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Approximate maxima
by

Richard J. O’Malley (Milwaukee, Wisc.)

Abstract. Tt is well-known. that if f [0, 1]~+R it continuous, then f has an absolute maximum.
An analogous, not so simple, property is proven for approximately continuous functions. Appli-
cations include a new characterization of convex functions. It is further shown that this property
does not extend to approximately continuous functions of several variables.

That a real-valued continuous function defined on [0, 1] has an absolute maxi-
mum is a simple elementary fact. The purpose of this paper is to prove an analogous,
not so simple, property for real-valued approximately continuous functions defined
on [0,1]. We say that a function f has an approximate maximum at x, if
{x: f(x)>flx0)} has density zero at xo. We show that any appioximately continu-
ous function has an approximate maximum. In two ways this theorem is the best
possible. First, A. M. Bruckner has communicated to this author an example of
a bounded approximately continuous function which has no relative extrema.
Second, we provide an example to show that this result does not extend to ap-
proximately continuous functions of several variables. The applications of this
property include a new characterization of convex functions.

We will require the foilow{ng definitions and observations. For further de-
velopment of these ideas the reader is referred to Siks [7], O’Malley [5] and [6],
and Khintchine [4]. All sets and. functions will be required.to be Lebesgue measur-
able relative to [0, 1], and m will denote Lebesgue measure.

For a fixed set E and point x, the upper (lower) density of E at x, is

d™(E, xg) = limsy mED

', %) = limsu R
o) = IR T

L. m(Er\I))

1_(E, xp) = liminf ———— ).
(‘ )

Here the notation I—»x, (read I converges to xo) is used to signify that we consider
all possible sequences of non-degenerate intervals, containing x,, whose measures
tend to zero. It is well-known that '

d~(E, x)+d_([0,]]~E,x) =1 for all x,


GUEST


76 R.J. O'Malley

and

d(E,x)=d_(E,x) =1 for almost all x in E.

When d7(E, x) = d_(E, x) = o we say that E has density o at x.

A function f is approximately continuous if and only if for every a the sets
{x: fix)>a}, {x: f(x)<a} have density 1 at all their points. It is then clear that
it f is approximately continuous and {x: f(x)>a} has positive upper density at x,
then x belongs to {x: f(x)=a}. Also, all approximately continuous functions have
the Darboux (Intermediate Value) Property.

Finally, a function f has an approximate maximum at x if {x: f(x)>(x)}
has density zero at x,. If f has a relative maximum at x, it has an approximate
maximum at x,.

THEOREM 1. Let f: [0, I]-=R be approximately continuous. Then f has an ap-
proximate maximum at some point x, in [0, 1].

Proof. This statement is obvious if f is constant on any set E of positive
measure. We will therefore assume that {x: f(x) = ¢} has measure zero for all c.
In particular the image, f(I), of any non-degenerate interval is a non-degenerate
interval. The proof will rest on the construction of a strictly increasing ‘sequence
of numbers y, and an associated sequence of closed intervals [a,, b,] for which:

1) [@ys1s Duri]=(@sb2);
2) byiy =1 <3(0,—a);
3 m({x: F)>p,} 0 [@nr1s bn+1])>l(bn+1—' )3 and,

4 m({x: fxX)>yyee} 0 (e, D)< 2"H(a!—c) for all (¢, d) with (¢, dy=[a,, b,]

and (¢, d) contaiping either a,,, or b,,,.

Then 1) and 2) imply that [a,, b,] converges to a unique point x,. For this x,
we have by 3) that f(xo)>y, for all n. Finally, 4) gives that {x: f(x)> f(xo)} has
density zero at xg.

It will suffice to construct Yis [y, Byl y» and [aj, b,1. We will assume further
that fis bounded. This will cause no loss of generality since we may substitute for f
the new function g = (f)(1+]f)~*. This g will be approximately continuous and
have the same approximate maxima as f.

We first prove a lemma.
LeEMMA. Let H be a measurable subset of an interval I and Hy; = \JJ: J = (a b)

<l and m(H N J)>—m(J) Then for each component interval (c, d) of H, we have

that m(H ~ (2, b)) l+1(b u) and consequently m(H) <2 ‘m(H).

’ Proof. Let (¢, d) be any component interval of H;. Let £>0. We select k’l. finite
collection J, J,, ..., Jy of subintervals of (c d) in such a way tha.t no point is in
more than two of the J’s and
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1
a) m(H nJy) > —2—,m(Jk), k=1,.., N, and
b) m(Hy U . U Jy)>(1—8)(d—c).

