ANR’s and NES’s in the category
of mappings on metric spaces

by

Gerald S. Ungar (Cincinnati, Ohio)

Abstract. ANR'’s and NES’s are defined in the category of mappings on metric spaces. It
is shown that many of the theorems which are true for the usual ANR’s and NES’s are true in this
category. It is also shown that these maps are like fiber maps and several theorems are proved
which give sufficient conditions for a map to be a fiber map.

1. Introduction. In [3] Massey asked the question: What is the relation between
the various types of fiber maps? A particular case of this is when does a Serre fibra-
tion have the slicing structure property (SSP) (Maps with the slicing structure
property over paracompact spaces are Hurewicz fibrations). In [7] Michael showed
that a closed map which is n-regular for all nis a Serre fibration. Hence the question
that this author has considered for many years is when does an n-regular map have
the SSP. There are many examples of n-regular maps which do not have the SSP,
however there are no examples with “nice” base spaces. V

‘While working on this problem I noticed that many of the things I wanted
to prove and many of the proofs had analogues in the theory of absolute neighbor-
hood retracts. In [13] an attempt was made to put these similarities into categorical
language. Using some of the ideas in [13] we were able to show that in the category
of mappings on metric spaces n-regular maps are very much like LC" spaces and
maps with the SSP are very much like ANR’s. From this we were able to extend
the results of [11].

Section 2 contains the definitions of n-NES, n-ANR NES and ANR in the
category of mappings on metric spaces (!).

Sections 3, 4 and 5 contain results which show that the analogy mentioned
above is essentially correct. A few of the more important results are summarized
in the following:

Let p be a mapping from a complete metric space £ onto a metric space B,

() It has been pointed out to the author that Dold defined similar objects in the category
of mappings and the reader should see his paper, The fixed point index of fibre-preserving maps,
Inv. Math. 25 (1974), pp. 281-298,
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(2) The map p is an (n+1)-NES iff B is LC" and p is n-regular.

(b) The map p is an (n+1)-ES iff it is an (n-+1)-NES and B and the fibers
are C".

(©) If dimp<n then p is an NES iff it is an ANR iff it is open and locally
contractible iff it is 7-regular and B is LC" (this gives a condition for an n-regular
map to be n+1 regular). )

(d) If B is the union of two closed sets By and B,, with B, = B; n B, and
if each p; = plp~Y(B,) is an NES, then p is an NES.

The results of Section 5 of which (d) is a special case extend some of Arnold’s
(TAMS 164 (1972), pp. 179-188).

Szction 6 contains the applications of this material to fiber maps. It is shown
that a closed map p which is an NES has the SSP, and in some cases if we omit
the condition that p is closed then p almost has the SSP (i.e. there exists a cover
of the domain such that p restricted to each element of the cover has the SSP).
When all of these results are pieced together one has several conditions which.imply
‘that a map has the SSP. In particular, (6.2) extends the main result of [I1]: "

Metric was chosen as the basic category to work with because it is used in
Theorem 1.2 [5] which is an important tool in this paper. With care one could re-
word all theorems in Sections 3,4 and 5 so that they would be true in the category
of mappings on separable metric or compact metric spaces. In order to make this
paper self contained all definitions will be given as they apply to the category of
mappings on metric spaces, rather than in the categorical language of [13]. '

2. Definitions and notations. Let Q be a class of topological spaces. The con-
cepts of absolute neighborhood retract and neighborhood extension space for the
class Q have been defined in [1] and [5]. In this section these definitions will be
‘extended to classes of mappings. In order to see what is needed consider the follow-
ing definitions from [5]. e
(2.1) DerFINITION. A @ space X is called an n-AR(Q) (n-ANR(Q)) iff whéi-
ever X is embedded as a closed subspace of a O space ¥ with dim Y—X'<n, tlén
‘X is a retract of ¥ (X is a retract of a neighborhood in Y). X is called an AR(Q)
‘(ANR(Q)) if it satisfies the above definition with no restriction on, dim Y—X.
(2.2) DEFINITION. A space X is called an n-ES(Q) (n-NES(Q)) if whenever
Yisin Q, Cis a closed subspace of ¥ with dim Y—C<n and fi C—Xis a continu-~
‘ous map, then f has a continuous extension to Y (to some neighborhood U of c).
‘Again the space X is an ES(Q) (NES(Q)) if it satisfies the above with no restriction
on dim ¥Y—C. o
Let M be the full subcategory of TOP whose objects are metric spaces. Let
M(M) denote the category whose objects are mappings between metric spaces
and whose morphisms are pairs of maps (f}, f5) such that there exists mappings p,
and p, between metric spaces satisfying p, f; = fop,. We will denote this by (f,, /2):
P1—P2- :

i
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In order to define ANR’s and NES’s in this category we first have to define
closed, open, dimension, complement, retract and extension for the category M(M)..
Once these are all defined the definitions of ANR and NES in this category will
be that of (2.1) and (2.2) with the word space replaced by map.

(2.3) DeFNITION. Let p: E—B. A submap of p is a map p': E'— B’ s‘uchv that:
E'cE, B'cB and (abusing notation) p’ = p|E’. The submap p’ will be called

i closed (open) submap if both E’ and B’ are closed (open).

(2.4) DEFINITION. If p': E'— B’ is a submap of p: E—B then the complement
of p' in p denoted by p—p’ will be p|lE—E’ (i.e. p—p': E—E'—B).

(2.5) DurNrtioN. If p': E'—B' is a submap of p: E—B then p’ is a refract
of p if there exists retractions ry: E—E’, r,: B—B' such that p'r( = ryp.

