xeX: a x < b} c C whenever a,b ¢ C.

() Le., closed with respect to the usual order topology of Q; equivalently, if @ # DcC
then supg(D) € C. :
4 — Fundamenta Mathematicae t. XCIV
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Our characterization theorem, given in Section 2, asserts that a generalized
ordered space X is not paracompact if and only if some closed subspace of X is
homeomorphic to a stationary subset of an ordinal that has uncountable cofinality.
Using that characterization we give new (and simplified) proofs of two known
results and we obtain two new theorems related to recent work of Heath [He] and
Braude[B]. We prove that a generalized ordered space X is paracompact if it satisfies
any of the following: :

A. X is perfectly normal [L,];

B. X has a compatible complete uniformity [1];

C. X is c-semistratifiable in the sense of Martin [Ma];

D. X has a ¢-Souslin diagonal.

(Under hypotheses A, C and D we actually obtain hereditary paracompactness of X.)

The following notations appear frequently in subsequent sections. If (X, <)
is a linearly ordered set and xe X, then [x, —[ = {ye X:y>x} and Jx,—[
= {y e X: y>x}.Intervals such as ]x, y[, [x, y[ and [x, y] are analogously defined.
If T=X is not cofinal in X we shall write supy(7) to denote the supremum of T'in X;
usually the set X will be order-complete so that there will be no question about
the existence of the indicated supremum. If € is a collection of subsets of a set X
and if pe X, then St(p, %) = | {Ce¥: pe C}. All of our spaces are assumed
to be at least Hausdorff. Our topological terminology will conform to that of [E]
and terminology relating to ordinals (and not defined here) will follow [Ju].

The authors wish to thank R. Pol for suggéstions which substantially shortened
several of the proofs given in the original version of this paper.

‘We now present certain technical lemmas which are used throughout the paper.

1.1. Lemva. Let S be a stationary subset of an ordinal Q having cf(Q) >w, and
let T<S be a relatively closed cofinal subset of S. Then T is also stationary in Q. In

Dparticular, the set of all non-isolated points of the subspace S is stationary.

Proof. Supposing T is not stationary in @, let C be a closed cofinal subset
of Q which is disjoint from T. Since T is relatively closed in S there is a closed sub-
set D of @ having T = S n D. But then C n D isa closed cofinal subset of € which
is disjoint from S, and that is impossible. The second assertion of the lemma is
now immediate. ' :

Our next result is closely related to the classical “Pressing Down Lemma”,
a proof of which may be found in [Ju].

1.2. Lemma. Let Q be an ordinal having cf (Q)>w, and suppose S is a stationary
subset of Q. For each se S let I(s) be an open subset of Q which contains s and let
S = {I(s): s€S}. Then there is a point x € S such that [x, =[=St(x, ).

Proof. Let I' = cf(€). Supposing the lemma is false, -inductively construct
points x(y), y(y) € S such that .

(a) if y<6<I" then x(P) <y <x(5);

(b) it y<I" then p(y) & Si (x(y), #);

(©) {x(): y<I} is cofinal in Q.

e ©
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Because cf(2)>w,, the closed set C = clg{x(y): y<Q} nelp{y(y): y<I} is
cofinal in @ and it follows from (a) and (b) that C n S = @. Since that is imposs-
ible, the proof is complete.

1.3. LemMa. If S is a stationary subset of the ordinal Q having of(Q)>cw, and

if S = G S(n), then one of the sets S(n) is stationary in Q.
n=1

Proof. Let us first observe that, by countable compactness of Q, any countable
intersection of closed cofinal subsets of € is nonvoid and hence cofinal in . To
complete the proof, observe that if for each n>1 C(n) were a closed cofinal subset

of having C(n) n S(n) = @ then C = () C(n) would be a closed cofinal subset
n=1 .

of © that is disjoint from S, and that is impossible.

We close this section with a result that gives yet another indication of the
way in which stationary subsets of large ordinals behave like spaces of ordinals.
The result is not needed in our paper and we state it without proof.

1.4. THEOREM. Let S be a stationary subset of an ordinal Q where cf(Q)>a,
and let f be a continuous, real-valued function on S. Then f is eventually constant, i.e.,
there is an x €S such that f(x) = f(y) whenever ye S and y=x.

2. Characterization of paracompact ordered spaces.

2.1. LEMMA. Let § be a stationary subset of an ordinal Q where cf(9)>w‘o.
Then no (relatively) open cover of S by bounded subsets of Q can have a point-finite
(relatively) open refinement.