Then
N

%(Z m(H A Jk))

k=1

N
1
Z i{ﬂ(z m(J,J)

k=1

1
>5ﬁ,—1 (1—e)(d—c)

m(H A (c, d))

which is enough to prove the lemma.

“We now return to the proof of Theorem 1 noting that AcB implies that
A4,cB,. &

Selection of y; and [a,, b;]. We have that f([0, 1]) = I, is a non-degenerate
interval. If there is an x, in [0, 1] such that f(x,) = ro, where ro is the right end
point of Iy, then f has an absolute maximum, and we are finished. Hence we must
assume that ry is not attained. We define H(y) = {x: f(x)>y} for y in I, and define
H\(»), as in the lemma, as JJ: J = (a, b) and m({x: f(x)>y} 1 (a, B))>$(b—a).
Then H,(y) is an open set with the property that in each component (c, d) of H,(),

m({x: f(x)>y} 0 (e, D) =4(d—0),
and also . ‘
m(H, () <dm({x: f(x)>y}) = 4m(H()).

As a function mapping I, into R, m(H() = h(») is a strictly decreasing positive
continuous function with lim A(y) = 0. Let & = §[r,—max((0), f(1))]>0. By the
approximate continuity of?rgt 0 and 1 it follows that there exists a fixed d>0 such
that for all 0<x<d<}
m({x: flx)>ro—e} [0, 1<hx
and
m({x: fx)>ro—e} n[1—x, 1])<dx. ,

For y, we sclect a fixed real number with ry—&<y; <r and 0<m (H,(y1))<d.
This is possible because lim m (H(»)) = 0. We claim that no component interval
y-rro

of H,(y,) can have 0 or 1 as an end point. It will suffice to show this for 0 only.
Suppose that 0 is the left end point of a component of Hy(yy). This component
is then of the form (0, b). From the fact that m (H;(y,))<8 it follows that b<d.
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Hence m({x: f(x)>ro—e} n(0,b))<}b, and since y,>ro—e it follows that
m({x: f(x)>y,} 0 (0, b))<}b. However, as was mentioned above; in any compact
interval (c,d) of H;(p;) we must have that m({x: f(x)>y,} n (c, d))=1(d—c).
This contradiction assures that no component interval of H,(y;) can have 0 as
a left end point. For [a;, b,] we select the closure of any component of H,(y,).

Selection of y, -and [a,, b,]. Our method will be similar to the above,
but among the properties 1), 2), 3), and 4) it is 3) that will present the difficulty.
It will necessitate that we introduce two auxiliary sequences: u, a strictly in-
creasing sequence of numbers with #; >y;, and [¢, d,], a nested sequence of inter-
vals contained in (a,, b,). Any pair, u, and [¢,, d,], will satisfy 1), 2) and 4) relative
to y; and [a;, b;]. From this sequence of pairs we will select y, and [a,, b,]. For y,
and [ay, b(] it is clear that :

m({x: f0)>p1} 0 [ag, b >4y —ay)

and .
m({x: fG) >y} 0 T)<Im()

for all open intervals J containing either @, or b,. From these two statements it
follows that y, >max(f(ay),f(b,)) and also that f([a,, b,]) is 2 non-degenerate
interval with right end point s, >y,. If there is an x, in [a;, b,] such that f(x,) = 5,
then x, is in (a,, ,), and we have found a relative maximum and are finished,
‘We must assume, therefore, that s, is not attained.

We define

H;(y) = J: J=(a,b)c[a,b]],

and
m({x: f(x)>y} nJ)>4m({J).

As before we can find a u; with 5,>u, >y, for which m(Hz(u]))<1(lv1 —a,) and
a; <c<d<b, for all components (c, d) of Hj(u,). We select for [c,, d,] the closure
of any component of Hj(u,).

In general, we will define for k=2

Hg()’) =UJ:J=(a, Bele-1, de—yq],
and o
m{{x: f)>y} N J)>3m(J).
Then we select 1w, in f([¢y—y, d—y]) With w,>w,_, so that
m(Hg(”k))<i(dk—1_ck—1) 5

and ¢_;<c<d<d_, for all components (¢, d) of Hi(u). For [c;, d] we select
the closure of any component of H¥(u,).
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It can be easily verified that each pair u, [¢, d,] satisfies 1), 2) and 4) relative
to y, and [ay, b;]. We will also have

O] ({x SO >ul o (o, dk))/ (de~cy) .

