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Abstract, Suppose.that G is an upper semi-continuous decomposition of an n-manilold X.
In this paper we investigate conditions that are sufficient to ensure that the dimension of X/G is
less than or equal to u, or is at least ﬁmtc We obtain the following 1esuliq
DI Gisa nondegencralely contmuous decomposmon of E" m(o points and polyhedral
sets, then dimE"/G'< 2n+1.

2) If G is’ a monotone upper semi—continuous decomposition of 'a 2-manifold X (with or
without boundary), then dim X/G <

3) If G is. a cellular decomposttlon of E* into points and polvhedml sets, then (lll’ﬂ BEYG <
. HIf Gisa monotone upper sermi-continuous decomposm(m of E" into convex seis, then
dxmb"/G

5 1If G 1‘5 an upper semi-continuous decomposition of E" into points and compact (2 I)~mani-
folds, then dimE"G < n--1. ’

-1.. Introduction.-Hurcwicz has shown that if X is cmy compact metric space,
then there exists a monotone upper- semi-contimous decomposition: of E? such
that X may be embedded in the resulting decomposition space [5]. Anderson has
given an example of a monotone continuous decomposition of a.compact . 1-di-
mensional subset of E3 such that the resulting decomposition space is the Hilbert
cube [1]. Consequently, monotone upper semi-continuous, or even monotone
continuous. decompositions can raise dimension-considerably.

A result of Dyer [2] shows that if' G is an acyclic decomposition of a compact
nidimensional metric space X and if dimX/G<co, then dimX/G<n. This result
can be generalized to locally compact metric spaces and in fact it can be shown
that if X/G is a gg-space. then dimX/G<n [3]. .

; The purpose of this paper is to establish upper bounds for the dimension of
the decomposition space without requiring that the decomposition space be finite
dimensional or even a o,-space.

2. Definitions and notatien. Supposc that G is an upper semi-continuous de-
composition of a topological space X. Then :Hg will denote the collection of non-

(*) This papet forms a "portion of''the mthor‘s Hoctoral dissertation, plep'ucd under the
supervision 'of Professor W. Voxman at the Umwmty of Idaho. v
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degenerate elements of G and H¥ the union of the members of Hj;. Furthermore,
X/G will denote the associated decomposition space and p: X—X/G will denote
the natural projection. Sets that are unions of members of G are said to be saturated
with respect to G, or when the context is clear simply saturated. The saturated
interior of a set Uis |J{ge G| g<IntU}.

Suppose that X is a metric space and G is an upper semi-continuous de-
composition of X. Then G is said to be continuous at g if for each positive number &,
there exists an open set ¥ in X containing g such that if g’ € G and g nV+ D
then g is contained in the e-neighborhood of g’, and g’ is contained in the
g-neighborhood of g. The decomposition G is continuous if G is continuous at
each g € G, and G is nondegenerately continuwous it Hy is continuous at each gegG.

E" will denote Euclidean n-space, B" the unit n-ball, {x eE”| x| <1} in E",
and $"~! the unit sphere, {x & E"‘ [x]l = 1}. An n-cell is any space homeomorphic
to B" and an open n-cell is any space homeomorphic to the interior of B”.

It M is a manifold, by a triangulation of M is meant a simplicial complex T
such that I) M = {J {{} te T} and 2) T is locally finite in the sense that each point
of M has a neighborhood which intersects only finitely many of the sets of T. If x is
a vertex of the triangulation, then the star of x (St(x, T)) is the union of all simplexes
of T having x as a vertex, with the faces orposite x removed.

If M is an n-manifold and g = M, then g is said to be cellular in M (or cellular)
if there exists a sequence of n-cells Cy, Cy, ... in M such that C,cIntC,_; and

]

N C; = g. An upper semi-continuous decomposition is cellular if for each 9@,
i=1

g is cellular in M. An upper semi-continuous decomposition G is monotone if for
each g € G, g is compact and connected. An upper semi-continuous decomposition
is acyclic ifvfor each g € G and for each nonnegative integer k, Hyg) =0 (H(g)
is the kth Cech homology group of g).

