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(In the terminology of [Ma], X is a o¥-space.) But it is known [Ma] that every
o¥-space is c-semistratifiable.

5.5. Remark. Since the spaces satisfying the hypotheses of Theorem 5.3 form
a hereditary class, we see that a generalized ordered space with a ¢-Souslin diagonal
must be hereditarily paracompact. Furthermore, (5.4) shows that a generalized
ordered space is c-semistratifiable (and hence paracompact) if it has a quasi-G,
diagonal (i.e., if it admits a countable collection ¥ as in the proof of (5.4)).
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Homogeneity, universality and saturatedness of
limit reduced powers (II)

by

B. Weglorz (Wroctaw)

I

Abstract. We give some necessary conditions on the pair 2 %), where & is an ultrafilter

. I

on I and ¥ is a filter on Ix I, which imply that for every structure %, the limit ulFapower gl¥ is
x-universal (or »-saturated).

The papef is a continuation of [5]. In § 1, we prove Embedding Theorem
which says that every limit ultrapower AL|% contains a lot of elementary submodels
which are isomorphic to ultrapowers of 9 reduced by ultrafilters which are obtained
in a natural way from 2. Tne idea of Embedding Theorem (in fact contained in
the proof of Theorem 4 in [4]) was suggested to the author by the proof of Wierze-
jewski’s Theorem 1 in [5]. )

In § 2, we apply Embedding Theorem to give some necessary combinatorlafl
conditions on the pair (&, %) which imply that for every structure A, the limit
ultrapower A% is x-universal (or x-saturated). h )

We assume that the reader is familiar with the notion and basic propel:txes
of limit reduced powers (see [1]). We also assume the familiarity with the notions
of (%, w)-regular and x-good filters (see e.g. [2]). The only non standard notation
is the following: if ¢ is an equivalence relation on I then by Ijg we denote the se:t
of all g-equivalence classes over I We write Ife = {I;: jeJ} to denote that Ij’s
are all the g-equivalence classes of elements of I . .

The author is deeply indebted to L. Pacholski and J. Wierzejewski for a lot
of very stimulating discussions which helped to formulate and prove the results
presented below.

§ 1. Embedding Theorem. Let & be a filter on 1 and ¢ an equiva}ence relatioP

on I. Let Ifo = {I;: jeJ}. The family &<P(J) defined by: X.eds’ if and only if

UL eD is called the o-image of @ and is denoted by 9/g. It is easy to see that
eX

J . .
& is a filter on J. Let X</, we say that X is ¢-composable if there is Y <J such that

X = U1 Let 4 be a filter on Ix 1T, then the family of all g-composable sets for

JaY ‘ . o o
ey qwe call the family of @-composable sets. This family coincides with 27|4.
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EMBEDDING THEOREM. Let @ be a filter on I and let 4 be a filter on Ix I, As
sume that g € 4 is an equivalence relation on I. Put Ifp = {IJ jeJ} and & = Dla.
Then:

(i) there is an isomorphism F: W—Ay |4 ;

(ii) if fe A'|% and eq(f)2e, then [ € Rng(F);

(i) if @ is an ultrafilter then F is an elementary embedding of W3 into AL|g.

Proof. Let g e 4’. Let us define a function F, from 4’ into 4% by: Fo(g) ()
=a if and only if iel; and g(j) = a. Then if g, = g,(mod&) then the set X
= {jet: g,(;j) = g,(j)} is in &. But thenjUXIj = {iel: Folg)() = Fo(g,) ()} e 9,

€
consequently we have Fy(g,) = Fy(g,) (mod 2). Thus, we can define a function F
from Az into A5|¥ by the condition: F([g]s) = [Fo(g)]s-

Let ¢ = @(xy, ..., X,) be an atomic formula. Then the following statements
are pairwise equivalent: :

U ollgJes o [0)e],
X= {]E‘] Ak (P[gl(.])) weey gn(j)]} €&
® Ul =il Ak plFg)0), .. Fa) O] €D,

ﬂ_{?[g Eo[F(g s, .. F({g,)0)].

So, F is an isomorphism, which proves (i).

To check (iif), it suffices to notice that if & is an ultrafilter, then & is also an
ultrafilter and the statements from (x) are equivalent for arbitrary formula 0.

It remains to prove (ii). Let fe 4"|% satisfy eq(f)=¢. Then, for each jeJ,
the function f is constants on J;. Consequently, we can define a function ge 4’ by:
g(j) = fii) for iel;. But then we have F,(g) =1, so [f]s € Rng(F). Q.E.D.