Proof. Suppose that % is a‘relatively open cover of S by boun.ded su‘.bsets
of Q and suppose that % is point-finite at each point of S. Write % = {V(l? nSliel}
where each V(i) is a bounded open subset of and apply (1.2) to obtain a contra-
diction. -

Our next lemma is related to a result in [Ls].

-~

2.2. Lemma. If X is a non-paracompact LOTS then some closed subspace of X is
homeomorphic 10 a stationary subset of an ordinal Q where Q = cf()>w,.

Proof. Let X denote the Dedekind completion of X. Since X is not para-
compact, some point ue X X has the property thé.lt u'is not a Q—gap of .X, say
from below [GH], i.c., if @ is the unique ordinal which is coﬁ.nal 1n.{x € X : x<u}:[
and which has cf(Q) = @, then @>w, and for any s-tnf:tly Encreasmég neh
{x(0): a<Q} in X whose supremum (in X *) i.s u, there is a lelt o}"dlnal A< ? s::; :
that sup{x(«): «<A} € X, the supremum being taken in X7. Fu.c al}yh suc ; 0;.
we may assume that for any limit ordinal A<, sup{x(a): a<A} is eit er;Lx( 0
elseisin X \X. Let § = {1<@: Ais alimit ordinal and sup {x(x): x <A} = x( 3‘6- ( t
Then S is stationary in © because if some cofinal closed set C;Q were 1sgo1n
from § then one could use the net {x(c): x & C} to show that #1sa Q-gap from
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below. Also, the function f% S—X given by f(4) = x(4) for each A § is a homeo-
morphism of S onto a closed subspace of X.

2.3. THEOREM. The following properties of a generalized ordered space X are
equivalent:

(a) X is not paracompact;

(b) for some ordinal Q with cf(Q) = Q>c,, some stationary subset of Q is
homeomorphic to a closed subspace of X;

(c) for some ordinal @ with cf(Q)>w,, some stationary subset of Q is homeo-
morphic to a closed subspace of X.

Proof. That (b) implies (c) is trivial and (c) implies (a) in the light of 2.1).
In case X is a LOTS then (2.2) applies to show that (a) implies (b). Now consider
the case where X is a generalized ordered space. Using the techniques of [L,], we
embed X into a LOTS X* in such a way that every point of X*\ X is isolated in X*,
If X is not paracompact, it follows that X* cannot be paracompact so that by the
first part of the proof there is a stationary subspace S of an ordinal Q having cf(Q)
= Q>w, and a homeomorphism /4 of S onto a closed subspace ¥ of X*. Let T be
the set of non-isolated points of the subspace S; then T is stationary in Q according
to (1.1) and & sends T onto a closed subspace of X*. Since all points of X*\X are
isolated in X*, h(T)cX.

Since any subspace of a generalized ordered space is itself a generalized -ordered
space, our next result follows directly from (2.3).

2A. THEOREM. The following properties of a generalized ordered space X are
equivalent:. ’

(a) X is not hereditarily paracompact;

(b) some subspace of X is homeomorphic to a stationary subset of an ordinal Q
having cf(Q) = Q>awy;

(c) some subspace of X is homeomorphic to a stationary subset of an ordinal Q
having cf(Q)>cw,.

2.5. Remark. The reader might conjecture that the conclusions of 2.3 and 2.4
could be st-rengthened to say that a non-paracompact generalized ordered space
mus.t contain a subspace homeomorphic to a closed cofinal subset of an ordinal
having uncountable cofinality. That is not true, as the following example shows.

Let Z be the set of integers and let L = {i<a,: A is 4 limit ordinal and cf (0, A
= wy}. Let ’

X = {(t,n) e 0, xZ: either o e @ \L and 7 =0 or else ae L and n<0} .

and order X lexicographically. Then X, with the open-interval topology, is a non-
pargcompact LOTS in which no countable set has a limit point. Thus ;10 ordinal
haAvmg uncountable cofinality can be topologically embedded in X. A more com-
phcfated example is described in [L,]: a first-countable non-paracompact LOTS
which has w; points and yet which contains no topological copy of ;.
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3. Two known results. .