Small inductive dimension will be denoted dim. A separable metric space
is g, if it can be written as a countable union of 0-dimensional spaces ([8], p. 83).

Suppose that 0, and O, are coverings of a space X 0, is said to refine (or
be a refinement of) O, if for each Ue O,, there exists ¥ e O, such that U= V.
Let O be a covering of the space X and 4 = X. Then the srar of A with respect to O,
written St(4, 0), is Y{UeO] AN U # @}. If 0, and O, are coverings of X,
then O, is a star refinement of O, if the covering {St(U, 0,)] Ue 0,} refines 0,.

If (X,d) is a metric space and 4<X, then the diameter of A (diamA (is
sup{d(x, y)] x,y e A}. A continuous function S of a metric space (X,d) into
a space Y is an e-mapping (¢>0) if for each ye ¥, diamf ~!(y)<e. §'(x) will de-
note the ¢-neighborhood of x, {ye X} d(x, y)<e}.

A set A is dense in itself if for every x € 4, x is an accumulation point of 4~ {x}.

3. Decompositions into convex sets. A set S in a real linear space X is said
to be convex if for every pair of points {x, ¥} in S and for any real number « with
O0<a<l, ex+(1—a)y is an element of S. If S is a convex subset of X, then z is an
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extreme point of § if whenever z = ax+(1 —«)y with {x, y}=S and 0<a<]1, th-cn
a e {0, 1}. The convex hull of a set § is the intersection of all convex sets contain-
ing S and the closed convex hull of S is the intersection of all closed convex sets
containing S.

Recall that if S is a subset of E”, then the closed convex hull of S is the closure
of the convex hull of S. If S is compact, then the closed convex hull of S and the
convex hull of § are the same. Furthermore, the closed convex hull of S is the closed
convex hull of its extreme points ([1], pp. 17, 40, 138).

Suppose that g is a compact subset of E”. Then g’ will denote the set of extreme
points of the convex hull (which is the same as the closed convex hull) of g. By
([11], p. 138), g’ 5 @ if g # & and it is easy to see that g'cg.

THEOREM 3.1. Suppose that G is a monotone nondegenerately continuous de-
composition of E" such that for all g € g’ is not dense in itself. Then dim E"[G<2n+1.

Proof. The proof is based on the following two lemmas.

LeMMA 1. Suppose that G is a monotone nondegenerately continuous decompo-
sition of E" and that {g;}i% , is a sequence of elements of Hg converging to g€ Hg.
Let xeg'.. Then there exists a sequence {x,}i, converging to x where for each i,
X, € O and {g,}i%1 is a subsequence of {g;}i< 1.

Proof. Since G is nondegenerately continuous, there exists 2 sequence {x;}iz
converging to x, where x; e g; for each i. The closed convex hull of g} is the same
as the convex hull of g;. Since g;< in its closed, convex hull, x; e closed conve,x
hull of g}. Then by ([11], p. 15) for each i, there exists a simplex 4, containing x;,
such that the vertices of 4; lie in g;. Since 4, E", there exists a subsequence
{4, )72, of {4} such that for all i, dim4,, = k for some integer k. Denote th.e
vertices of 4,, by {x, x} ..., x{} with x} e g, for all i and j. Since G is upper semi-
continuous, there exists a subsequence of {xh}i2, that converges to some element
xo of g. By continuing to choose appropriate subsequences whenever rquired
and reindexing when necessary, we may assume that for each j the sequence {x}}iZ
converges to a point x; in g. Clearly then x lies in the convex hull of {X0s X1 s Xihs
which is contained in the convex hull of g. Since x is an extreme point of the convex
hull of g, it follows that x = x; for some j, and the lemma is established.

LeMMA 2. Suppose that G is a monotone nondegenerately continuous decompo-
sition of E" and p: E"—E"/G is the natural projection. Let X = \ {g'| ¢ € Hg}-
Then q = plx: X—p(H}) is open and onto.

