

(In the terminology of [Ma], X is a $\sigma^{\#}$ -space.) But it is known [Ma] that every $\sigma^{\#}$ -space is c-semistratifiable.

5.5. Remark. Since the spaces satisfying the hypotheses of Theorem 5.3 form a hereditary class, we see that a generalized ordered space with a \mathscr{G} -Souslin diagonal must be hereditarily paracompact. Furthermore, (5.4) shows that a generalized ordered space is c-semistratifiable (and hence paracompact) if it has a quasi- G_{δ} diagonal (i.e., if it admits a countable collection Ψ as in the proof of (5.4)).

References

- [B] E. J. Braude, Compact G-Souslin sets are Gδ's, Proc. Amer. Math. Soc. 40 (1973), pp. 250-252.
- [C] G. Creede, Concerning semistratifiable spaces, Pacific J. Math. 32 (1970), pp. 47-54.
- [Ch] J. P. R. Christensen, Topology and Borel Structure, Mathematics Studies 10, Amsterdam 1974.
- [E] R. Engelking, General Topology, Warszawa 1977.
- [GH] L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), pp. 340-362.
- [He] R. W. Heath, Some new results on quasi-metric spaces, Topology Conference, Athens, Ohio, October, 1972 (oral communication).
- T. Ishii, A new characterization of paracompactness, Proc. Japan Acad. 35 (1959), pp. 435-436.
- [Ju] I. Juhasz, Cardinal Functions in Topology, Math. Centre Tracts 34, Math. Centrum, Amsterdam 1971.
- [KM] K. Kuratowski and A. Mostowski, Set Theory, Amsterdam 1968,
- [LF] W. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), pp. 231-240.
- [L₁] D. Lutzer, A metrization theorem for linearly orderable spaces, Proc. Amer. Math. Soc. 22 (1969), pp. 557-558.
- [L2] On generalized ordered spaces, Dissertationes Math. 89 (1971).
- [L_a] On quasi-uniform bases, Proc. Oklahoma Topology Conference 1972, University of Oklahoma, Norman, Oklahoma, pp. 104-117.
- [L₄] Ordinals and paracompactness in ordered spaces, TOPO 72, Proceedings of the Second Pittsburgh Topology Conference, Lecture Notes in Mathematics 378, pp. 258-266.
- [M] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), pp. 375-376.
- [Ma] H. Martin, Topological spaces in which compact sets are uniformly G_{δ} , preprint.
- [R] M. E. Rudin, A subset of the countable ordinals, Amer. Math. Monthly, 64 (1957), p. 351.
- [S] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), pp. 631-632.
- [Sc] B. Scott, Toward a product theory for orthocompactness, preprint.
- [SZ] M. Sion and G. Zelmer, On quasi-metrizability, Canad. J. Math. 19 (1967), pp. 1243-1249.

DEPARTMENT OF MATHEMATICS AND MECHANICS WARSAW UNIVERSITY

Warsaw, Poland

DEPARTMENT OF MATHEMATICS UNIVERSITY OF PITTSBURGH Pittsburgh, Pa.

Accepté par la Rédaction le 9. 1. 1975

Homogeneity, universality and saturatedness of limit reduced powers (II)

by

B. Weglorz (Wrocław)

Abstract. We give some necessary conditions on the pair \mathcal{D} , \mathcal{G}), where \mathcal{D} is an ultrafilter on I and \mathcal{G} is a filter on $I \times I$, which imply that for every structure \mathfrak{A} , the limit ulfrapower $\mathfrak{A}_{\mathcal{P}}^{I}|\mathcal{G}$ is \varkappa -universal (or \varkappa -saturated).

The paper is a continuation of [5]. In § 1, we prove Embedding Theorem which says that every limit ultrapower $\mathfrak{A}_{\mathfrak{p}}^{l}|\mathscr{G}$ contains a lot of elementary submodels which are isomorphic to ultrapowers of \mathfrak{A} reduced by ultrafilters which are obtained in a natural way from \mathscr{D} . The idea of Embedding Theorem (in fact contained in the proof of Theorem 4 in [4]) was suggested to the author by the proof of Wierzejewski's Theorem 1 in [5].

In § 2, we apply Embedding Theorem to give some necessary combinatorial conditions on the pair $(\mathcal{D}, \mathcal{G})$ which imply that for every structure \mathfrak{U} , the limit ultrapower $\mathfrak{V}_{\mathcal{A}}^{I}|\mathcal{G}$ is \varkappa -universal (or \varkappa -saturated).