(2.6) DeFmaTION. If p: E—B with E and B metric then the dimension of p
denoted by dimp will be the maximum of the covering dimension of E and the
covering dimension of B. '

(2.7) DEFNITION. Let g': C—D be a submap of ¢: X—Y and (f, 9): ¢'—p.
A pair of maps (F, G): g—p is an extension of (f, g) if Fis an extension of f and
G is an extension of g.

We are now in a position to define ANR’s and NES’s-for mappings on metric-
‘spaces. )
(2.8) DEFINITION. A map pe M(M) is called an

- n-AR(M(M)) (n-ANR (M)

if whenever it is embedded as a closed submap of a map g € M (M) with dimg—p<n
then p is a retract of ¢ (p is a retract of an open submap of g). The map p is called
an AR(M(M)) (ANR(M(M))) if it satisfies the above with no restriction on
‘dimg—p. :

(2.9) DEFINITION. A map p will be called an n-ES (4 (M) (n-NES (M (M)
if whenever ¢’ is a closed submap of a map ge M(M) with dimg—g¢'<n. Then
any morphism (f, g): ¢'—p has an extension to g (to some open submap of g).
Again p is an ES(M(M)) (NES(M(M))) if it satisfies the above with no restriction
on dimg—q'. . -

Belore proceeding we will also need the following definitions and notation.
. (2.10) NotaTioN. The unit sphere (ball) in Buclidean n space will be denoted
by S*4(B". It (X,d) is a metric spaces and xo is a point of X then N(xg,€)
= {xe X| d(x, xo)<e}. The notation p: E—+»B will mean that p is a mapping
of E onto B.

(2.11) DEFINITION. An open map p: E—B is n-regular if given any x in E’
and any neighborhood U of x there exists a neighborhood ¥ of x such that if
fi S"V n p~i(y) for some y in B (m<n) then there exists F: B"* iU p~ (y):
which is. an extension of f.
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(2.12) DEFINITION. A map p: E—B has the slicing structure property (SSP)
if for each point b in B there is a neighborhood U, of b and a map ¥,z p~*(Uy) x
% Uy—p~}(U;) such ‘that (1) y,(e, p(e)) = e and (2) p¥, = @, (the projection
.on U,). The map ¥, is called a slicing function.

There is a close relation between maps which have the SSP and Hurewicz
fibrations (see [2], [11].

(2.13) DernNITION. If A4 is a category with open and closed subobjects and X
and Y are objects in 4 then Y is an extension object for X, denoted XY, means
given any closed subobject C of ¥ and any morphism f: C—Y there exists an ex-
tension F: X— Y of f. Y is a neighborhood extension object for X, denoted by Xz, Y,
means given any closed subobject C of X and any morphism f: C—Y there exists
an extension of fto an open subobject of X which contains C.

3. n-NES’s and n-regularity. In this section we will give some characterizations
-of mappings that are n-ANR’s and n-NES’s. The main idea in this section is that
.n-regularity of a mapping corresponds to local n-connectivity of a space. In this
section all spaces will be assumed. metric.

(3.1) Lemma. 4 O-NES(M(M)), p: E—B is an open map.

Proof. Let p: E—B be a 0-NES (M (M)) and assume that it is not open. Hence,

‘there exist an-open set U in E such that;-(‘l—fjis not open in B. And so there exist
xep(U) and x;€ B—p(U) such that {x;} converges to x.

Let C = | {1/i} U 0, let g: 0—C be inclusion, let #: 0—E be defined by h(0)
ds some point in p~'(x) and define k: C—B by £(0) = x and k(1/i) = x;. Note
that g is a closed submap of 1¢, diml; = 0 and (h, k): g—p. Hence, there exists
a map H from an open set ¥ of C into E such that 0 € ¥, H extends 4 and pH = k.
Finally, H™*(U) is open in C and 0 e H Y(U) so there exists an i such that
1/ie H™*(U). Therefore x; = k{1/i} = pH(1/i) e p(U). This is a contradiction so
the proof is complete.

(3.2) CorOLLARY. An n-NES(M(M)), p: E—B is an open map.

Proof. This follows from (3.6) of [13] which implies that an n-NES (M (M)) is
- 0-NES(M(M)) and hence by (3.1) is open. :

(3.3) Lemma. If p: E-—>»B is an (n+1)-NES(M(M)) then B is LC"

Proof. Assume that B is not LC". Then there exists a point b of B, an ¢>0,
an integer k<{n, and a sequence of maps f;; S*-N(b, 1/i) such that /i has no ex-
tension to a map from B**! into N(b, &).

Let S; be {xeB*"*| |x| = 1/i} and let D= (J {S;} U 0. Note that , is
a k sphere and we will assume that f;: S;—~N(b, 1fi). Let X be a discrete space with
«cardinality of the continuum and let g be a one to one function from X onto B**!.
Let C = g~ '(D). Let g’: C—»D be defined by g'(c) = g(c) and note that g’ is
a closed submap of g. Define k: D—B by k|S; = f; and k(0) = b, and let & be any
function from C to E such that ph = kg’. By the axiom of choice such function

e ©
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exist since h(c¢) could be chosen to be any point of p~kg'(c). Both h and k are
continuous and (&, k): g'—p, by construction. Since p is an (n+1)-NES(M(M))
and dimg<n+1 there exists an open submap ¢q: U—V of g and a morphism
{(H, K): g—p ‘which extends (g, 4). By the continuity of K there exists a neighbor-
hood W of 0 such that K(W)cN(b, ¢). Therefore, there is an i such that B;
= {xe B""'| |x|<1/i} is contained in W. Finally B; is a k+1 ball and K|B;
maps B; into N(b, ¢) and it also extends f;. This is a contradiction, hence B is LC".