"Proof. Lemma 2 follows easily from Lemma 1.

Proof of Theorem 3.1. Since G is 2 monotone upper semi-continuous de-
composition of E*, it follows from [10] that E"/G is a separable metric space. Let
X = U {g'| ge Hg}. Then by Lemma 2, we have that g = ply: X—p(Hg) is open
and onto. If x € p(HZX), then ¢~*(x) = g', where p~(x) = g. Therefore since g’ is
not dense in itself for each g, we have, by [4], that dimp (Hg)<dim X'<n. Since p is
a homeomorphism on E"—H¥, it must be the case that dim(E"/G~p(H¥)<n.
Therefore, dimE"/G<dim (E"/G—p(HE)+dimp(HE)+1<2n+1.
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- CoRrROLLARY 1. Suppose that G.is a monoione nondegenerately continuous de-
composition of E" into points.and polyhedral sets. Then dim E"/G<2n+1.

Proof. For any ge Hy, g is-a subset of the set of vertices of g. Hence, g’ is
not dense in itself for each g e Hy. S

COROLLARY 2. Suppose that in' the hyporhe‘sis of ‘Theorem 3.1 or Corollary 1,
“nondegenérately continuous decomposition” is - replaced by ‘contl.'m/ous decompo-
sition”. Then dimE"|G<n. )

Proof. If G is continuous, then E"/G—p(H(,) is closed ‘in F"/(r Thmcfole,
by ([6], p. 32), dimE"/G<n.

‘The above results can be sharpened by repl&clng thc condmon that G be
continuous with the condition that G be acychc

COROLLARY 3. Suppose that G is a monotone nondegenerazely coniinuous, acyclic
decomposition of E" such that g’ is not dense in n‘self Then dim E"/G'<r

~Proof. The proof follows dxrectly from Theorcm 3.1 and [2]

4.’ Decompositions of 2-manifolds. Results of Moore [7] and Roberts and
Steenrod [9] imply that if G is a monotone detomposition of a compact 2-mani-
fold X, then dimX/G<2. The principal results of this section show that'if G is
a monotone upper semi-continuous decomposition of a 2- frmnlfold (wﬂh or w1lhout
boundary), then dlmX/G K2 :

. THEOREM 4.1. Suppose that X is a compact 2-manifold with boundary and G is
a monolone upper semi-continuous decomposztzon of X. The#' dimX/G<2.

" Proot. There ex1sts a compact Z-mdmfold Y such that X can be obtalned
from Y by 1emovmg ‘the interiors of 2 finite disjoint collection of closed disks.
Let G be the decomp051t10n of ¥ consrstlng of members of G and smgletons in
.the interiors of the above méntioned disks. Then clearly G’ is a monotone upper
semi-continuous deuomposmon of Y. Hence, dim Y/G <2 [9]. Let p: Y—Y/G'
be the natural pro]ecnon Clearly X/G is homeomorphlc to p(X)c Y/G. Thelefme
dim X/G<2. '

THEOREM 4.2 Suppose that X is a 2- mamfold (vith or w rthout bozmdar)) nnd
G is a monoione upper Semi-continuous decomposition of X Then dim X/G <2.

Proof. We will need the following lemma.

LEMMA 1. Suppose that X is a 2-manifold (with or without baunﬂ'ary) zmd g is
a compact connected subset of X. Then there exists a compact 2- mmufold K (with
or without boundary) such that K is a nezghbarhood af g in X,