We assume that the reader is familiar with the notion and basic properties of limit reduced powers (see [1]). We also assume the familiarity with the notions of (\varkappa, ω) -regular and \varkappa -good filters (see e.g. [2]). The only non standard notation is the following: if ϱ is an equivalence relation on I then by I/ϱ we denote the set of all ϱ -equivalence classes over I. We write $I/\varrho = \{I_j \colon j \in J\}$ to denote that I_j 's are all the ϱ -equivalence classes of elements of I.

The author is deeply indebted to L. Pacholski and J. Wierzejewski for a lot of very stimulating discussions which helped to formulate and prove the results presented below.

§ 1. Embedding Theorem. Let \mathscr{D} be a filter on I and ϱ an equivalence relation on I. Let $I/\varrho = \{I_j \colon j \in J\}$. The family $\mathscr{E} \subseteq \mathscr{P}(J)$ defined by: $X \in \mathscr{E}$ if and only if $\bigcup I_j \in \mathscr{D}$ is called the ϱ -image of \mathscr{D} and is denoted by \mathscr{D}/ϱ . It is easy to see that $\int_{I \in X} \mathscr{E}(I) = I$ is a filter on I. Let $I \subseteq I$, we say that I is I is I if there is $I \subseteq I$ such that I is I is I is a filter on I in I is family of all ϱ -composable sets for $I \in I$ we call the family of I composable sets. This family coincides with I is I in I in

EMBEDDING THEOREM. Let $\mathcal D$ be a filter on I and let $\mathcal G$ be a filter on $I \times I$. Assume that $\varrho \in \mathcal G$ is an equivalence relation on I. Put $I/\varrho = \{I_j \colon j \in J\}$ and $\mathcal E = \mathcal D/\varrho$. Then:

- (i) there is an isomorphism $F: \mathfrak{A}^J_{\mathscr{E}} \to \mathfrak{A}^I_{\mathscr{D}} | \mathscr{G};$
- (ii) if $f \in A^I | \mathcal{G}$ and $eq(f) \supseteq \varrho$, then $[f]_{\mathscr{D}} \in Rng(F)$;
- (iii) if \mathscr{D} is an ultrafilter then F is an elementary embedding of $\mathfrak{A}^J_{\mathscr{E}}$ into $\mathfrak{A}^I_{\mathscr{D}}|\mathscr{G}$.

Proof. Let $g \in A^J$. Let us define a function F_0 from A^J into $A^I | \mathscr{G}$ by: $F_0(g)(i) = a$ if and only if $i \in I_j$ and g(j) = a. Then if $g_1 = g_2 \pmod{\mathscr{E}}$ then the set $X = \{j \in J : g_1(j) = g_2(j)\}$ is in \mathscr{E} . But then $\bigcup_{f \in X} I_f = \{i \in I : F_0(g_1)(i) = F_0(g_2)(i)\} \in \mathscr{D}$, consequently we have $F_0(g_1) = F_0(g_2) \pmod{\mathscr{D}}$. Thus, we can define a function F from $A_{\mathscr{E}}^J$ into $A_{\mathscr{E}}^J | \mathscr{E}$ by the condition: $F([g]_{\mathscr{E}}) = [F_0(g)]_{\mathscr{E}}$.

Let $\varphi = \varphi(x_1, ..., x_n)$ be an atomic formula. Then the following statements are pairwise equivalent:

$$\begin{split} \mathfrak{A}_{\mathscr{S}}^{I} &\models \phi \big[\big[g_{1} \big]_{\mathscr{S}}, \ldots, \big[g_{n} \big]_{\mathscr{S}} \big] \,, \\ X &= \big\{ j \in J \colon \, \mathfrak{A} \models \phi \big[g_{1}(j), \ldots, g_{n}(j) \big] \big\} \in \mathscr{S} \\ & \qquad \qquad \bigcup_{j \in \mathbb{X}} I_{j} = \big\{ i \in I \colon \, \mathfrak{A} \models \phi \big[F_{0}(g_{1})(i), \ldots, F_{0}(g_{n})(i) \big] \big\} \in \mathscr{D} \,, \\ & \qquad \qquad \mathfrak{A}_{\mathscr{B}}^{I} | \mathscr{G} \models \phi \big[F(\big[g_{1} \big]_{\mathscr{S}}), \ldots, F(\big[g_{n} \big]_{\mathscr{S}}) \big] \,. \end{split}$$

So, F is an isomorphism, which proves (i).