ExampLE 1. The assumptions of maximality of 2-in clause (ili) cannot be
removed. Indeed, let U be the two-clements Boolean algebra, let % be the Fréchet
filter on w and  be the filter on w x w generated by all the equivalence relations ¢
on o such that wfp is finite. Then for any equivalence relation g e &, the iso-
morphism F from (i) of Embedding Theorem is not elementary.

COROLLARY 1. Ler D be a filter on I and let % be a x-complete filter on Ix I
Let [fils € Abl%, for E<A<x. Then there is an equivalence relation g € ¢ such that
there is an isomorphism F: Wi—U5|%, where Ijg = ;7 jeJ} and & = D/, with

[f:]a € Rag(F), for all £<2. Moreover, if D is an ultrafilier then F is an elementary
embedding.

Proof. Let eq(f;) = :€%, for all é<A. Sincé @ is u?complete, we have
0= Q lgée@. Consequently, by Embedding Theorem, for Ifg = {I;: jeJ} and

€ = 9o, we have an isomorphism F: W—UL|%, which is an elementary embed-

ding when 9 is an ultrafilter. Finally, by (ii), we have A Rﬁg(F), because of
0S0;, for all é< A ) :

2 ©
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Remark. The condition of x-completeness of ¢ in Corollary 1 is not
pecessary (see Example 2). To define a weaker condition which gives the thesis of
Corollary 1, we need some auxiliary notions. .

DerNITION. Let @ be a filter on I and let % be a filter on Ix I Let {@eeex
be a sequence of equivalence relations from %. Then an equivalence relation o
on IxIis a @-lower bound of {gge<, if and only if there is a sequence (X Decn
of -composable clements of 9 such that for each ¢ <2 we have

@ N (Xex X0 N (XexXy).

If for every sequence {@uds<y Of clements of ¥ there is a @-lower bound of
{oppsex I 9 then we say that the pair (2, 9) is %-closed.

TueoreM 1. Let @ be a filter on I and let 4 be a filter on Ix I such that the pair
(@, 9) is w~closed. Then if {fx)s<x is a Sequence of elements of A"|% then there exists
an equivalence relation @ € 9 such that there is an isomorphism F: Wy—UL|%, where
Ilg={I;: jeJ} and & = Do, with[ f¢]s € Rug(F), for all {<x. Moreover, if D is
an ultrafilter then F is an elementary embedding.

Proof. Let g, = eq(fy), for £<x. Consider the sequence {g:>z<, of elements
of 4. By our assumplions there is a @-lower bound of {@:):<, in ¥, say ¢. Thus
there is a sequence (XD s<, of ¥-composable elements of 2 such that g, N (X x X})
o 0 (Xyx Xy), for all é<x. Take /g = {I;: jeJ} and & = D/g. Then by embed-
ding Theorem there is an isomorphism F: z—5|# which is an elementary embed-
ding when @ is an ultrafilter. It remainsto prove that [ f;], € Rng(F), for all £<x.

For every £<x, let g be a function defined in such a way that g, | X; = f; ) X,
and g<eq(gy). Of course, by the construction, we have g; = f; (mod9). Since
0<eq(gs), by Embedding Theorem, we have [gy]s € Rog(F), for all £<ux, and
consequently [ fi]p € Rng(F), for all {<x. Q.E.D.

ExAMPLE 2. Let I be the set of all positive rationals and let & be a filter on 1
such that for each r eI, the set {xel: r<x} is in 9. For each stri(.:tly increasing
sequence 1 = W, >ue0 OF rationals without any accumul'ation point such that
Yo = 0, define g, =11, by <i,j> gy if and only if there is some n € sucl? that
Vi, JS V.. Let G be the filler on IxJ generated by afl gy's. Then G is not
w-complete. )

On the other hand, for cach sequence {g,pu, of e¢lements of & there is
a @-lower bound of @D in . Thus the pair (2, ¥) is w-closed.

Consequently the assumptions of Theorem 1, even in the countable case are
weaker than those in Corollary 1.

‘We have also the following converse theorem.

THEOREM 2. Let @ be a filter on I and let 9 be a filter on Ix I such that f?r each
structure U and for each sequence {Jy)y<, of elements of A"y there. is an eqmvaler.we
relation g € @ such that if ljo = {I;:jeJ} and & = Do then xifere is an rf’omor}l;hls;n
F: W AL\% . with [fils & Rng(F) for all &<x. Then the pair (9, 9) is x-closed.
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Proof. Let {gs)s<, be 2 sequence of elements of ¢. If |4]|>I| then there are
functions f; € 4|9 such that eq(f)'= oy, for all {<x. Take ge‘.fj suc1’1 that if
djo = {I;: jeJ} and & = 2/¢ then there is an 1so-morphlsm JF: WU—ALH|% w'ith
[f:lo € Rug(F), for all {<x. Then there are functions g, E‘A suc'h that putting
hy = Fogs) we have by = fr(mod9). Let X = .{ieI: h{iy = fdi)}. Of course
X; is a 9-composable element of &. Moreover, it {4,j>ee and {i,/> e X;xX,
then (i, € eq(hy) because of gSeq(hy). Since hs | Xy =fy | X, we have <i,j)
€0, Whence o n (X;x XS0y n (Xgx X, for all {<x which shows that g is
a @-lower bound of {0 e<cy. Q.E.D.