Proof. Let « be a triangulation of X and the collcc‘uon of all mcmbew of o

»thdt intersect g. Note that f* (the union of the members of f) is a neighborfiood
of g 1n X Let {x, x5, ..., %} be the collection of vertlces of members of B that

lie in B*—g. Then for sufﬁmently small g, p*- U S(x;) is the required compact

2-manifold (w1t11 or Wlthout boundary) o ) o IR
R TR : Py
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Proof of Theorem 4.2. Suppose that ge G. By Lemma I, there exisis
a compact 2-manifold (with or without boundary) K such that, K is a nelghbmhood
of g in X. Let M be the saturated interior of K. There exists a saturated open set U
in X such that gc UcUcMcK. Let G, be the decomposition of K such that Hg,
={heH hnU # B} It is not difficult to show that G, is an upper semi-
continuous decomposition. Since G, is clearly monotone, we have that dim K/G,<2.
Suppose that p: X—X/G and p,: K—K|G, are the natural projections. Let W
=p~}p(0)). It is clear that p(W) is.homeomorphic to p (W) and hence,
dimp(W)<2. Since p(W) is a neighborhood of p(g) in X/G, p(g) has arbitrarily
small neighborhoods whose closure are contained in p(W) and whose boundaries
have dimension less than or equal to 1. Therefore, dimX/G'<2.

5. Decompositions into convex sets. Suppose that X is a topological space
and U = 1U1, U,, ..., U,} is an open cover of X. Associate with each nonenpty U;
an abstract point p;. We construct the complex N (U) called the nerve of U, with
vertices p;, P, ...,p, as follows: define <p“,pu, . ,p,k) to be a simplex of N(U)

if and only if ﬂ U,j # . Note that dimN(U) is the order of U. The geometric

realization of N (U) denoted by P(U), is a polytope in some Euchdean space such
that P(U) and N(U) have the same vertex scheme, i.e., the vertices of N(U) and
P(U) are in a 1-1 correspondence in such a way that .simplexes of N(U) are de-
scribed by vertices of P(U) which span a cell in P(U).

Suppose that X is a separable metric space and U is a finite open cover.of X.
Let Pbe a polytope whose vertices py, P2, -5 D» ar€ in a 1-1 correspondence with
the nonempty members of U. Let Z; be the star of p; with respect to P. A’ mappmg
g: X—P is a barycentric U—mappmg 1f g NZ) = U for each i.

THEOREM 5.1. Suppose that X is a closed convex n-cell i in E"and G is q monotqne
upper semi-continious decomposition of X info points and convex sets such that i
g € Hg, then geIntX. Then dimX/G<n. -

Proof. We will nced the following lemma.

Levma 1. Suppose that X is a compact n-dimensional metric space and G is
a monotone upper semi-continuous decomposition of X such that for every ¢>0 there
exists an e-mapping of X|G into X. Then dimX/G <n.

Proof. By ([6], p. 72), it suffices to show tlnt for every £>0, there exists an
e-mapping of X/G into a polyhedron of dimension less than or equal to n. Suppose
that ¢>0. By hypothesis, there exists an g- mappmgfof X/G into X. It is easy to
show that there exists a positive real mumber & such that if Ac=f(X/G) with
diam 4 <3, then diamf ~!(4)<e. Since f(X/G) is compact and of dimension less
than or equal to n, there exists a §-mapping ¢ of F(X/G) into a polyhedron of di-
mension less than or equal to n. Then the composition g o fis the required &-mapping.

Proof of Theorem 5.1. Let ¢>0. We will show that there exists an
g-mapping f of X/G into X.
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Let 0, be a finite open cover of X/G consisting of sets whose diameter is less
than or equal to s, and let O} = p~*(0,). Then O] is a saturated open cover of X
Let O} be a finite open refinement of O} consisting of convex open sets with the
property that for each g € G there exists an element U e O; such that gcU. Let
05 be the collection of saturated interiors of members of 05. Then O5 is a saturated
finite open cover of X, and hence, if O; = p(03), then 05 is a finite open cover
of X/G. Let O, be a finite star refinement of O; and let f be a barycentric
O,-mapping of X/G into the geometric realization of N(0,), P(0,). Denote P(0,)
by K. It O, ={U,U,,.., 0.}, let py,ps, .., P, be the corresponding vertices
of K with respect to f. We define inductively a mapping g: K—X as follows:

For each i, a mapping g, from the i-skeleton K; of K into X will be constructed
with the property that

1) gy =9gi-y on Ki_y,

2) if 4 is a simplex in K;, then gl(A) is contained in the intersection of all the
members of O that contain g, (vertices of 4).