To check (iii), it suffices to notice that if $\mathscr D$ is an ultrafilter, then $\mathscr E$ is also an ultrafilter and the statements from (*) are equivalent for arbitrary formula $\mathscr D$.

It remains to prove (ii). Let $f \in A^I | \mathcal{G}$ satisfy eq $(f) \supseteq \varrho$. Then, for each $j \in J$, the function f is constants on I_j . Consequently, we can define a function $g \in A^I$ by: g(j) = f(i) for $i \in I_j$. But then we have $F_0(g) = f$, so $[f]_{\mathscr{G}} \in \operatorname{Rng}(F)$. Q.E.D.

Example 1. The assumptions of maximality of $\mathscr D$ in clause (iii) cannot be removed. Indeed, let $\mathscr U$ be the two-elements Boolean algebra, let $\mathscr F$ be the Fréchet filter on ω and $\mathscr G$ be the filter on $\omega \times \omega$ generated by all the equivalence relations ϱ on ω such that ω/ϱ is finite. Then for any equivalence relation $\varrho \in \mathscr G$, the isomorphism F from (i) of Embedding Theorem is not elementary.

Corollary 1. Let \mathcal{D} be a filter on I and let \mathcal{G} be a \varkappa -complete filter on $I \times I$. Let $[f_{\xi}]_{\mathcal{B}} \in A_{\mathcal{B}}^{I}|\mathcal{G}$, for $\xi < \lambda < \kappa$. Then there is an equivalence relation $\varrho \in \mathcal{G}$ such that there is an isomorphism $F \colon \mathfrak{A}_{\mathcal{G}}^{I} \to \mathfrak{A}_{\mathcal{G}}^{I}|\mathcal{G}$, where $I/\varrho = \{I_{j} \colon j \in J\}$ and $\mathscr{E} = \mathcal{D}/\varrho$, with $[f_{\xi}]_{\mathcal{G}} \in \operatorname{Rng}(F)$, for all $\xi < \lambda$. Moreover, if \mathcal{D} is an ultrafilter then F is an elementary embedding.

Proof. Let eq $(f_{\xi}) = \varrho_{\xi} \in \mathscr{G}$, for all $\xi < \lambda$. Since \mathscr{G} is \varkappa -complete, we have $\varrho = \bigcap_{\xi < \lambda} \varrho_{\xi} \in \mathscr{G}$. Consequently, by Embedding Theorem, for $I/\varrho = \{I_{j} : j \in J\}$ and $\mathscr{E} = \mathscr{D}/\varrho$, we have an isomorphism $F \colon \mathfrak{A}^{J}_{\mathscr{B}} \to \mathfrak{A}^{I}_{\mathscr{B}} | \mathscr{G}$, which is an elementary embedding when \mathscr{D} is an ultrafilter. Finally, by (ii), we have $[f_{\xi}]_{\mathscr{B}} \in \operatorname{Rng}(F)$, because of $\varrho \subseteq \varrho_{\xi}$, for all $\xi < \lambda$.

DEFINITION. Let $\mathscr D$ be a filter on I and let $\mathscr G$ be a filter on $I \times I$. Let $\langle \varrho_{\xi} \rangle_{\xi \in x}$ be a sequence of equivalence relations from $\mathscr G$. Then an equivalence relation ϱ on $I \times I$ is a $\mathscr D$ -lower bound of $\langle \varrho_{\xi} \rangle_{\xi < x}$ if and only if there is a sequence $\langle X_{\xi} \rangle_{\xi < x}$ of $\mathscr G$ -composable elements of $\mathscr D$ such that for each $\xi < x$ we have

$$\varrho \cap (X_{\xi} \times X_{\xi}) \subseteq \varrho_{\xi} \cap (X_{\xi} \times X_{\xi})$$
.

If for every sequence $\langle \varrho_{\xi} \rangle_{\xi < x}$ of elements of $\mathscr G$ there is a $\mathscr D$ -lower bound of $\langle \varrho_{\xi} \rangle_{\xi < x}$ in $\mathscr G$ then we say that the pair $(\mathscr D, \mathscr G)$ is \varkappa -closed.