§ 2. Applications to the universality and saturatedness. To use Embedding
Theorem to the universality and saturatedness of limit ultrapowers we need the
following facts:

Facr I (Keisler [2], Theorem 1.4). An ultrafilter & on I is %"-good if and only
if for every structure U, the ultrapower AL is a*t-saturated.

Facr II (Keisler [2], Theorem 1.5). An ultrafilier @ on I is (x, w)-regular if
and only if for every structure N, the ultrapower AL is ot -universal.

Facr 1. The following three conditions for an ulirafilter @ on I are equivalent:

(2) 9 is w,-good,

(b) 9 is (w, w)-regular,

(€) 2 is w,-incomplete.

Fact IV. If for every A<x and every sequence {bg)s<; of elements of B there
is a x-saturated model U and an elementary embedding F: U—B, with b, € Rug(F),
Sor all £<), then B is x-saturated.

Now these facts together with Embedding Theorem yield the following
theorems:

THEOREM A. Let 9 be an ultrafilter on I such that for some ¢ € 9, the o-image
of @ is (w, w)-universal. Then for every structure U, the limit ultrapower Wy|Y is
w-saturated. .

Proof. Let us remark that if @/o is (@, w)-regular then for every g, € ¢ there’

is g, <=0, such that g, €% and 9/, is also (w, w)-regular. In fact, we can take
@2 = QN2 '

Let {[fu]loPu<m be a finite sequence of elements of 4%|%. Let o, = eq(f,) and
take ¢* =0Mgo N .. N @uoy. Let Jfo* = {I;: jeJ} and & = P/o*. Then by
Embedding Theorem there is an elementary embedding F of 2% into §5|% with
[/.]o € Rng(F), for all n<m. Moreover, since & is (w, w)-regular, by Facts III
and I, the structure U} is w,-saturated, whence w-saturated. Consequently, by
Fact IV, the structure U5|¥ is w-saturated.

ExameLE 3. Let N = (w, <D be the structure of natural numbers with the
natural ordering. It is easy to construct a sequence of sets I, and a sequence of
ultrafilters @, (on I,), ne w, suchthat if we define Ay = RN, U, ., = (2,2, then
there is a function f, e 4" such that for every a e A, we have {ie l,: a<f,(i)} € D,.
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Put B = U ,. It is well known (see [1], Theorem 5.1) that there ié a set I and

new
an ultrafilter & on I such that for some filter & on Ix I, we have B = %% on
the other hand it is easy to see that B is not y-saturated, for, there is a countable
increasing sequence of elements of B which is cofinal in 8. Thus, in Theorem 4,
we cannot replace @ by ;.

TreoreM B. Let 9 be an ultrafilter on I and let 4 be a filter on Ix I. Let 9 be

" a structure such that U # Ap|%.

(i) If W is w-saturated then WL|Y is w-saturated too.

(ii) If cither \I|-or |A| is a nonmeasurable cardinal, then AL|Z is w-saturated
without any assumption on 2.

Proof. Since N 5 AL|%, there is a function fe A% which is not constant
on any set from 2. Take ¢ = eq(f). Then for each ¢’ <y, the filter P[0’ is non-
principal.

If /g is not w,~complete then it is (w, ®)-regular by Fact TIT and we can get
the theses of Theorem B from Theorem A.

So, suppose that for no ¢'Sg, ¢'e % the filter 2/o’ is (, w)-regular. Then
both |/] and | 4| must be measurable and we need the assumption of (i).

Let <[fy]aPu<m be a finite sequence of elements of 4519. Let 0* = g n go A ...
oo OV Oy, Where @, =eq(f)), n=0,..,m—1. Let Ijo* = {I;: jeJ}. Tnen &
= P/o* is an w;-complete ultrafilter on J. By Lo§ Ultraproduct Theorem for
w-complete ultrafilters A} is w-saturated if and only if 9 is w-saturated. Conse-
quently, by Embedding Theorem we have an elementary embedding F of 2} into
Up|%, with [f,]o € Rng(F), for all n<m. Thus, by Fact IV, we see that AL(¥ is
w-saturated.  Q.E.D.