The mappings g, are defined inductively. For each j, pick x;ep™*(U;) and
define go(p;) = x;. Suppose that a continuous function g; has been defined on X;
satisfying 1) and 2) and define g;,, as follows. If x € K|, define g;.,(x) = g,(x).
Suppose that 4 is an (i+1)-simplex of K, , and that p,,, p,,, .., Dy, are the vertices

of A. Since 4 is a simplex in K, we have that () U,, # @, and hence, there exists an
i=1 :

< U. Therefore, { Xrs Xngs ooy Xy p =p N U) € 0.

Consequently, p~'(U) is the saturated interior of some We0). Thus,
{Xny» Xnys s X, J & W. Let ¥ be the intersection of all the members of O which
contain {x,,, X,,, ..., X, }. The boundary of 4 is a collection of i-simplexes, each
of which is mapped by g; into V. Therefore, g,,, maps the boundary of 4 into the
convex set ¥, and hence, g;., has a continuous linear extension over all of 4.
Since there are only a finite number of (i+1)-simplexes in X, we obtain a continu-
ous extension of g; to all of K;,, which clearly satisfies 1) and 2).

Now define g: K—X by glg, = g;. Then g is the desired continuous function.
Next we show that g o f'is an &-mapping of X/G into X. Suppose that x e X /G and

that U,,, U,

ny nad ot

r
element U of O such that {J U,
i=1

. are precisely those sets in O, which contain x. Then ﬂ

n
# @. Let 4 be the simplex of K spanned by p,,, pp,, ..., p,,. There exists 'm cle-
ment U of O such that U < U. Therefore, {x,,%,,,..,%,}cp ™ (U)e 0}
and p~I(U) is the saturated 1nterlor of We O,. Since fis a barycentric O,-mapping,
we have that f(x) & 4, and by construction g (4)= W. However, O} refines 0] and,
consequently, there exists an element ¥ of O; such that W< V. Therefore, we have

9(/ 0p™ (0 Uev),

©
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and, hence, p(g(f(x))) U x<p(V). Since the diameter of any element of O, is
less than ¢ and since p(V) e Oy, we have that d(p(g(f(x))), x)<}e. Therefore,
g of is an g-mapping.

Now by Lemma I, we can conclude that dim X/G<n.

Using Theorem 5.1, we obtain the principal result of this section.

THEOREM 5.2. If G is a monotone upper semi-continuous decomposition of E" into
points and convex sets, then dim E"/G<n.

Prool. For each g e G, there exists a closed convex n-cell C, that contains g in
its interior. Let U be the saturated interior of C,. There exists an open set W such
that gcWe WeU. Let G, be the decomposmon of C, such that

6, = {heHgl ho W# @} .

It is easy to see that G, satisfies the hypothesis of Theorem 5.1, and hence
dimC,/G,<n. Let p: E"—E"/G and p,: CgéGg be the natural projections and let
K = p~*(p(W)). It is not difficult to show that p(K) is homeomorphic to p,(K),
and therefore dimp (K)<n. Since p(K) is a neighborhood of p(g) in E"/G, we have
that p(g) has arbitrarily small neighborhoods whose boundaries have dim<n—1.
Therefore dimE"/G<n.

6. Further results.

THEOREM 6.1. Suppose that G is an upper semi-continuous decomposition of E"
info points and compact (n—1)-manifolds. Then dim E"/G<n+1.

Proof. Let p(g) € E"/G and let W be an open neighborhood of p(g) in E"/G.
There exists a connected open neighborhood ¥ of p(g) such that p(g) e Ve Ve W
and such that ¥ is compact (E"/G is locally connected and locally compact). Let
U =p (V). Then U is an open, saturated, connected neighborhood of g in E"
and U is compact. For each x e (BAU) n H let g, be the member of Hgz which
contains x and let I, be the bounded complementary domain of g,.