THEOREM 1. Let $\mathscr D$ be a filter on I and let $\mathscr G$ be a filter on $I \times I$ such that the pair $(\mathscr D,\mathscr G)$ is \varkappa -closed. Then if $\langle f_\xi \rangle_{\xi < \varkappa}$ is a sequence of elements of $A^I|\mathscr G$ then there exists an equivalence relation $\varrho \in \mathscr G$ such that there is an isomorphism $F\colon \mathfrak U_{\mathscr G}^I \to \mathfrak U_{\mathscr G}^I|\mathscr G$, where $I/\varrho = \{I_j\colon j\in I\}$ and $\mathscr E = \mathscr D/\varrho$, with $[f_\xi]_{\mathscr G}\in \mathrm{Rng}(F)$, for all $\xi < \varkappa$. Moreover, if $\mathscr D$ is an ultrafilter then F is an elementary embedding.

Proof. Let $\varrho_{\xi} = \operatorname{eq}(f_{\xi})$, for $\xi < \varkappa$. Consider the sequence $\langle \varrho_{\xi} \rangle_{\xi < \varkappa}$ of elements of \mathscr{G} . By our assumptions there is a \mathscr{D} -lower bound of $\langle \varrho_{\xi} \rangle_{\xi < \varkappa}$ in \mathscr{G} , say ϱ . Thus there is a sequence $\langle X_{\xi} \rangle_{\xi < \varkappa}$ of \mathscr{G} -composable elements of \mathscr{D} such that $\varrho_{\xi} \cap (X_{\xi} \times X_{\xi})$ $\subseteq \varrho \cap (X_{\xi} \times X_{\xi})$, for all $\xi < \varkappa$. Take $I/\varrho = \{I_{j} : j \in J\}$ and $\mathscr{E} = \mathscr{D}/\varrho$. Then by embedding Theorem there is an isomorphism $F \colon \mathfrak{A}_{\mathcal{G}}^{I} \to \mathfrak{A}_{\mathcal{G}}^{I} | \mathscr{G}$ which is an elementary embedding when \mathscr{D} is an ultrafilter. It remains to prove that $[f_{\xi}]_{\mathscr{D}} \in \operatorname{Rng}(F)$, for all $\xi < \varkappa$.

For every $\xi < \kappa$, let g be a function defined in such a way that $g_{\xi} \upharpoonright X_{\xi} = f_{\xi} \upharpoonright X_{\xi}$ and $\varrho \subseteq \operatorname{eq}(g_{\xi})$. Of course, by the construction, we have $g_{\xi} = f_{\xi} \pmod{\mathscr{D}}$. Since $\varrho \subseteq \operatorname{eq}(g_{\xi})$, by Embedding Theorem, we have $[g_{\xi}]_{\mathscr{D}} \in \operatorname{Rng}(F)$, for all $\xi < \kappa$, and consequently $[f_{\xi}]_{\mathscr{D}} \in \operatorname{Rng}(F)$, for all $\xi < \kappa$. Q.E.D.

EXAMPLE 2. Let I be the set of all positive rationals and let $\mathscr D$ be a filter on I such that for each $r \in I$, the set $\{x \in I : r \leqslant x\}$ is in $\mathscr D$. For each strictly increasing sequence $\psi = \langle \psi_n \rangle_{n \in \omega}$ of rationals without any accumulation point such that $\psi_0 = 0$, define $\varrho_\psi \subseteq I \times I$, by $\langle i,j \rangle \in \varrho_\psi$ if and only if there is some $n \in \omega$ such that $\psi_n \leqslant i, j \leqslant \psi_{n+1}$. Let G be the filter on $I \times I$ generated by all ϱ_ψ 's. Then G is not ω_1 -complete.

On the other hand, for each sequence $\langle \varrho_n \rangle_{n \in \omega}$ of elements of $\mathscr G$ there is a $\mathscr D$ -lower bound of $\langle \varrho_n \rangle_{n \in \omega}$ in $\mathscr G$. Thus the pair $(\mathscr D, \mathscr G)$ is ω -closed.

Consequently the assumptions of Theorem 1, even in the countable case are weaker than those in Corollary 1.

We have also the following converse theorem.