(3.4) THEOREM. If p is a map from a complete metric space E onto a metric
space B and n>0 then the following are equivalent.

(1) p is an (n-+1)-NES(M(M)).

@) If p' is in M(M) and dimp'<n+1 then p'z,p.

@) B is LC", p is open, and if p': I""'—I then p'z,p.

(4) B is LC" and p is n-regular.

Proof. That (1) implies (2) follows from the definition. To prove (2)=-(3) it
should be noted that (3.1) and (3.3) only used condition (2) in their proofs. Hence,
we need only ‘prove (3)=>(4) and (4)=(1).

3=4. Let a; I—I be an increasing (not strictly) map such that a(0) =0,
a(l) =1, oc“(l/i) is 2 closed interval [a, c;] of diameter less than 1/i for i>1 and
ala~1(1/(+1), 1/i) is a homeomorphism. Such maps are easily seen to exist. Let

g: "I be defined by g(xy, o Xpr1) = &(Xus1)- )
Assume p is not n-regular. Then there is a point e of E, a neighborhood U of e,

an integer k<n, a sequence of points {b;} in B, and a sequence of maps fir SF
—N(e, 1)i) n p~*(b) such that f; has no extension from B! to Unp~'(b).
For i>1 let

8= {% = (%1, 0r Xir 15 % o b HaHe)) e IE =@, s b 3@t )l

= (e;—a)} -
Note §; is a k-sphere of diameter less than 1/i in g~ *(1/i). Let

Bi= (% = (X0 o Xerts b ons b, M@t ed) € T IE= (s 0 3 $a+ el
<ile—al}.

Note B, is a k1 ball of diameter less than 1/i in g ~*(1/i) and S, is the (geometric)
boundary of B;. .

Let C={’UZS;}U{(%,..‘,&,O)}. Then g¢|C maps C onto {0} v

u{ljil i=1,2,..} and is a closed submap of g. Define h: C—E by h|S; =f;
(one may assume the domain of f; is S) and A%, ..., %, 0) = e. Define k: g(C)—B
by k(1/i) = b; and k(0) = p(e). By construction k& and k are easily seen to be
continuous and (k, k) is a morphism from g|C to p. Hence by condition (3) there
exists an open set W containing C and maps H: W—E, K: g(W)—B such that
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pH = Kg|W. Since (},%,...,0)e CeW and since H is continuous there . exjsts
an open’set ¥ such that (,...,%,0)e Ve W and H(V)cU. o

Finally- there exists an.integer i such that B;< V and. by construction it is easily
seen that H|B; is an extension of f; into U n p~*(b,). This is a contradiction and
hence p is n-regular.

4=1. Let f: XY, a: C—D be a closed submap of f with dimf—a<n+1 and
let (g, k) a—p. Note f—a: X—C—Y. Therefore by the hypothesis dim ¥+:D
<dim Y<dimf—a<n+1. Hence since B is LC" there exists an open set V con-
taining D and an extension H: ¥~ B.of h. Define ¢: f ~*(V)—2% by o(x) = p7 H],
and note dimf ~*(V) ~ C<dim X~ C<dimf—a<n Hence ¢ is a carrier satisfying
the hypothesis of Theorem 1.2 [6] and g is a selection for ¢|C. Therefore by The-
orem 1.2 [6] there exists an open set U which contains C and a selection G for @|U
which extends g. Then ¢: U~V defined by g = f|U is an open submap of f, ¢ con-
tains o« and (G, H) is an extension of (g, /). Therefore p is an n-NES (M(M)).

(3.5) Note. I=2=3=>4 was proven without any use of the completeness of E.
As noted:in [6] the requirement that E be complete can be replaced by the weaker
requirement that p~!(b) is completé in the induced metric for every b in B, This
will automatically happen if p~'(b)-is compact for every b.

(3.6) LEMMA. If 1purit,p then E is LC". e

Proof. Assume E is not LC". Then there exists a point e in E, an integer Ik‘é'ii,
@ neighborhood U of e, and a sequence of maps f;: S*—N(e, 1/i) which have no
‘extension from B**1 to U. ) ) :

Let B; = {(x;, ., X421, 0, .., 0) € B**| Y32 <1/i}. Then B, is a (k+1)-di-
mensional ball. Let S; be its geometric boundary, and note S;iisak spherc.‘ We
can assume that the domain of f; is. S;. Let C = (JS,u {0}, and define g: C-58
by /1S, =f;: and f(0) = e. Define h: C—B by h = pg. It is easily seen -that
(g, h): 1c—p and 1; is a closed submap of 1p..:. Hence, there exists an open
submap k: P—W of 1z.+: and a morphism: (G, H): k—p which ‘extends (g, h).
Hence there exists'a neighborhood S of 0 such that G(S)=U and S must contain
some B;. Therefore G|B,; is an extension of f; into U which is a contradiction.

The following corollary extends (2.6) and (2.8) in [12]. '

(3.7) CoroLLARY. If p: E~B is an n-regular map from a complete metric space E

onto an LC" metric space B such that p~'(b) is complete in the induced metric for
each be B then E is LC".

Proof. This follows from (3.4), (3,5) and (3.6).

(3.8) COROLLARY. Let p be a complerely regular map from a metric space E

onto an LC" metric space B such. that p has complete LC" ﬁoints inverses. Then E
s L, . -

Proof. A completely regular map with LC" fibers is trivially n-regular, hence
the result follows from (3.7).

© ,
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+1(3.9) THEOREM. If p is a map from a complete metric space E onto a metric
space B and n=>0 then the following are equivalent. o

(1) p is an (n+1)-ES(MQD)).

