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Degree sets for graphs
by

S.F. Kapoor (Kalamazoo, Mich.), Albert D, Polimeni and Cartiss E. Wall

Abstract. For a graph G, the degree set D, of G is the set of degrees of the vertices of G. For
a finite, nonempty set S of positive integers, it is shown that there exists a graph G such that D, = S.
Furthermore, the minimum order of such a graph G is determined. Degree sets are also investigated
for trees, planar graphs, and outerplanar graphs.

1. Introduction. For a vertex v of a graph G, the degree of v in G, denoted degv,
is the number of edges of G incident with v. We denote the degree set of G (i.e.;
the set of degrees of the vertices of G) by 2. For example, the graph H of Figure 1
has degree set @, = {2,4,5}.

Fig. 1

Given a finite, nonempty set S of positive integers, we show tImL there exists
a graph G such that @ = S and determine the minimum order (numbel of vertices)
of such a graph G. In addition to investigating degree sets for graphs, we discuss
degree sets for planar graphs (including the subclasses of trees and outerplanar
graphs).

2. Degree sets for graphs. Before proceeding to our first result, we present
some definitions and establish some notation.

We denote the vertex set and edge set of a graph G by V(G) and E(G), re-
spectively, The complement G of a graph G is that graph for which ¥(G) = V(&)
and wv e E(G) if and only if uv ¢ E(G). The union Gy U G, of disjoint graphs G,
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and G, is that graph whose vertex set is V(G,) v ¥(G,) and whose edge sct is
E(G,) v E(G,). For disjoint graphs G; and G,, the join G;+G, has V(G,) u
U V(G,) as its vertex set, while E(Gi+G,) = E(G) v E(G,) u X, where X
= {v,0,] v, € V(@) and v, € V(G,)}. We denote the complete graph of order p
by K, and the complete n-partite graphs by K(pis P2y covs Pu)-

For a set S of positive integers, we shall write 1(S) to represent the minimum
order of a graph G such that @ = S. (If no such graph G exists, then we write
u(S) = +o0) If 8= {ay, ay, ..., a,}, n=1, where a,<a,<..<a,, we shall often
find it convenient to write u(S) = u(ay, @, .-, a,)- Since every graph which con-
tains a vertex of degree a, has order at least a,+1, it follows immediately that
ey, ag, ..., ;)=a,+1 for every set S = {a;,d,,..,a,} of positive integers,
with @, <a,<...<a,. We show that u(S) = a,+1 in all cases.

THEOREM 1. For every set S = {a,, a,, ..., a,}, n=1, of posirive integers, with
@, <a,< ... <a,, there exists a graph G such that Bg = S, and furthermore,

Wy, Gy ey @) = Gy+1 .

Proof. We proceed by induction on n. For n = 1, we observe that every vertex
of the complete graph K, .., has degree a; so that u(a;) = ¢;+1. For n = 2, the
vertices of the graph F = K, +(K,, ., +1) have degrees «;, and @,, and since F has
order a,+1, we conclude that p(a;, a,) = a,+1.

Let n>2. Assume for every set S containing m positive integers, wherc
1<m<n, that u(S) = a,+1, where a, is the largest clement of S. Lel §,
= {b;, by, ..., by} be a set of n+1 positive integers such that by <b, < ... <b,.y.
By the induction hypothesis, u(b,—b,, b3—>by, ..., b,—b;) = (b,—b)+1. Hence,
there exists a graph H of order (b,—b;)+1 such that

Dy = {bz—bx yby=by, .., bn'“bl}-
The graph
G = Kbl+(ani'l-bn Y H)

has order b,.,+1, and D¢ = {by, by, ..., byii};
= b, 1+ 1, which completes the proof.

hence, (b, byy ooy byyy)

The proof of the preceding theorem also provides the following result.

CORrOLLARY la. For every set S = {ay, aty, ..., &}, n=1, of positive inlegers,
with a;<a,< ... <a,, there exists a connected graph G of order a,-+1 such that
De=S. '

3. Degree sets for trees. We now turn our attention to an important subclass
of graphs, namely frees (connected graphs containing no cycles).