THEOREM 2. Let \mathscr{D} be a filter on I and let \mathscr{G} be a filter on $I \times I$ such that for each structure \mathfrak{A} and for each sequence $\langle f_{\xi} \rangle_{\xi < \kappa}$ of elements of $A^{I} | \mathscr{G}$ there is an equivalence relation $\varrho \in \mathscr{G}$ such that if $I | \varrho = \{I_{j} : j \in J\}$ and $\mathscr{E} = \mathscr{D} | \varrho$ then there is an isomorphism $F \colon \mathfrak{A}_{g}^{I} \to \mathfrak{A}_{g}^{I} | \mathscr{G}$ with $[f_{\xi}]_{\mathscr{D}} \in \operatorname{Rng}(F)$ for all $\xi < \kappa$. Then the pair $(\mathscr{D}, \mathscr{G})$ is κ -closed.

Proof. Let $\langle \varrho_{\varepsilon} \rangle_{\varepsilon < \kappa}$ be a sequence of elements of \mathscr{G} . If $|A| \ge |I|$ then there are functions $f_{\xi} \in A^{I} | \mathcal{G}$ such that $eq(f_{\xi})^{*} = \varrho_{\xi}$, for all $\xi < \kappa$. Take $\varrho \in \mathcal{G}$ such that if $I/\varrho = \{I_i: j \in J\}$ and $\mathscr{E} = \mathscr{Q}/\varrho$ then there is an isomorphism $F: \mathfrak{A}_s^J \to \mathfrak{A}_s^J | \mathscr{G}$ with $\lceil f_{\varepsilon} \rceil_{\mathscr{Q}} \in \operatorname{Rng}(F)$, for all $\xi < \kappa$. Then there are functions $g_{\varepsilon} \in A^{J}$ such that putting $h_{\xi} = F_0(g_{\xi})$ we have $h_{\xi} = f_{\xi} \pmod{\mathcal{D}}$. Let $X_{\xi} = \{i \in I: h_{\xi}(i) = f_{\xi}(i)\}$. Of course X_r is a \mathscr{G} -composable element of \mathscr{D} . Moreover, if $\langle i,j \rangle \in \varrho$ and $\langle i,j \rangle \in X_r \times X_r$ then $\langle i,j \rangle \in \operatorname{eq}(h_{\xi})$ because of $\varrho \subseteq \operatorname{eq}(h_{\xi})$. Since $h_{\xi} \upharpoonright X_{\xi} = f_{\xi} \upharpoonright X_{\xi}$, we have $\langle i,j \rangle$ $\in \varrho_{\xi}$. Whence $\varrho \cap (X_{\xi} \times X_{\xi}) \subseteq \varrho_{\xi} \cap (X_{\xi} \times X_{\xi})$, for all $\xi < \varkappa$ which shows that ϱ is a \mathcal{D} -lower bound of $\langle \varrho_{\xi} \rangle_{\xi < \kappa}$. Q.E.D.

§ 2. Applications to the universality and saturatedness. To use Embedding Theorem to the universality and saturatedness of limit ultrapowers we need the following facts:

FACT I (Keisler [2], Theorem 1.4). An ultrafilter \mathcal{D} on I is \varkappa^+ -good if and only if for every structure \mathfrak{A} , the ultrapower $\mathfrak{A}_{\mathfrak{D}}^{I}$ is \varkappa^{+} -saturated.

FACT II (Keisler [2], Theorem 1.5). An ultrafilter \mathcal{D} on I is (\varkappa, ω) -regular if and only if for every structure \mathfrak{A} , the ultrapower \mathfrak{A}^I_{ω} is \varkappa^+ -universal.

FACT III. The following three conditions for an ultrafilter D on I are equivalent:

(a) \mathcal{D} is ω_1 -good,

62

- (b) \mathcal{D} is (ω, ω) -regular,
- (c) \mathcal{D} is ω_1 -incomplete.

FACT IV. If for every $\lambda < \varkappa$ and every sequence $\langle b_{\xi} \rangle_{\xi < \lambda}$ of elements of \mathfrak{B} there is a \varkappa -saturated model $\mathfrak A$ and an elementary embedding $F: \mathfrak A \to \mathfrak B$, with $b_\varepsilon \in \operatorname{Rng}(F)$, for all $\xi < \lambda$, then \mathfrak{B} is \varkappa -saturated.