Q) If p’ is in M(M) and dimp'<n+1 then p'tp.

(3) B is LC" and C", p is open, and if p': I"t s then p'tp.
(4 B is LC" and C" and p is n-regular and has C" fibers.

-~ Proof. The proof follows the same lines as (3.4) and uses the last sentence
of 1.2 [6]. :

“ ' (3.10) Note. In [13] it was shown that an 7-NES (M (M)) is an n-ANR (M(M)),
however T have not been able to prove the converse. The usual method for this
‘type of proof is an embedding argument which I have not been able to com]?lete.
In the next section however, we will be able to show an ANR(M(M)) is an
NES (M (M)).

4. NES (M(M))'s, ANR(M(M))’s and local contractibility.

" (4.1) TueoreM. If p: E—B is an NES(M(M)) then both E and B are
NES(M)'s.

; Proof. To show that E is an NES(M) let X be a metric space, E a closed sub-
space of X and f a map from C to E. Then fipf): 1e—p a-,nd 1c is a closed syb-
map of 1x. Since p is an NES (M )) there exists U open in X . and a mqphmm
(F, G): 1p—p which extends (f, pf). It then follows that F is the desired ex-
tension of f. .

' To show that B is an NES(M) let X be a metric space, C a closed subspace
of X and f: C—B. Let E' = {(e,c)e ExC| p(¢) = f(c)}. Let g: E'—X be defined
by gle, ¢) = ¢c. Note np: E'—C is a closed submap of g and (my,f): mo—p.
Since p is an NES (M (M)) there exists an extension (G, F)‘of (m1,.) to an ‘ol?en
subobject of g. Again from the definition it is clear that F is an extension of f to
an open subset of X which contains C.

(4.2) TuroreM. If p: E—B is an ANR(M(M)) then E and B are ANR(M)'s.

Proof. In order to prove that B is an ANR(M) let B be embedded as a closed
subspace of a metric space X with embedding j: B—X. ]'_,,et. i E—»E x B be dcffm'ed‘
by i(e) = (e, p(e)) and let p: Ex B—X be defined by p gc, b) .=_](b). Then (i,7):
p—p' is an embedding of p onto a closed submap of p’ and sx_nce pis an ANR (M (M))
there exists an open submap g: U—V of p" and a retraction (F,. Q). g—p. It then
‘follows that G is a retraction of an open set of X onto B as desired. . ]

In order to show that E is an ANR(M) let i1 E~X be an en@eddmg of E
Snto a closed subset of a metric space X, By III (8.2) of [1] there exists a homeo-
morphism A of B onto a closed subset of a metric space 4 such that the map hp
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factors thru-i. In other words the following diagram of maps of metric spaces
exists.

Since i and & are embeddings onto closed subsets (i, h): p—q¢ is a kernel and hence
there exists an open submap ¢': U—V of g and a retraction (F, G): ¢'—p. Again
it is clear that F.is the desired retraction of an open subset of X onto E.

(4.3) DEFINITION. A map p: E—B is contractible 1o the point ey—p(ey) if
there exists maps g: ExI—E and h: BxI—B such that g(e, 0) = ¢y, gle, 1) = e,
h(pleo), ) = pley) and pg = h(px1y). It is contractible if it is contractible to
every point of p.

(4.4) Note. This is weak I contractibility with respect to the points 1—1,—1;
and-15;—1,—1; as defined in [13] where 2 is a terminal object.

(4.5) OmservATIONS. If p is contractible to eq—p(ey) then

(1) h(p,1) =b. Since if p(e) =b then h(b,1) = h(p(e), 1) = pgle, 1)
=ple)=0b.

(2) h(b, 0) = p(ey). Since if p(e) = b then A(b,0) = h(p(e),0) = pg(e,0)
= p(eq)

(3) I eep~'p(ey) then pgle, 1) = p(ey) for all t since pg(e, ) = h(p(e), 1)
= h(p(eo), ) = p(eo)-

(4) g is a contraction of E to e, (Note g does not necessarily hold e, fixed.).

(5) By (1) and (2) h is a contraction of B to p(e,) and h holds p(e,) fixed.

(4.6) DEFINITION. A map p is locally contractible if giyen any point e of E
and any neighborhood U of e there exists a neighborhood ¥ of e such that if e, is
in ¥V there exist maps g(eg): V'xI—U, h(eg): p(V)x I-p(U) such that g(v, 0) = &,
g(v,1) = v, h(p(eo), 7) = p(eo) and pg = h(p|V,1)).

(4.7) OservATiONs. If p is locally contractible using the notation of the
definition we have

(1) A(b, 1) = b (same as (4.5), (1)).

(2) h(b,0) = p(e,) (same as (4.5), (2)).

(3) If e ep~'pley) then pg(e, 1) = p(ey,) (same as (4.5), (3)).

(4) E is locally contractible (not necessarily holding any point fixed).

(5) If p is an open map then B is locally contractible (holding any point fixed).

(4.8) THEOREM. If p is open and locally contractible then p is n-regular for all n.

Proof. Let ee E and let U be a neighborhood of e. There exists a neighbor-
hood V of e satisfying the conditions in the definition of local contractibility of p.
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Let e V and let f:-S"—p~'p(eo) N V. By the local contractibility of p and the:
choice of ¥ there exist maps g: V xI—U, h: p(V)x I=p(U) such that g (v, 0) = ¢5,.
g, 1) = v, h(p(eo), 1) = pley) and ph = g(p|V,1;). Define G S"xI-U by
G(x, §) = g(f(x), 7). Note since f(x) ep~'p(es) G(x,?) = g(f(x),1) also is in
p~ip(e,) by Observation (3). Therefore G: S"xI—=Un p~i(by). Also G(x,0)
= g(f(x),0) = ¢, and G(x, 1) = g(f(x), 1) = f(x). Therefore f could be extended
to a map of B""! into U p~*(by) as desired.

