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Abstract. A conjecture of Solovay states: Assuming that for every real a, a™ exists, the con-

structibility degrees of H; singletons are wellordered and the successor steps in this wellordering
are given by the sharps. In this paper we prove among others things that (assuming Ve (a¥ exists))

for every I, singleton a either O* is constructible from a or a* is constructible from O *. From
a relativized version of this result it follows that the constructibility degrees of O ¥, 0¥ *, o###

are the first o constructibility degrees of sharps of H; singletons.

§ 1. Preliminaries. Let o = {0, 1, 2, ...} be the set of natural numbers and “w
the set of all functions from w to w or for simplicity, reals. We use letters i, j, k, ...
to denote natural numbers and «, 8, y, ... to denote reals.

We shall use without explicit reference standard facts about the theory of
indiscernibles for the models L[x], as developed in [4] and [5]. At a key point in
our proof in § 2 we shall nevertheless use a recent result of Paris [3] which we now
proceed to review. Let #“ denote the class of Silver Indiscernibles for L[x] and
{i#}ccorp its increasing enumeration. We omit the superscripts if oweL. Let vE
= order type of S  (if, 7, 1), where for any ordinals x <4, (x, 1) = {£: x<&<)}.
‘We then have

Turorem (Paris [3]). Assume for all o, o*

exists. If for some &,y v # v;, then
0* e L[a].

"

§ 2. The Main Lemma. Our results will follow easily from a main lemma which.
we shall establish in this section and which seems to be interesting in its own right.
We need first some terminology and notation.

A tree T'on a set Xis a set of finite sequences from X closed under subsequences.
A path through T'is a sequence f e “X such that for every n, (f(0), f(1), ..., f(m) e T.
We denote the set of all paths through T by [T]. If X is of the form Y xZ, we re-
present a path fe “(YxZ) through T by the unique pair (g, h) € “Yx “Z such
that for each n, f(n) = (g9(n), h(n)). We then let

pIT] = {g: Ah(g, h) e [T1} = first projection of [T].
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TeE MAIN LEMMA. Assume Ya(a® exists). Let ¢(x) be a formula of set theory.
Then for some tree T on wx A (where A is some ordinal), T € L[0*], we have

pIT] = {a¥: Lol F @@ & O* ¢LIu]}.

Proof. Let ZFL (&) be the theory in the language of set theory, with a con-
stant ¢ added, which contains the axioms of ZF and also the two axioms: ae’w
and V = L[d]. Let 1o, 7y, ... be a recursive enumeration of all the definable terms
in ZFL(z) and assume t; has the n; free variables v, v5, ..., v,,. If @ is a formula
in the language of ZFL{«), we denote by [ ) its Godel number. For each «, a™® € “2
and o¥(1Y1) = 0 < Llal kW (5 ... 8,), if ¥ has the free variables v, ... v,.

Let "p(@)Y =k, and assume n, is such that:

0¥ ¢ Lo] < a®*(ny) = 0.

Finally let J be a recursive tree on w such that f e [J] <> f satisfies all the syn-
tactical properties for being a remarkable (with respect to some real) character;
see for example [4]. If B e[J], then we denote by I'(8, 8;) the model generated
by x, indiscernibles on the basis of f. Thus

Ja(f = a*) < fe[J1& (B, &) is well-founded .

Define now the following tree T in L[O¥], where x, is the first uncountable
ordinal in the world and [8;]" = {(£, ... &) &< .. <&, <w;}:
((ﬁ(o)sfo): ey (ﬂ(n),f;,)) ET @
@) (BQ), ., BGD) €T & (ko< = Blko) = 0) & (o< = B(ne) = 0),
() Visn (f; Isgd"-y),
(i) Yi,j<nd% (¥ eL[0¥*]& ¥<x, is closed and unbounded and for any
Ei< e <€y < o <1y, all in € :

Fills &) EH011 o m) <= B(11(0) £ 1())) = 0),
where v, 0’ are appropriate sequences of variables interwoven the same way as
& My -+ My, and rTi('U) s Tj(”’)] <.
‘We shall prove now. that
PIT] = {o*: Llu]lk ¢(a) & OF ¢ L[]},

which completes the proof of the lemma, since T can be easily replaced by a tree
on wxA for some A, with the same first projection.

Let Bep[T]. To prove that B = «™ where Lla]k o (o) & O* ¢ Lo} we only
have to show that I'(8, ;) is well founded. Let {c;},<y, be generating indiscernibles
for I' = I'(B, &y). It is enough to find ¥<x; unbounded such that the Skolem
Hull of {c;: £ €%} in I is well founded. Pick f such that (8, f) € [T]. For each n
and each i,j<n pick 4}; a closed unbounded subset of x; which demonstrates
that ((B(0), fo), s (B, f,))€T. Then if €= () %;, the mapping

n i,j<n

el ve,) = filly . 6)
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(where 7j(...) is the interpretation of 7; in I') proves that the Skolem Hull of
{cg: £ %} is well founded.