Now these facts together with Embedding Theorem yield the following theorems:

THEOREM A. Let \mathcal{D} be an ultrafilter on I such that for some $\rho \in \mathcal{G}$, the ρ -image of \mathscr{D} is (ω, ω) -universal. Then for every structure \mathfrak{A} , the limit ultrapower $\mathfrak{A}_{\mathscr{D}}^{l}|\mathscr{G}$ is ω -saturated.

Proof. Let us remark that if \mathcal{D}/ϱ is (ω, ω) -regular then for every $\varrho_1 \in \mathcal{G}$ there is $\varrho_2 \subseteq \varrho_1$ such that $\varrho_2 \in \mathscr{G}$ and \mathscr{D}/ϱ_2 is also (ω, ω) -regular. In fact, we can take $\varrho_2 = \varrho \cap \varrho_1$.

Let $\langle [f_n]_{\mathscr{Q}} \rangle_{n < m}$ be a finite sequence of elements of $A_{\mathscr{Q}}^I | \mathscr{G}$. Let $\rho_n = \operatorname{eq}(f_n)$ and take $\varrho^* = \varrho \cap \varrho_0 \cap ... \cap \varrho_{m-1}$. Let $I/\varrho^* = \{I_j : j \in J\}$ and $\mathscr{E} = \mathscr{D}/\varrho^*$. Then by Embedding Theorem there is an elementary embedding F of $\mathfrak{A}^J_{\mathscr{E}}$ into $\mathfrak{A}^I_{\mathscr{E}}|\mathscr{G}$ with $[f_n]_{\mathscr{Q}} \in \operatorname{Rng}(F)$, for all n < m. Moreover, since \mathscr{E} is (ω, ω) -regular, by Facts III and I, the structure $\mathfrak{A}^J_{\mathfrak{E}}$ is ω_1 -saturated, whence ω -saturated. Consequently, by Fact IV, the structure $\mathfrak{A}^I_{\alpha}|\mathscr{G}$ is ω -saturated.

Example 3. Let $\mathfrak{N} = \langle \omega, \leqslant \rangle$ be the structure of natural numbers with the natural ordering. It is easy to construct a sequence of sets I_n and a sequence of ultrafilters \mathcal{D}_n (on I_n), $n \in \omega$, such that if we define $\mathfrak{A}_0 = \mathfrak{R}$, $\mathfrak{A}_{n+1} = (\mathfrak{A}_n)^{I_n}$ then there is a function $f_n \in A_n^{I_n}$ such that for every $a \in A_n$ we have $\{i \in I_n : a \leq f_n(i)\} \in \mathcal{D}_n$. Put $\mathfrak{B} = \bigcup \mathfrak{A}_n$. It is well known (see [1], Theorem 5.1) that there is a set I and an ultrafilter $\mathscr E$ on I such that for some filter $\mathscr G$ on $I \times I$, we have $\mathfrak B \cong \mathfrak N^I_{\mathscr E} | \mathscr G$. On the other hand it is easy to see that $\mathfrak B$ is not ω_1 -saturated, for, there is a countable increasing sequence of elements of B which is cofinal in B. Thus, in Theorem A. we cannot replace ω by ω_1 .

THEOREM B. Let D be an ultrafilter on I and let G be a filter on I×I. Let A be a structure such that $\mathfrak{A} \neq \mathfrak{A}_{\alpha}^{I} | \mathscr{G}$.

- (i) If \mathfrak{A} is ω -saturated then $\mathfrak{A}^{I}_{\infty}|\mathscr{G}$ is ω -saturated too.
- (ii) If either |I| or |A| is a nonmeasurable cardinal, then $\mathfrak{A}^I_{\omega}|\mathscr{G}$ is ω -saturated without any assumption on A.

Proof. Since $\mathfrak{A} \neq \mathfrak{A}_{\mathfrak{B}}^{I} | \mathcal{G}$, there is a function $f \in A^{I} | \mathcal{G}$ which is not constant on any set from \mathcal{D} . Take $\varrho = eq(f)$. Then for each $\varrho' \subseteq \varrho$, the filter \mathcal{D}/ϱ' is nonprincipal.

If \mathcal{D}/ρ is not ω_1 -complete then it is (ω, ω) -regular by Fact III and we can get the theses of Theorem B from Theorem A.