(4.9) Note. From the above proof it is easy to see that V' n p~(by) is con~
tractible in U n p~'(bo) in other words we essentially have the proof of

(4.10) TrroreM. If p is (locally) contractible then the fibers of p are (locally)-
contractible.

(4.11) LeEmMA, Let p: E—B be an open map from a T space E onto a T, space B.
Ifeis in E and U is a neighborhood of E then there exists a neighborhood V of e such
that Ve U and p(V) is closed.

Proof. Let W be a neighborhood of e such that ee WeU, and let Z be
a neighborhood of p(e) such that p(e) e Zcp(W). Since p is open Z exists. Then
V= Wnp~ Y(Z) is the desired neighborhood of e.--

(4.12) Note. We also have the conclusion of the lemma if either of the follow--
ing conditions are satisfied

(1) E is locally compact T, and B is T, (no condition on p).

(2) p is a closed map, and E is Tj.

(4.13) DeFvITION. A map p: E—+B is weakly locally conrractible if given
any e in E and any neighborhood U of e there exists a neighborhood ¥ of ¢ and
maps g: VxI-U, h: p(V)xI-p(U) such that g(©,0) =e¢, g(v,1) = v, k(p(e), 2y
= p(e) and pg = h(p|V, 1p.

(4.14) LemMA. Let p: E—B and assume E is first couniable. If px 1;t,p and p,
E and B satisfy any of the following sets of conditions then p is weakly locally con-
tractible.

(1) p is an open map, E and B are Ts.

- Q) p is a closed map and E is Ts.

() E is locally compact T, and B is T,.

Proof. Assume that p is not weakly locally contractible. Then there exists.
a point e in E and neighborhood U of e such that if ¥ is a neighborhood of e and
"Ve U there do not exist maps as described in the definition of weakly locally con~
tractible. Under all three sets of conditions there exists a countable base {V¥ee,
for e such that V,,,=V;= V,cU and p(V) is closed. Let

C= U {VxVi}u(ExO)vexIcExI
and )
D= U {pW)x1ji} v Bx0Up(e xI=BxI.
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Tet g: C—D be defined by g(e, ) = (p(€), ). From the construction g is a closed
submap of (p x 1p). Let f,: C—E be defined by f,(x, 1) = x if 1>0 and fi(x, 0) = e.
Let f,: D—B be defined by f£,(y, ) = y if £>0 and fo(y,0) = p(®. Then (fi,/2):
g—p. Therefore it has an extension (Fy, Fy) from an open submap /: S—T of
.(px 1)) into p. Since Fy(e, 0) = e there exists an open set Z in S such that (e,0) e Z
and F,(Z)< U. Finally there exists an i such that ¥, %10, 1/i] is contained in Z.
Hence we can define g: V;x[0, 1]=U by g, ) = F,(v,(1/}1) and h: p(V;)x
%[0, 1]=U by h(b, £) = Fy(b, (1/i) £). Tt is easily seen that g and % are maps of
the forbidden type hence we have a contradiction.

(4,15) THEOREM. Let p: E—~>B and assume E is first countoble. If p, E and B
satisfy any of the three sets of conditions of (4.14) and if px 1;7,p then p is locally
contractible.

Proof. Assume p is not locally contractible. Then there exists a neighborhood U
of p such that every neighborhood ¥ of p has a point e, for which there exist no
__maps g and h satisfying the definition.

"7 Leét {V}&, be a countable nested base at e such that each V;=U and p(¥))
is closed, and let v; be a point in ¥; such that the maps defining local contractibility
-do not exist.

By the previous theorem there exist neighborhoods W; such that v, € W;cV;
and p(W) is closed, and maps g;: W;xI—=V,, h: p(W)xI-p(V)) such that
4w, 0) = v, gw, 1) = w, h(p@), ) =p(v) and pg; = h(p|V;, 1)). Let C be
the following subset of ExI

C—Exlut) VxluG 7x3 OLOJW 3 1 Ex0
A R Sl R O Ui=1 i 227 i Rl

Note C is closed in ExI and ¢’: C—(px1,)(C) defined by q'(e, ©) = (p(e), ?)

is a closed submap of px I,. We may assume that g; is defined on' W, x li—z—;:rl, 517}
Define g: C—F by 3
3

s 1 _ 1 _
ngix[ﬁ"iiil=gi’ gIViX—2~i=Tci, !Ilvixzi-u:”i;

glEx1l =mn; and g|Ex0 =e.

It is clear that g is continuous. Define h: g'(c)— B by
3 1 — 1
hlp (W) x 521 5i =y, /1|P(Vi)><§i‘=7fl:

- 3
hp(Vy)x = p(y) and  AExX]1 =m,.
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Again it is clear that & is continuous and (g, k): ¢'—p. Hence there exists neighbor-
hoods S and T of C and ¢(C) and maps G, H: k—p where k: S—T is a submap
of g. Now there exists a neighborhood Z of e x 0 such that G(Z) < U. Note Z contains

3 1
V% ¥ 5 for some i

and

3 1 3 1
GW%[@?;{,?], : HIP(VDX[Z—::iy ?]

are maps of the forbidden kind.

(4.16) COROLLARY. Let p be a map from a metric space E onto a metric space B.
If dimp<n and p is an (n+1)-NES(M(M)) then p is locally contractible (hence k
regular for all k).

Proof. This follows from (4.15) since dimpx1,<n+1, and since p is open
by (3.2).