3.1. TueoReM [L,]. 4 perfectly normal generalized ordered space is paracompact.

Proof. By (2.3) it will be enough to show that if @ is an ordinal with un-
count able cofinality and if .S is a stationary subset of Q then S (with the relative top-
ology) cannot be perfectly normal. To that end, let T'be the set of non-isolated points

of S and suppose that T'is a G;-subset of S, Write T'= [\ (S n U(r)) where each
n=1
U(n) is an open subset of Q. According to (1.1) there is a #(#)e T such that
[t(),—[=U(n). Since cf(R)>w, there is a point t'e T n ([ [t(n),—[). Then
=1

B «©
[¢,—[c U for each n>1 so that S n[f',—[c N(Sn U@) =T. But that is
n=1

impossible because if # is the first point of § that is greater than ¢, then {"'} is
open in S so that ¢ &T even though '’ e § n[t',—[.

Let % be a uniformity for X (i.e., a certain family of subsets of X'x X; see [E])
and let Z~ be the associated topology for X. A filterbase & is said to be Cauchy
with respect to % if for each Ue% some Fe & has Fx Fc U, and the uniformity
9 is said to be complete if every filterbase & of  -closed sets which is Cauchy
with respect to % has (& # @. Finally, a space X is Dieudonné complete if some
complete uniformity on X induces the topology of X. Our next theorem was obtained
for LOTS by Ishii [I]. ,

3.2. THEOREM. If a generalized ordered space is Dieudonné complete then it is

paracompact.
" Proof. According to (2.3) it will be enough to show that if S is a stationary
subset of an ordinal @ with cf(Q)>w,, then S cannot have a compatible complete
uniformity. Let % be any uniformity for S and let Ue%. For each x € § let I(x)
be an open convex subset of £ containing x and having (I a8 x{Ix) N S)=U.
According to (1.2) there is a point x(U) € S such that, with # = {I(x): x& S},
[x(U),—[=St(x(U), #). Therefore, since members of # are convex, (y,2)e U
whenever y,zeS n[x(U),—{ so that the collection & = {Sn[x,—~[: xeS}
is seen to be a filterbase of closed sets which is Cauchy with respect to % and yet
which has ()% = @. Thus S cannot be Dieudonné complete.

3.3. Remark. It is clear that the proof of (3.1) actually shows that a perfectly
normal generalized ordered space is hereditarily paracompact, in the light of (2.4).
That fact also follows from general theory since any paracompact space in which
every closed set is a Gy is hereditarily paracompact. In fact, an even stronger result
is true for generalized ordered spaces: as noted in[L,], any paracompact generalized
ordered space in which each point is a G5 must be hereditarily paracompact. Of
course, there is no hope that every Dieudonné complete generalized ordered space
must be hereditarily paracompact — consider the compact LOTS [0, w,}. One
easy consequence of (3.2) is that if a generalized ordered space is realcompact [E]
then it is paracompact. That consequence may also be deduced from Theorem 1.4.
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4, Paracompactness of c-semistratifiable ordered spaces. In this section we
present a generalization of a theorem announced by R. W. Heath [He] asserting
that a quasi-metrizable LOTS is paracompact. We begin by reminding the reader
of some definitions. A guasi-metric onaset X is a real-valued function d on X'x X
such that for any x,y,z in X, d(x, )20 with d(x,y) = 0 if and only if x = y
and such that d(x,y)<d(x,z)+d(z,y). The associated quasi-metric topology
on X is the one for which {{y e X d(x, y)<s}: e>0} is a neighborhood base at
each point x € X. The literature contains many definitions which are at least formally
weaker than quasi-metrizability: the y-spaces of Hodel, the co-Nagata spaces of
Martin, the spaces which admit a co-convergent open neighborhood assignment
introduced by Sabella, and the spaces which have a compatible o-metric having
property 7 studied by Nedev and Choban. Lindgren and Fletcher [LF] proved that
those four definitions are equivalent and it is easily seen that the following definition
is equivalent to Hodel’s definition of y-spaces [Ho]: a space X is a y-space if there
is a collection {g(n, x): n>1, xe X}, called a y-structure for X, of open subsets
of X such that (a) for each xe X, {g(n, x): n>>1} is a neighborhood base for X,
and (b) for each x € X and n>1 there is an integer m = m(x, n)zn such that if
yeg(m,x) then g(m,y)cg(n,x). It is also clear that such spaces are c-semi-
stratifiable in the sense of Martin [Ma], i.e., each point x of X has a sequence
{g(n, x): n>1} of open neighborhoods such that for any compact C< X, if g(n, C)
=U{g(n, x: xeC}, then N{g(n, C): n=1} = C; the collection {g@, x)| n21,
xe X} is called a c-semistratification of X. 1t is easily seen that a semistratifiable
space [C] is c-semistratifiable. ‘