So, suppose that for no $\varrho' \subseteq \varrho$, $\varrho' \in \mathcal{G}$ the filter \mathfrak{D}/ϱ' is (ω, ω) -regular. Then both |I| and |A| must be measurable and we need the assumption of (i).

Let $\langle \lceil f_n \rceil_{\mathscr{Q}} \rangle_{n < m}$ be a finite sequence of elements of $A_{\mathscr{Q}}^I | \mathscr{G}$. Let $\varrho^* = \varrho \cap \varrho_0 \cap ...$... $\cap \varrho_{m-1}$, where $\varrho_n = \operatorname{eq}(f_n)$, n = 0, ..., m-1. Let $I/\varrho^* = \{I_i: j \in J\}$. Then & = \mathcal{D}/ϱ^* is an ω_1 -complete ultrafilter on J. By Łoś Ultraproduct Theorem for ω_1 -complete ultrafilters \mathfrak{A}_{α}^J is ω -saturated if and only if \mathfrak{A} is ω -saturated. Consequently, by Embedding Theorem we have an elementary embedding F of \mathfrak{A}_s^J into $\mathfrak{A}_{\mathfrak{g}}^{I}|\mathscr{G}$, with $[f_n]_{\mathfrak{g}} \in \operatorname{Rng}(F)$, for all n < m. Thus, by Fact IV, we see that $\mathfrak{A}_{\mathfrak{g}}^{I}|\mathscr{G}$ is ω -saturated. Q.E.D.

Remark. Theorem B is closely related to a theorem of Wierzejewski ([5]. Theorem 2) that if $\mathfrak A$ is an ω -homogeneous then $\mathfrak A^I_{\mathfrak A}|\mathscr G$ is ω -homogeneous. But in Theorem B, for the nonmeasurable case, we have a stronger thesis without any assumption on A.

Example 4. Let F, G be filters from Example 1, and let A be the ring of integers. Then it is easy to check that $\mathfrak{A}^{\omega}_{\omega}|_{\mathscr{G}}$ is not ω -saturated. Consequently, in Theorems A and B we cannot omit the assumption that \mathcal{D} is maximal.

THEOREM C. Let \mathcal{D} be an ultrafilter on I and let \mathcal{G} be a filter on $I \times I$. Then there exists $\varrho \in \mathcal{G}$ such that \mathcal{D}/ϱ is (\varkappa, ω) -regular if and only if for every structure \mathfrak{U} , the limit ultrapower $\mathfrak{A}^{I}_{\infty}|\mathscr{G}$ is \varkappa^{+} -universal.

Proof. Suppose there is $\varrho \in \mathcal{G}$ such that \mathcal{D}/ϱ is (\varkappa, ω) -regular. Let I/ϱ $=\{I_i: j \in J\}$ and $\mathscr{E}=\mathscr{D}/\rho$. Then, by Fact II, the ultrapower $\mathfrak{A}_{\mathcal{E}}^J$ is \varkappa^+ -universal. By Embedding Theorem there is an elementary embedding $F: \mathfrak{A}_{\mathfrak{S}}^J \to \mathfrak{A}_{\mathfrak{Q}}^J | \mathscr{G}$. Consequently $\mathfrak{A}_{\alpha}^{I}|\mathscr{G}$ is \varkappa^{+} -universal as an elementary extension of a \varkappa^{+} -universal structure.

The converse implication follows in the same way as in Keisler's proof of Fact II (see [2]).

B. Weglorz

64

Remark. After we had the result that the existence of $\varrho \in \mathscr{G}$ such that \mathscr{D}/ϱ is (\varkappa, ω) -regular implies the \varkappa^+ -universality of $\mathfrak{A}_{\mathscr{B}}^I|\mathscr{G}$, L. Pacholski has drowe our attention that the condition above is also sufficient for the \varkappa^+ -universality of $\mathfrak{A}_{\mathscr{B}}^I|\mathscr{G}$ and that the Keisler's proof from [2] works also in our case.

Theorem D. Suppose $\mathscr D$ is an ultrafilter on I and $\mathscr G$ a filter on $I \times I$ such that the pair $(\mathscr D,\mathscr G)$ is \varkappa -closed. Suppose that for every $\varrho_1 \in \mathscr G$ there is $\varrho_2 \subseteq \varrho_1$, $\varrho_2 \in \mathscr G$ such that $\mathscr D/\varrho_2$ is \varkappa -good. Then for every structure $\mathfrak A$, the limit ultrapower $\mathfrak A_{\mathscr B}^I/\mathscr G$ is n-saturated.