Conversely assume L]k (o) & O* ¢ L[x] and let f = «®. Since 0% ¢ L[«]
Paris’ theorem (see § 1) implies that (77, i§+1) N £ has fixed order type v<§,.
Consider now 7; and assume, to simplify the notation, that n; = 1. Then since

L]y o Lo
)< e

we can find a finite sequence & of countable indiscernibles for L, a finite sequence &
of large enough cardinals and §, <8, < ... <d,<v such that if (»); = the §th in-
discernible of L bigger than s, then for some i*

Lizly s L2 e s ; +
T GE ) = o, 1%, (5) 01 vy (15) Ops K)

Then one can check (sce for example Paris [3]) that for all large enough countable &,
we have ‘

L) = <, iE, (2)0; . (15)0,, N) .
So if we put

TAED = (g, 18, G281, s (53, W)

clearly f;e LIO*] and ((8(0). /), (B(1),f1), .)€ [T]; so BeplT]. &

A basic consequence of our lemma is of course the following (assuming
Va(a® exists)): If ¢ is a formula of set theory and (Jo)(L[a] k @ () & OF ¢ L[a)),
then Je)(L[x] k @ () & ot e L[O*]). For example, if there is a nongeneric real o
with O* ¢ L{a], then there is one such in L[O*]. Solovay has conjectured that no
such real exists. .

2. 0" and IT} singletons. We now apply our main lemma to get some infor-
malion about the constructibility degrees of IT} singletons, which partially con-
firms Solovay's conjecture. Put for convenience

s feaeLif],

w=feo &< a.

THEOREM. Assume Yo (o* exists). If o is a 1T} singleton then 0% < wor a® =, 0%,

THEOREM. Assume Vou(a¥ exists). The constructibility degrees of 0%, O%*,
O** ¥, . are the first w constructibility degrees of {a*: {a} e II3}.

The proofs of these two results are easy consequences of our main lemma
and its obvious relativization. The second of them seems to be a very strong evidence
for the truth of the straightforward modification of Solovay’s conjecture which
asserts that the constructibility degrees of sharps of JT3 singletons are well ordered,
with the successor steps given by the sharps. In fact, using an extension of our
result, Robert Van Wesep has proved that this modification of Solovay’s con-

" jecture is consistent with Ve(a® exists) (provided Va(a™ exists) is consistent).
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The next theorem follows from our main lemma, Mansfield’s theorem. on
perfect sets [2], and a result of Friedman [1]. Recall that a set of reals is called thin
if it. contains no perfect subset.

TrrorEM, Assume Yo(o® exists). Let AS®w be IS and put 4% = {o*: ve d &
& 0% ¢ La]}. Then

(1) A* is thin < A* is countable <> A* =L[0"],

(ii) @ # A* is countable = A* contains a Il L singleton.

Proof. (i) By Mansfield’s Theorem [2] if A is a standard model of set theory and
T (a tree on wx A) is in M and p[T] is thin then p[T]< M. Since A* = p[T'} with
T e L[0*] (by our Main Lemma) if 4* is thin then 4*=L[O #1, thus 4* is countable.

(i) Find an integer ny such that

() : yed* e fPed&y = (f) &y =0,

where f(y) is a total recursive function such that if y = o® then f(y) = « (clearly
ng is the Godel number of a sentence o such that 0% ¢ Lol L]k o). It @ # A4*
is countable, then by (i) A*<L[0¥*] and clearly 4* is also defined in L[O*] by
the IT% formula (*) as above. By a result of Friedman [1] every subset of L[0™]
which is 113 in L[O*] contains a real y, such that y, is (in L[0*]) a IT} singleton
in 0%, ie., there is a IT; predicate P(y, 8) such that L[O*]k y, = the unique y such
that P(y, 0%). Now there is a total recursive function g such that g(a*) = O*
for all «; thus LIO*]k y, = the unique y such‘that (yeA*&P(y, g()). Bu
then 7, = the unique y such that ye A* and P(y, g()), since if for some y' we
also have y’ e 4* and P(¥, g(y)), then y' e L[0¥], so by absoluteness L[0¥]
Fy ed*&P(y,g9®), thus y° = y,. So 7, is a IT; singleton and we are done.

Part (ii) of the above theorem seems to be relevant to the following open problem:
Does every countable IT3 set contain-a IT} singleton?

§ 4. Some final remarks. Ft follows easily from Paris’ theorem that if 2% = i§ .y,
then

©) u< B = <t wat<, f,

ie, the assignment o—A" satisfies the “Spector Criterion” for constructibility
degrees, where sharps play the role of jumps. One can neveriheless use a much
smaller ordinal assignment, namely

2% = next cardinal in L[«] beyond (the true) s,.

That this works is immediate from the following (unpublished) result of Kunen:
If % is weakly compact and ¥ > ("), then O* exists. We do not know if A% can
be still lowered so that it satisfies the Spector criterion, for example if we can take
A" = next a-admissible beyond &,. It seems in any case to us that the use of a suit-

able assignment a—2* satisfying (¥) may be instrumental in a positive solution of
Solovay’s conjecture.
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Added in proof. In view of recent work of Jensen, Solovay now feels that his conjecture
is most likely false. Jensen has also disproved the conjecture stated at the end of § 1 (granting
O* exists).
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