4.1. THEOREM. A4 c-semistratifiable generalized ordered space is paracompact.

Proof. In the light of (2.3) it will be enough to show that if § is a stationary
subset of Q, where cf(Q) = Q>w,, then S cannot be c-semistratifiable. Arguing
indirectly, suppose {g (n, x): n>1, x eS8} is a c-semistratification of S. For each.
xeS let G(n, x) be an open convex bounded subset of Q having x & § n G(n, x)
<g(n,x) and G(n+1,x)cG(n, x). Let g(n) = {G(n, %): xeS}. By (1.2) there
are points x(n)eS such that [x(),»[<S (x(m), () and, since of (Q)>w,,
a point y & § such that y>x(n) for every . Bacause the sets G(n, x) are all convex,
Dr.—=[<S (¢, 9()) for every n.

Let §(n) = {s€ S: y € G(n, 9)}. Bach set S(r) is cofinal in Q so that, S being
staffionary, there is a point se (S n]y,—]) A (N {cla(SM)): n=1}) which is also
2 limit point of § (s¢e Lemma L.1). Because S is first-countable, there are points
s(n) e S(n) n]y,—[ such that the sequence {s(n)> converges to 5. But then the
set C = {s} u {s(n): n>1} is compact and yet Y€ {G(n, C): n>1} even though
y ¢ C. That contradiction completes the proof.

Observe that the only compact sets considered in our proof were convergent
sequences.

We next give two examples which show that our Theorem 4.1 is not a corollary

of (3.1) and is more general that Heath’s theorem on quasi-metrizable LOTS,
mentioned above.

icm®
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4.2. BExampLE. There is a quasi-metrizable LOTS which is not perfectly normal.
Let R, Q and Z denote respectively the sets of real numbers, rational numbers, and
integers. Let X = {(x, ) & RxZ: if x is rational then n = 0} and order X lexic-o-
graphically. The open-interval topology of that order has a o-disjoint base and is,
therefore, quasi-metrizable [SZ].
Alternatively one can explicitly define a quasi-metric on X by:

ot xeQ,
’ L+ =y ‘
A, 0om) = it x0 and (5, # 0y,
IO it (x,n)=(,m.

However, X is not perfectly normal: the set {(x,0): xe Q} is easily s'een to
be a closed subset of X which is not a G;. (This example will be used again in Sec-

tion 5.)

4.3. EXAMPLE. There is a c-semistratifiable generalized ordered space wl-.xich
is not a y-space and is not, therefore, quasi-metrizable. With R, P and Q denoting,
respectively, the sets of real, irrational and rational numb;rs, let Y denote tl}e space
obtained when R is retopologized by taking basic neighborhoods of‘ a point x to
be intervals of the form [x, x4¢[ if x € P and of the form Jx—e, x] if x € Q. Then
Y is a generalized ordered space which is c-semist.ratiﬁable: for each x and each
n=1, let g(n, x) = ]x—1/n, x-+1/n[. However, ¥ is not a y-space. For suppose
that # = {h(n,y): n21 and ye Y} is a y-structure for Y as defined above. Re-
placing each k(n, y) by a smaller set if necessary, We may assume.that each h(n. )
is a basic neighborhood, as defined above, of the point . For each Js k>1 .1et P, k)
= {yeP: m(y,1) =j and [y, p+1/k[<h(, )}, where m(.y, 1) is the integer df?-
scribed in the definition of a y-space. Because P = U {P(j, k): J. k>1}, there are
integers J and K and an open interval Ja, b[ such that 1a, [ =clx (P, K)), the
indicated closure being taken with respect to the psual topology of. R Choose an
re @ nla, b[ and a point y € P(J, K) such that (i) ye h(J, r) and (i) |y—r|h<.lI/K.
It follows from (i) that y<r and that some z<y belongs to h(J, r) becauseh ,n

is a basic neighborhood of r. From (i} it follows that r:e[y, y+1/K[ < h(Jl, 7).
But then our assumption that # is a y-structure for Y yields z eﬁ(J ,D<h(1,y)
<[y,~[ and that contradiqtion completes the proof.
pace but is not a LOTS. Indeed,

evious exe e is a generalized ordered s '
The previous exampl X i

our next theorem shows that if one considers only spaces with ihe.gped nterval
topology of some linear ordering, then many of the-concepts consi ered in s
section reduce to the same thing. Since the theorem is not needed in our c.urr :
paper we state it without proof.