Proof. Let $\langle [f_\xi]_\mathscr{D}\rangle_{\xi<\kappa}$ be a sequence of elements of $\mathfrak{A}_\mathscr{B}^I|\mathscr{G}$. From Theorem 1, it follows that there is a relation $\varrho\in\mathscr{G}$ such that if $I/\varrho=\{I_J\colon j\in J\}$ and $\mathscr{E}=\mathscr{D}/\varrho$ then there is an elementary embedding $F\colon \mathfrak{A}_\mathscr{F}^I\to\mathfrak{A}_\mathscr{B}^I|\mathscr{G}$ with $[f_\xi]_\mathscr{B}\in\mathrm{Rng}(F)$, for all $\xi<\varkappa$. From our hypotheses we can additionally assume that \mathscr{D}/ϱ is \varkappa -good. Then, by Fact I, $\mathfrak{A}_\mathscr{F}^I$ is \varkappa^+ -saturated. Thus the result follows from Fact IV.

Remark. L. Pacholski has informed me that he has a combinatorial condition on a pair $(\mathcal{D}, \mathcal{G})$ which is equivalent to the statement: "for every \mathfrak{A} the limit ultrapower $\mathfrak{A}^{\mathbb{I}}_{\mathbb{F}}|\mathcal{G}$ is \varkappa -saturated". For more informations see [3].

References

- [1] H. J. Keisler, Limit ultrapowers, Trans. Amer. Math. Soc. 107 (1963), pp. 382-408.
- [2] Ultraproducts which are not saturated, J. Symb. Logic 32 (1967), pp. 23-46.
- [3] L. Pacholski, Homogeneity, universality and saturatedness of limit reduced powers (III) (to appear).
- [4] B. Weglorz, Limit generalized powers, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), pp. 449-451.
- [5] J. Wierzejewski, Homogeneity, universality and saturatedness of limit reduced powers I, Fund. Math. 94, pp. 35-39.

Accepté par la Rédaction le 15. 1. 1975

The irreducibility of continua which are the inverse limit of a collection of Hausdorff arcs

· by

Michel Smith (Atlanta, Georgia)

Abstract. Consider the space which is the inverse limit of a collection of generalized (non metric) arcs over a linearly ordered index set. Such a space is a hereditarily unicoherent atriodic Hausdorff continuum. It is shown that every indecomposable subcontinuum of the space is irreducible between some two points. A necessary and sufficient condition in order for a subcontinuum of the space to be indecomposable is stated. Further it is shown that the space must be a generalized arc if it is not the inverse limit over a countable subset of the index set. Thus it follows that the space must be an irreducible continuum.

Introduction. In this work a continuum is a closed connected subset of a Hausdorff space and an arc is a compact continuum which has only two non-cut points. It is known that if M is a nondegenerate compact atriodic hereditarily unicoherent continuum and every nondegenerate indecomposable subcontinuum of M is irreducible between some two points then M is irreducible between some two points. (Signar M. H. Proffitt [4] for a stronger result.) Suppose S is the inverse limit of a collection of Hausdorff arcs over a linearly ordered index set. Then S is a compact atriodic hereditarily unicoherent continuum. In this paper we show that every nondegenerate indecomposable subcontinuum of S is irreducible between some two points. Further we show that if S is not an arc then it must be the inverse limit of a collection of arcs over a countable index set (this result has also been independently discovered by G. G. G ordh and G be Mardešić.) Also a necessary and sufficient condition in order for a subcontinuum of G to be indecomposable is stated.

Following are some definitions used in this paper. For theorems concerning inverse limits the reader should consult Eilenberg and Scientrod [1], and for theorems concerning arcs the reader should consult Hocking and Young [2], and R. L. Moore [3].

DEFINITION. Suppose M is an arc and 0 and 1 are the two non-cut points of M. Then the statement that M is ordered from 0 to 1 means that if x and y are two points of M then x < y (or x precedes y) if and only if $x \ne 1$ and it is true that y = 1 or M - y is the sum of two mutually separated sets, one containing 0 and x and the x - y containing 0 and y and the y - y is the sum of two mutually separated sets, one containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y - y containing 0 and y and the y containing 0 and y and y and y are two points of y are two points of y and y are two points of y and y are two points of y