The nested sequence [¢, d,] converges to a unique point x,. Since {x: f(x)>u1}
o {x: fx)>u.}, (+) implies that {x: f(x)>w,} has upper density at least % at x,.
This in turn implies that f(x,)>u,>y,. The set {x: f(x)>y,} has dens1ty 1at
all of its points. Therefore, there is a 6>0 such that for all open intervals J of
length less than 8 and containing x; we have

m({x: fR)>p} N T)>dmJ) .
We select a k such that dy—c,<8. We let y, = u, and [a,, b,] = [cy, d]. Then y,
and [a,, b,] have propertics 1), 2), 3), and 4). In all other selections we employ
the same process, using H,’,‘(y) at stage m. This completes the proof.

The following remarks, concerning approximately continuous functions

£:[0, 1]=R, can be established from a perusal of the aboveé proof, -

1. There is a sequence of pomts {x,} such that f has an approximate maximum
at each x, and

sup{f(x,): n=1,2,3,..} = sup{f(x): 0<x<I}<+o0.
2. Let [a, b]=[0, 1]. If f is niot monotone on [a, b], there is an x, in (a, b) at
which f has an approximate maximum or minimum,
From 2 and the fact that f has the Darboux property we have:

3. Let §'be the set of points where f has an approximate maximum or minimun.
If S is a finite set, then f is continuous and the approximate extrema are relative

extrema. Sze also [7].
For the rest of the paper, we will need these additional definitions. The ap-

proximate limit superior-of a function g at a point x4 is
wp-hmsupg(x) = inf[y: {x: g(x)>y} has density 0 at x,].
Thc ap-liminf and ap»lxm are defined in an obvious fashion. For a function f defined
in a neighborhood of [0, 1] let
A*f(x, B) = fler )+ —B)~2f(x) .

Using 4% (x, k) we define the upper appwxlmate Schwarz derived number of f

at x as
f h)
ADZf(x) = ap-llm sup .
Also, f is approximately smooth at x if
. A(x, )
ap-lim ———— = 0.
=0 h .
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A function f is convex if f(3(x+3))<$(fx)+f(») for all x, y. From these defi-
nitions we have:

4. Let f be approximately smooth at x, and have an approximate maximum
at xg. Then '

Foroth~fG0) _
- .

ap-lim
h=0
That is, f has an approximate derivative of zero at x,.

Theorem 1 and Remark 4 form the basis for the following results. Theorem 2
is an extension of a result by Zygmund [8]. Theorem 3 is a new characterization
of convex functions analogous to one by Hardy and Rogosifiski [3].

TuEOREM 2. Let f: [0, 1]~R be approximately continuous and approximately
smooth at every x in [0, 1]. Let D be the set of x at which f has an approximare deriva-
tive, f'sy. Then D has the power of the contimum in each subinterval of [0, 1].
Further, f',, has the Darboux property in D. That is, let x and y belong to D and
Sap() = 0, f0s(3) = P and let y be between o and . Then there is a z between x
and y such that ', (2) = v. .

TrEoREM 3. Let f: [0, 1]>R be approximately continuous. Let AD; fx)=0
except for x in a countable set E, and let f be approximately smooth at each x in E.
Then f is convex. '

The proofs in [8] and [3] employ only basic methods. To obtain proofs of
Theorems 2 and 3 only minor modifications, using Theorem 1, are needed. For
brevity we delete the arguments.

As was mentioned in the introduction, Theorem 1 does not extend to ap-
proximately continuous functions of several variables. Here, the concept of ap-
proximate continuity for functions of several variables requires only a slight re-
finement of the definition of density. We now consider all balls converging to X in
the definition of upper and lower densities. The following is an example of an ap-
proximately continuous function f defined on the unit square,

{(x,): 0<x<1,0<y<1},
without any approximate maximum.
On the lower half unit square = {(x, y): O0<x<I, y<x} let

a(l-x) for y=x'"** 0gagl, 0<x<l,
fx, N =11-x for Ogy<x?, O<x<l,
0 for x=yp=0. )
On the upper half unit square let f(x, ¥) = f(», x). This function is continuous
everywhere except the origin, and approximately continuous at the origin. Further,
it is easy to verify that for every (xp,»,) we have

{Ce, 201 %, 9> 10t yo))

has' positive upper density at (x,, 330).
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It is ‘worthwhile to end the paper by reinterpreting Theorem 1. In[1] and [2],
a topology d, called the density topology, was introduced. The continuous functions,
relative to d, are precisely the approximately continuous functions. A measurable
set U is d-open if and only if U has density 1 at all its points. It is clear from the
definitions that if a function f has an approximate maximum at x, it has a relative
maximum at X, in the d-topology. Thus, Theorem 1 becomes:

Let f: [0, I]—R be d-continuous. There is a point x, in [0, 1] at which f has
a d-relative maximum. We note that Theorem 1 could be improved and the proof
simplified if [0, 1] were a compact sef in the d-topology. However, no infinite set
is compact in the d-topology.
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