First we show that there exist at most countably many elements of Hy which
intersect BAU. Since U is saturated and connected, it follows that I, n U # @ if
and only if U<l,. Furthermore, since J, nJ, # @ if and only if either J,<=,
ot Iy, it must be the case that at most one of the I’s can contain U. This
implies that for any x e (BdU) n H§, I, can contain at most one additional I, for
ye(BdU) n H. Since there can be at most a countable collection of disjoint I,s,
each of which can contain at most one additional I, it must be the case that there
are at most countably many elements of H,; which intersect Bd U.

Note that BAV = p((BAdU)—HE) U {p(g)| ye(BAU) n HE}. Since BAU is
a closed subset of E" with no interior, it follows that dimBd U <n~—1 ([6], p. 44).
Since p is a homeomorphism on the complement of H¥, it follows that

dimp(BdU—-HE)<n~1.

2 — Fundamenta Mathematicae XCV
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Then since the collection {p(g,)| y € (BAU) N H}} is a countable collection of
points, and hence 0-dimensional, we have that dimBd V'<n. This implies that
dim E"/G<n+1. :

COROLLARY 1. Suppose that G is a continuous decomposition of E" into poinis
and compact (n—1)-manifolds. Then dim E"/G<n.

Proof. If G is continuous, then p(BdU—HY) is closed in E"/G. Hence, by
([6], p. 32), dimBdBd F'<n—1. Therefore, dimE"/G<n.

THEOREM 6.2. Suppose that G is a monotone upper semi-continuous decomposition
of a 3-manifold X and suppose that, for every g e G and for every neighborhood V
of g, there exists a 3-cell U such that 1) gcIntUc UcV and 2) for each heG,
the collection of components of h " Bd U, when considered as points, is not dense
in itself. Then dimX]G<3.

Proof. Suppose that p(g) € X/G and V is any open neighborhood of p(y)
in X/G. Then p~!(V) is a saturated open neighborhood of g in X. Therefore, there
exists a closed 3-cell U with gcIntU=Ucp~i(V) such that for each he G the
collection of components of &~ BdU, when considered as points, is not dense
in itself. Let H = {hBd U] h is a component of k n Bd U for some k € G}. Then
H is a monotone upper semi-continuous decomposition of the 2-sphere Bd U.
Thus, dim(Bd U)/H<2. Let py: BdU—(BAdU)/H and p: E3—E*/G be the natural
projections and set K = {py(9 " BdU)| geG and g n BdU # @}. It is easy to
show that K is an upper semi-continuous decomposition of (Bd U)/H and, by
hypothesis, members of K are not dense in themselves. It is also not difficult to show
that p(BdU) is homeomorphic to ((Bd U)/H)/K

By [10], all of the above mentioned spaces are separable metric spaces. Since
dim(Bd U)/H<2 and since members of K are not dense in themselves, we have,
by ({8], p. 85), that ((Bd U)/H)/K, and consequently p(Bd U), is a compact ¢, space.
Let W be the saturated interior of Int U with respect to G. Then p(W) is an open

neighborhood of p(g) and p(g) € p(W) cp(W)< V. Furthermore, Bdp (W) =p(BdU).
Hence, Bdp(W) is a compact o, space. G is cellular and, therefore, Plp-1mapovy)
is acyclic. This implies by [2] that Bdp (W) can contain no compact subset of finite
dimension larger than 3. Therefore, by [3], it must be the case that dimBdp(W)<3.
Consequently, by the definition of dim, dimXjG<4. Using [2] once again, we
have that dim X/G<3.

COROLLARY 1. Suppose that G is a cellular upper semi-continous decomposition
of E" into points and polyhedral sets. Then dimE*/G<3.

Proof. Suppose that g € G and that V is a neighborhood of g in E3 There
exists a polyhedral 3-cell U such that gcIntUcUcV, Then U satisfies the hy-
pothesis of Theorem 6.2, and the result follows,
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