4.4. TusorEM. Let X be a LOTS. Then (1) X is a c-semistratifiable zf and oniy
if X is a y-space and 2) X is a o¥-space ([Ma]; see also (5.6), below). if and only.
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if X is quasi-metrizable by a quasi-metric d with the property that for any x,y,z
in X, d(x, y)<max{d(x, 2), d(z, )}. - ‘

4.5. Remark. Since any subspace of a c-semistratifiable generalized ordered
space Is itself a ¢-semistratifiable generalized ordered space, it follows immediately
that such a space is hereditarily paracompact.

5. Ordered spaces with ¢-Souslin diagonals. Before giving the results of this
section we need some notation. Let ¢ be the set of all finite sequences of positive
integers and let X be the set of all infinite sequences of positive intcgers.‘ For
a point n = (1, n,, ...) of £ and for k21, write nfkc = (ny, ..., m). A space X is
said to have a @-Souslin diagonal if for each p e ¢ there is an open subset G(p)

of X'x X such that {(x,x): xe X} = U{N G(n/k): n € Z}. Braude [B] has proved
k=1

that a compact Hausdorff spage having a %-Soaslin diagonal is metrizable, thereby
generalizing certain theorenis of Snelder. In view of the parallelism between the
metrization theory of compact Hausdorff spaces and of LOTS [L;], one might
be led to the conjecture that a LOTS having a %-Souslin diagonal is metrizable.
That conjecture would be false as our Example 5.2 shows. Before presenting the
example we need a lemma.

5.1. LEMMA. Suppose that each point of a space Xisa Gy in X and that X has
at most countably matny non-isolated points. Then X has a & - Souslin diagonal.

Proof. Let ¢ denote the family of all open subsets of X'x X. Since ¢ is closed
under the formation of finite unions, the family o7 obtained by applying the Souslin
A-operation to ¥ (i.e., the family of ¢-Souslin sets) is closed under the formation
of countable unions and countable intersections ([KM] or [Ch). If I'is the set of
isolated points of X, then the diagonal '

4= {xx: xel}u(U{x 0} xeX\I})

is a countable union of members of A, 50 de st as required.

5.2. EXAMPLE. There is a non-metrizable LOTS having a %-Souslin diagonal;
hence a LOTS can have a #-Souslin diagonal without having a Gj-diagonal.

Let X be the space constructed in Example 4.2. Then X is not metrizable (and
hence the diagonal of X is not a Gs-set by [L,]) and yet X is first-countable and
paracompact. Further, the only non-isolated points of X are points (x, 0) where x is
rational; according to (5.1), X has a ¢-S>uslin diagonal.

Paracompactness of the space in Example 5.2 is not accidental since we can
prove: '

5.3. THEOREM. A generalized ordered space having a 9-Souslin diagonal is
paracompuct. o :

* ©
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Proof. It will be enough to show that if S is a stationary subset of an ordinal Q
having cf (@) = 2>w, then § does not have a ¥-Souslin diagonal. We argue in-
directly, supposing that

4={(5,9: 55} = ULN6Gb: ne)

where each G(n/k) is open in SxS. We may assume that G(nfk+1)=G(n/k) for
each k. For each xS let A(x) = {(»,») e 4: y=x}. We assert

(*)  there is an n € X such that for each k1, G(n/k)> 4 (x(k)) for some x(k) € S.
Suppose that (x) is false; then
(xx) for cach n e X there is a k(n)1 such that G(n/k(n)) contains no set A(x).

The collection ¥’ = {G(n/k(m): neX} is countable and d< J &' 50 that. for

some ne X the open set T = {xeS: (x, x) € G(n/k(n))} must be stationary in Q

(see 1.3). Hence, there is a point p e T such that 4(p)=G (n/k(n)), contrary to (xx).
) holds.