Remark. Theorem B is closely related to a theorem of Wierzejewski (51

“Theorem 2) that if 2 is an w-homogeneous then AL|# is w-homogeneous. But

in Theorem B, for the nonmeasurable case, we have a stronger thesis without any
assumption .on 2.

ExamrLe 4. Let &, ¢ be filters from Example 1, and let 2 be the ring of
integers. Then it is easy to check that UL|% is not w-saturated. Consequently,
in Theorems A and B we cannot omit the assumption that & is maximal.

TuroriM C. Let @ be an ultrafilter on I and let 9 be a filter on Ix I. Then there
exists g & 9 such that D is (x, w)-regular if and only if for every structure U, the
limit witrapower LG is st -universal.

Proof. Suppose there is ge@ such that @/o is (x, w)-regular. Let Io
= {I;: jeJ} and & = Dfo. Then, by Fact II, the ultrapower Uj is x*-universal.
By Embedding Theorem there is an elementary embedding F: §3—y|%. Conse-
quently UL|#¥ is x*-universal as an elementary extemsion of a sx*-universal
structure.

The converse implication follows in the same way as in Keisler’s proof of
Fact II (sce [2]).
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Remark. After we had the result that the existence of ¢ e.‘:f such that 9/p
is (%, w)-regular implies the % -universality of QI;I@’, L. Pafholslkl has drowe our
attention that the condition above is also sufficient for the »*-universality of %%
and that the Keisler's proof from [2] works also in our case.

THEOREM D. Suppose D is an ultrafilter on I and & a filter on Ix I such that the
pair (9, %) is x-closed. Suppose that for every o, €9 there is 0,0, 02 €9 such
‘that D)o, is x-good. Then for every structure W, the limit ultrapower DI
n-saturated.

Proof. Let {[f;]s>z<« be a sequence of elements of AL|%. From Theorem 1,
" it follows that there is a relation ¢ €% such that if Jjo = {J;: jeJ} and & = 9o
then there is an elementary embedding F: §,—U5|¥ with [f;]s € Rng(F), for all
E< . From our hypotheses we can additionaly assume that 9/g is %-good. Then,
by Fact I, Uj is x*-saturated. Thus the result follows from Fact IV.

Remark. L. Pacholski has informed meé that he has a combinatorial con-
dition on a pair (2, ) which is equivalent to the statement: “for every W the limit
ultrapower Ny|¥ is u-saturated”. For more informations see [3].
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The irreducibility of continua which are the inverse Timit
of a collection of Hausdorff arcs

by

Michel Smith (Atlanta, Georgia)

Abstract. Consider the space which is the inverse limit of a collection of generalized (non
metric) arcs over a linearly ordered index set. Such a space is a hereditarily unicoherent atriodic
Hausdorfl continuum. It is shown that every indecomposable subcontinuum of the space is irre-
ducible between some two points. A necessary and sufficient condition in order for a subcontinuum
of the space to be indecomposable is stated. Further it is shown that the space must be a generalized
arc if it is not the inverse limit over a countable subset of the index set. Thus it follows that the
space must be an irreducible continuum. :

Introduction. In this work a continuum is a closed. connected subset of a Haus-
dorff space and an arc is a compact continuum which has only two non-cut points.
It is known that if M is a nondegenerate compact atriodic hereditarily unicoherent
continuum and every nondegenerate indecomposable subcontinuum of M is ir-
reducible between somz two points then M is irreducible between some two points.
(S:e M. H. Proffitt [4] for a stronger result.) Sappose S is the inverse limit of
a collection of Hausdorff arcs over a linearly ordered index set. Then S'is a compact
atriodic hereditarily unicoherent continuum. In this paper we show that every
nondegenerate indecomposable subcontinuum of S is irreducible between some
two points. Further we show that if S is not an arc then it must be the inverse limit
of a collection of arcs over a countable index set (this result has also been inde-
pendently discovered by G. R. Gordh and S'be Mardedié.) Also a necessary and
sufficient .condition in order for a subcontinuum of $ to be indecomposable is
stated.

Following are some definitions used in this paper. For theorems concerning
inverse limits the reader should consult Eilenberg and S:eenrod [1], and for theorems
concerning arcs the reader should consult Hocking and Young [2], and
R. L. Moore [3]. ‘

DeFINiTION. Suppose M is an arc and 0 and 1 are the two non-cut points of M:
Then the statement that M is ordered from 0 fo 1 means that if x and y are two points
of M then x<y (or x precedes y) if and only if x # 1 and it is true that y = 1 or
M-y is the sum of two mutually separated sets, one containing 0 and x and the
5 — Fundamenta Matliematicae t, XCIV
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