(4.17) CorOLLARY. Let p be an n regular map from a metric space E onto an
LC” metric space B. If dimp<n and p has complete fibers then p is locally contractible
(hence k regular for all k).

Proof. By (3.4) p is an (n+1)-NES(M(M)) hence this result follows from
(4.16). :

(4.18) TusoreM. If E and B are NES(M)'s then projection m,: Ex B—B is an
NES (M(M)). (And hence by (3.10) of [13] an ANR (M(M).

Proof. Let f: X—Y and let f’: C—D be a closed submap of f. Let (i, j):
f'—m,. Since B is an NES(M) there exists k: V—B which is an extension of j.
Also since E is an NES(M) there exists /: W—E which is an extension of =,i. Let
U= Wnf V), let g: U~V be defined by g(u) = f(u) let m: U-ExB be
defined by m(u) = (I(), T,k (). It is easily seen that (m, k): g—, is an extension
of (i,]) to an open submap which contains 1.

(4.19) THEOREM. A map p: E—B is an ANR(M(M)) iff it is an NES (M(M)).

Proof. From (3.10) of [13] we know that an NES (M(M)) is an ANR (M (M)).
In order to prove the converse, let p: E—B be an ANR(M(M)). Then by (4.2)
E and B are ANR(M)’s and hence they are NES(M)’s. Therefore 7,: Ex B—B is
an NES (M (M) by (4.18). If we let i: B—Ex B be defined by i(e) = (e, p(e)) then
it is casily seen that (i, 15): p—n, is an embedding of p onto a closed submap of 7,.
Since p is an ANR (M (M) it is a retract of an open subobject of =, and hence
by (3.14) of [13] p is an NES(M(M)).

(4.20) TeroreM. If p is a map from a complete metric space E onto a metric
space B such that dimp<n, then the following are equivalent.

(1) p is an NES(M(M)).

(2) p is an’ ANR (M (M)).

4 — Fundamenta Mathematicae XCV
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. (3) p is open and px1yt,p. . ‘

(4) p is ‘open.and locally contractible. - B RE

(5) p is n-regular and B is LC". . S

Proof. (1)«(2) follows from (4.19). (1)=-(3) is trivial.

(3)=>(4) follows from (4.15).

@=(5) follows from (4.7), (4.8) and (3. 8)

(5)=>(4) follows from 4. 17) To complete the proof we will show that @=.

The idea of the proof is almost the same as in (4.19). Let i: E—ExXB be
defined by i(e) = (e, p(¢)) and note as before that (i, 15): p—n, is a closed sub-
map. Since p is locally contractible (4.7) implies that B is locally contractible and
since it is finite dimensional B is an NES(M). Also by (4.8) p is k-regular for all k.
Therefore, by (3.4) p is a k-NES (M (M) and hence by (3.10) of [13] a k-ANR (M (074 ))
for all k and in particular a 21-ANR (M(M)). From (3.7) E is LC* for all k and
since it is finite dimensional E is an NES(M). By (4.18) n,: Ex BB is an NES(M )
and dimm,<2n. Since by the above p is a 2n-ANR(M(M)) and' (i, 15): p—r,
and dim#, <2n we get that p is a retract of an open submap of 7 and then by (3.14)
of [13] pis an NES(M(M)) as desired. .

(4 21) THEOREM. If E is comipact then p is an NES (M M) iffitis a retract of
an open subobject of w,: IV x I*—I* (I" is the Hilbert cube).

Proof. The sufficiency of this condltlon follows from (3.14) of [13] (4.18) and
the fact that J™ is an ANR(NORMAL). For the necessity assume that p is an
NES(M (M)) and embed p in 7,: ¥ X I"—I" as follows. Let f1 E—~I" and g: B—>I w
be embeddings which exist since both E'and B are compact metric. Let o: E—] L%

x I be defined by a(e) = (f(e), gp(&). Then (v, g): p—mn, is an embedding of p
onto a closed submap of 7. Finally since p is an NES (M (M )) it is an ANR (M (M ))
hence p is a retract of an open submap of 7, as desired.

5. Unions of n-NES's, NES’s and n-regular maps. In this section we “w‘i‘ﬂ
assume that p: E—B and B is the union of two closed sets B, and B, whose inter-
section will be denoted by B,. We will also let pi: pTY(B)~>B, be the restriction
of p to p7*(B,). The question we will attempt to answer is if each p; has one of the
properties mentioned in the title -of this section does p have the same property?
For the most part the answer will be yes. In Section 6 these results will be applied,
to fiber maps.

A trivial lemma which will be used several times is .

(5.1) LemMA. Let X be the union of two closed sets X; and X, and let x € X{ N
N X;. If U; (i = 1,2) is a neighborhood of x in X, then there is a neighborhood V
of x in X such that VaU, v U,.

(5.2) THEOREM. If each p;, i = 1,2 is an open map, then p is an open map.
Proof. Let U be open in E and let e E. If e p~(B)—p~(B,_) for i = 1
or 2, then V= Un [p~'(B)~p~*(Bs-))] is an open set in p~1(B;) which con-
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tains e and p(V).= p,(V) is open in B;. However, p(¥) n B,_; is empty, 50 p(V)
is open in B. Hence p(e) is an interior point of p(U) as desired. Therefore, assume
that ee p~1(By) N p~1(B,). Then U n p~I(B)) is 6pen.in p~* (B) for i= 1,2 and
hence p;(U m p~*(By) is open'in B, for i = 1, 2. By (5.1) there exists an open set ¥
in B such .that p(e)e Vep(Unp~ 1(81)) U pi(Um p~(B,)) = p(U). Hence
again p(e) is an interior point of p(U) and the proof is complcte

(5.3) THEORBM. If py, i = 1,2 is n-regular, then p is n- regular i

Proof. That p is open follows from (5.2). Therefore let e e E and let U ‘be
a neighborhood of e. Again if eep™(B)—p *(B,-) for i =1 or 2 the proof is
trivial. Hence assume that e ep™'(B,) np~Y(B,). By the n-regularity of p;,
i =1, 2 there exists neighborhoods ¥; of e in p~*(B,) such that if k<n and f: S*
—p; () m ¥, then there exists an extension F: B**'—p'(h) n (Un p~(B))
=p ' (B)y n U= p () n U of f. Now let ¥ be a neighborhood in E of e such that
VeV, u V,. It is easily seen that any map f: S*—p~1(6) n ¥ has an ‘extension
of the desired type and hence p is n-regular.