Thus’i'a(kc): Lny n and any sequence {x(k)) satisfying (x). As in the‘ proof of (3.2),

there must be a point y(k)eS having (Iy(k),—[)*=G(njk). Since cf(Q)>w,,

there are distinct points w, v of S both of which are greater than every y(k). But

then (u,v)eaG(n/k)cA which is impossible. That contradiction completes
k=1 T

the proof. . 1 ”
W. Lindgren has pointed out another proof of (5.3) which largely avoids
working with the %-Souslin diagonal structure and which reduces (5.3) to our
earlier Theorem 4.1.
5.4. THEOREM. If a generalized ordered space has a %-Souslin diagonal, then
it is c-semistratifiable.

Proof. Suppose 4 = |J {?\ G(nfk): ne X} where each G(n/k) is open in
k=1 -

XxX. For each (ny, ..., m) €c let #(ny, ...,m) = {UcX: Uis open .an’d Uxi]
<G(ny, v, my)} and let ¥ = {#(n, ..., n)! (n%, we,m)€c}. Then ¥ s a c?un -
able family of collections of open sets in X with the property that. given x 3v
in X, some # e ¥ has the property that x e S (x, #)=X\{y}. It is known [Sc]
that any generalized ordered space is hereditarily orthocompact, where Y;;e sa-y
that a space ¥ is orthocompact provided that for each open cover % of ¥, 11.l ere 1137
an open cover ¥ of Y which refines % and has the property that ‘for each y ee

the set () {V e ¥": y e V}is open. Therefore, for each # € ¥ wemay find aﬁ O]f; n
collection % in X which covers |J #, refines # and has the property t ; y;r
each ye |J o the set (\{Ve#*: yeV} is open. For ?ach ,WE-T I:ct X(mj
= {¥\V: Ve s#*}. Then cach &F () is a closure preserving collectﬂwn mX o
given x # y in X there is a set Ke U {F(s#): o# ¢ ¥} such that xe Kc X\{y}.
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(In the terminology of [Ma], X is a o¥-space.) But it is known [Ma] that every
o¥-space is c-semistratifiable.

5.5. Remark. Since the spaces satisfying the hypotheses of Theorem 5.3 form
a hereditary class, we see that a generalized ordered space with a ¢-Souslin diagonal
must be hereditarily paracompact. Furthermore, (5.4) shows that a generalized
ordered space is c-semistratifiable (and hence paracompact) if it has a quasi-G,
diagonal (i.e., if it admits a countable collection ¥ as in the proof of (5.4)).
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Homogeneity, universality and saturatedness of
limit reduced powers (II)

by

B. Weglorz (Wroctaw)

I

Abstract. We give some necessary conditions on the pair 2 %), where & is an ultrafilter

. I

on I and ¥ is a filter on Ix I, which imply that for every structure %, the limit ulFapower gl¥ is
x-universal (or »-saturated).

The papef is a continuation of [5]. In § 1, we prove Embedding Theorem
which says that every limit ultrapower AL|% contains a lot of elementary submodels
which are isomorphic to ultrapowers of 9 reduced by ultrafilters which are obtained
in a natural way from 2. Tne idea of Embedding Theorem (in fact contained in
the proof of Theorem 4 in [4]) was suggested to the author by the proof of Wierze-
jewski’s Theorem 1 in [5]. )

In § 2, we apply Embedding Theorem to give some necessary combinatorlafl
conditions on the pair (&, %) which imply that for every structure A, the limit
ultrapower A% is x-universal (or x-saturated). h )

We assume that the reader is familiar with the notion and basic propel:txes
of limit reduced powers (see [1]). We also assume the familiarity with the notions
of (%, w)-regular and x-good filters (see e.g. [2]). The only non standard notation
is the following: if ¢ is an equivalence relation on I then by Ijg we denote the se:t
of all g-equivalence classes over I We write Ife = {I;: jeJ} to denote that Ij’s
are all the g-equivalence classes of elements of I . .

The author is deeply indebted to L. Pacholski and J. Wierzejewski for a lot
of very stimulating discussions which helped to formulate and prove the results
presented below.

§ 1. Embedding Theorem. Let & be a filter on 1 and ¢ an equiva}ence relatioP

on I. Let Ifo = {I;: jeJ}. The family &<P(J) defined by: X.eds’ if and only if

UL eD is called the o-image of @ and is denoted by 9/g. It is easy to see that
eX

J . .
& is a filter on J. Let X</, we say that X is ¢-composable if there is Y <J such that

X = U1 Let 4 be a filter on Ix 1T, then the family of all g-composable sets for

JaY ‘ . o o
ey qwe call the family of @-composable sets. This family coincides with 27|4.
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