(5.4) CoroLLARY. If E is a complete metric space, B metric, p; an (n+1)-
NES (M (M), i = 1,2 and py an n-NES{M(M)), then p is an (n+1)-NES (M ().

Proof. By (5.3) p is n-regular -and hence by (3 4) all that need be-shown is
that B is LC". This follows from (3.3) which implies By and 15'2 are LC" and B(,
is LC"™* which implies that B is LC" .

The next corollary is included only because of its snnple proof. It is immedi-
ately superceded by (5.6).

(5.5) COROLLARY. If E and B are finite dimensional metric spaces, E complete
and each p; is an NES(M(M)), i =0,1,2, then p is an NES(M(M)).
Proof. This follows directly from (5.4) and (4.20).

(5.6) THEOREM. Suppose that E and B are metric spaces. Then

(1) If each p; is an ES(M(M)), then p is an ES(M(M)).

(2) If each p; is an NES(M(M)), then p is an NES(M(M)).

Proof. The proof is modeled after (6.1) [1]. We only prove (2). The proof
of (1) will then be clear. By (4.19) each p, is an ANR (M(M)), hence we need only
prove that p is an ANR (M (M)). To do this let p be embedded as a closed submap
of ¢: X—Y, so that we have the following commutative diagram:

EcX
pl la ‘
BcY
Set
Yo ={yeY| d(y,B) =d, By},
Y, ={ye¥| dly, B)<d(y, By},

Y, = {ye¥| dy, B)>d(y, B,)} .
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Clearly Y = Y, U Y, U ¥, and Byc ¥,. Let X; = ¢~%(Y;) and let ¢;: X~ 7Y;
be the restriction of ¢ to Xj. It is easily seen that p, is a closed submap of ¢, and
since p, is an ANR (M (M)), there exists a retraction (ry, ro) from an open submap
go: Uy—Vy of g, to py. Note U, is open in X,, ¥, is open in ¥y, p~Y(By)=U,
and By V,. By the normality of X and ¥ we could find closed neighborhoods S,
of p~(By) in X, and Ty of B, in ¥, such that Sy Uy, TocV, and go(So)=T,.
Therefore let gy : S;—T, be the restriction of g5 to Uy and consider (ry, rp) asa re-
traction from gq to p,.

For i = 1,2 define (r;, #{): p~>qo p; as follows:

i pTHB) L Sy—p Y(By) is defined by

= it xep (B,
rib9) = {ro(x) it xesS,
and r;: p~Y(B;) U Ty—B; is defined by
, x if xeB,
ri(x) = {r;(x) it xeV,.

Both 7,(x) and r{(x) are defined to be continuous on two closed sets and since
the definitions agree on the intersection r; and r; are well defined continuous func-
tions. Now since p; U g5 is a closed submap of ¢, and since each p;isan NES (M (M),
there exists an extension (f;, g): gi—p; of (r;, r3) to an open submap g; : ST of g,.

It is now easily seen that there exists open sets U in X, ¥ in Y such that
EcUcSyu S U8y, BeVeTy,uT,uT,, UnX,cSy, ¥V YocT, and ¢(U)
<V. Let ¢': U—V be the restriction of ¢ to U. Define (r, r'): ¢'—p as follows:

r: U—E is defined by

rx) =f(x) i =xeS;
and ' V— B is defined by
) =g(x) if xeT;.

From the construction and the choice of U and ¥ it is again easily seen that
both r and " are well defined and continuous and (r, ') is a retraction of ¢’ (which
Is an open submap of ¢) onto p. Hence p is an ANR(M(M)) as desired.

6 NES (M(M))'s and the slicing structure property. In this section we show
that under certain conditions NES’s are almost like maps with the slicing structure
property.
(6.1) THEOREM. If p: E—B is a closed NES(M(M)) then p has the SSP.
Proof. Let n,: Ex B—B, f: Grp—B (Grp is the graph of D) be defined fle, b)
= p(e) = b, let g: Grp—E be defined by g(e, b) = e. Note that £ is a closed sub-

- map of n, and (g, 15)! f~p. Hence there exists a neighborhood U of Grp and
a map F: U—E which extends f and such that pF = x,.
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Let b be in B. By Stone’s theorem p~*(b) is open or compact. If 5~ (b) is open,
let O = b. X p~'(b) is compact (and not open) cover p~ () with finitely many open
sets {V;}i=1 such that V;xp(V)cU. In this case let

0= 2000 (el 10 < YT}

In either case note that p~Y(Q)x Q<= U. Finally define y: p~1(Q) x Q—p~Y(Q)
by Y (x,y) = F(x,y) and note from the construction that ¥ is a slicing function.
(6.2) CorOLLARY. If p: E—B is a closed n-regular map from a complete metric
space E onto an L.C" metric space B and if dimp<n, then p has the SSP.
Proof. This follows from (4.20) and (6.1).

(6.3) Note. If an NES(M(M)) is not closed it need not be a fibration of any
type as seen by Examples (6.6) and (6.7). As a matter of fact (6.7) shows that it
need not even have the property that paths could be lifted. However, the following
conjecture seems plausible. If p: E—B is an NES (M (M), then p is the union of
open subobjects each of which has the SSP.

The next theorem is a special case of the conjecture. First we need the
following:

(6.4) DEFINITION, A locally compact ANR(M), E is locally free of the singu-
larity of Mazurkiewicz if for each e in E and each neighborhood U of e there exists
a compact neighborhood ¥ of e which can be expressed as the union of relatively
open AR(M) sets of arbitrarily small diameter.

(6.5) THEOREM. If p is a finite dimensional NES (M (M)) from a locally compact
space E which is locally free of the singularity of Mazurkiewicz then each point of
E has a neighborhood W such that p\W: W—p(W) has the SSP.

Proof. Starting as in (6.1) we obtain a neighborhood U of Grp in Ex B and
a map F: U—E such that F(e, p(¢)) == ¢ and pF = m,. Let ¢ be a point of E and
let ¥ be a compact neighborhood of e such that ¥ is an ANR(M), ¥ is the union
of arbitrarily small relatively open AR(M) sets and Vxp(V)<U. Let W
= F(V'xp(V)) and let j: W—p(W) = p(¥) be p|W. It will be shown using (4.20)
that § is an NES(M(M)) and since W is compact (6.1) will imply that § has
the SSP.

That p is open follows from the fact that if Q is open in F(Vxp(¥)) then
F(Q) = m, F~1(Q) which is open in p(¥). In order to show that j is » regular,
let e be in F(V'xp(V)) and let Q be a neighborhood of e. Then there exists a rela-
tively open AR(M) set T in ¥ such that ¢ is in T and F(T'xp(T))< Q. Note that
since F(x, p(x)) = x we have T< Q. Let g: ST n f~'(b). Since T'is C" there
exists a map H: B"*{—T which extends g. Define G: B"*— Q by G(x) = F(H(x), b).
Then @ is easily seen to be an extension of g and the image of G is contained in
PN Q since H(Txp(T)=Q and pG(x) = pF(G(), b) = pF(G(x), b)
= n,(G(x), b) = b. Finally p(¥) is LC" follows from (2.3), [10]. Therefore by
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(4.20) p is an NES (M (M )) and since W is compact p s closed. Hence by (6.2) p has
the, SSP. s

(6.6) ExamPLE. Let E = 2~ {(x Wy =% and x>%} Let B =T and let
p: E—B be defined by p(x; y) = x. By the previous theorems p is an NES (M ()
and it is easily seen that p is not even a Serre ﬁbration'

(6.7) Exampis. Let E = {(x,y) e R*| x*+)* = 1} u{x,)eR y=1Ix+}
and -l<x<l} {x,%) e R} =4<x<1 and y = 0}." Let

B = {(x,y)e R*| x? +y —1 or y =0 and ~I<<x<l1}.
Define p: E-B by ) )

_ (x,y)‘ if x4yt =1 Qly—O
2l y) n {(x, 0) otherw1se

Again the previous theorems show that p is an NES(M(M)) but p does not
even have the property that paths could be lifted.

(6.8) Note 1. From the proof of (6 1) it is easily seen that an ES (M (M) ) has
the slicing structure property.

2. From (3.11) it follows that an (n+1)-ES(M(M)) from a complete metric
space has ‘the covering homotopy property for spaces of dimension <n.

“The question now is if p is a nice fiber map-is p an NES (M (M)). There are
some partial answers to this.

(6.9) TreoreMm (McAuley and Tulley [4]) If p is a map from an LC" metric
space .onto’ an LC"** metric spacé .and p ha.s' the covering homotopy property for
(n+1)-cells then p is n- regu[ar

(6.10) COROLLARY. If'p is a Serre fibration between ANR(M')S then p- is
n-regular for all n.

(6.11) CorOLLARY. If. p is as'in (6.10) and E and B are finite dtmenszonal then
pis an NES (M(M))

' This follows from (6 10) ‘and (4.20). * - ‘ !

(6 12) COROLLARY lf pisasin (611) and p s closed lhen p has the SSP.

Proof. This follows from (6.1).

(6 13) CoROLLARY. Let p: E—B, assume that B is the union of 2 closed sub-
spaces By and B; with By = By n B,. Further assume that p,: p~*(B)— B, is a closed
Serre fibration for each iand that p“i(Bi) and B, are finite dimensional ANR (M Vs,
Then 2 has the SSP.-

Proof Th_IS fol]ows from (6.12) and (5.6).

" One could derive- other corcllaries similar to (6.13). However, they are more
comphcz;ted than needed as-se¢n by Theorem (4.2) [1]. Part of the difficulty is that
the methods:ofithis paper lean.too . heéavily. on the local n-connectivity of the base

\
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spaces. I am trying to but have as yet not developed this raterial so that if p is an
NES(M(M)), it would not imply that E and B are NES(M)’s.

(6.14) Concluding remarks. I think that ANR (M (M))’s will play a role in
the study of mappings as ANR’s have in the study of spaces. In particular I think
that almost any theorem about ANR’s has an analogue to the mapping case. As
an example, the theorem that compact ANR’s are dominated by polyhedra might
possibly turn out to be that a compact ANR(M(M)) is dominated by a piecewise
linear map between polyhedra. If a complete study is made of the mapping case
it will include the theory of ANR’s by studying identity mappings, since one has
that B is an ANR(M) if 1 is an ANR (M (M)).
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