. THEOREM 2. Let S = {ay, ay, ..., a,}, n>1, be a set of positive integers. There
exists a nontrivial tree T with Dy = S if and only if 1 € 8. Moreover, if 1 € S, then
n

the minimum order of a nontrivial tree T with Dy = S is Y. (a,—1)+2.
i=1
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Proof. It is well-known that every nontrivial tree contains at least two vertices
of degree 1. Let S = {a;, a, ..., a,}, n=1, where | = a,<a,< ... <a,. Forn =1,
the nontrivial tree K, has the degree set {1}. For n = 2, the star T,, (consisting
of a central vertex adjacent with @, mutually nonadjacent vertices) has degree set
{1, a,}. For n>3, we consider stars G; (2<i<n), where G; = T, for i =2 and
i=nand G; = T, for 2<i<n. A tree G is constructed from these stars by joining
the central vertex of G; to the central vertex of G, for i =2,3,...,n—1. The

n
order of this tree G is N = Y (a;—1)+2 and the degree set of G is {a;, a3, ... a,}.
=1

Now suppose that 7T is any tree with p vertices and ¢ edges such that P = S
= {a,, a,, .., a,}. Necessarily, T contains at least one vertex of degree a; for
2<i<n and contains at least p—n-+1 vertices of degree at least a; = 1. Further-
more, since the sum of the degrees of the vertices of T"is 2¢ and since ¢ = p—1,
it follows that

2(p—1) = 2g= Y a;+(p-n)-1.
i=1
Hence,

p2Y(@-)+2=N.

i

M=

(]

1

n
Therefore, the minimum order of a tree T with @5 = S is ), (a;— 1) +2.
i=1

4. Degree sets for planar graphs. A planar graph is a graph which can be em-
bedded in the plane. First, we verify the following result.

TugoreM 3. Let S = {d;, ay, .., &}, n=1, be a set of positive integers with
a,<a,< .. < a,. Then there exists a planar graph G with D¢ = S if and only if
1<a;<5.

Proof. Tt is well-known (see [1], p. 104, for example) that if G is a planar
graph, then G contains a vertex of degree at most five. Hence, if the positive integer
a, is the minimum degree among the vertices of G, then 1<a, <5.

Conversely, suppose S = {a,, ds, ..., 4,}, n>1, Is a set of positive integers
such that ¢, <a,< ..<d, and 1<a, <5. We show there exists a planar graph G
such that @¢ = S. First, if a; = 1, then by Theorem 2, there exists a tree 7" (which,
of course, is a planar graph) such that @, = §. Denote the end-vertices of T by
vy, Vg, ., 1. Let 77 be another copy of T, embedded in the plane so that it is the
“mirror-image” of T. Let v; be the end-vertex of 7" which corresponds to v;. 1f
a, = 2, then we copstruct a planar graph G by joining v; and v; for each 7, 1<i<k.
If a, = 3,4, or 5, then we construct G by beginning with T and T’ and graphs of
the tetrahedron, octahedron, and icosahedron, respectively, embedded in the plane.
Tn each case let v,v] be an edge on the exterior region of the graph of each polyhedron.
Then a planar graph G with @ = S is obtained by deleting vw; and identifying
the two vertices v, and identifying the two vertices ;.
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In view of Theorem 3, we can make the following definition. Let § = {ay,ay, ...
a.,a,), n>1, be a set of positive integers such that ¢, <a,< ... <d,, and 1<a, <5,
Then p,(S) = pyla;, da, s a,) denotes the minimum order of a planar graph G
for which @4 = S. The value of 1,(S) is well-known for n = 1; in fact, (1) = 2,
12 =3, 1,(3) =4, pd)= 6, and u,(5) = 12. (As noted earlier, the planar
graphs giving these values for a; = 3, 4 and 5 are the graphs of the tetrahedron,
octahedron and icosahedron.) However, for an arbitrary set S of positive integers,
it appears to be very difficult to ascertain the value of #,(8). In order to present
a result dealing with the case n = 2, it is convenient to have two additional defi-
nitions.

The complete n-partite graph K(py,pas .nPn);, 122, Jor positive integers
P1>D2s s Dy, 18 that graph G whose vertex set can be partitioned into subscts
Vi, Va, ..., V, in such a way that |Vi| = p; for 1<i<n and wv is an edge of G if
and only if ue V; and ve ¥, for j # k. Hence, K(py,D2ys s P) = K, il py =1
for each i, 1<<i<n.

A planar graph G is called outerplanar if it is possible to embed G in the plane
in such a way that every vertex lies on the boundary of the exterior region. One
important fact concerning such graphs is that every outerplanar graph contains
a vertex of degree at most two.

THEOREM 4. Let a; and a, be positive integers with a, <a,. Then

® @ ) a,+1  for 1<a,<3,
) =
#ftas @ a,+2 for a, =4,
() pla,a) <2a,+2  for  ap=5.

Proof. We first consider (i). Clearly, u,(a;, a;)=a,+1. Hence, in order to
show that u,(a,, a;) = a,+1 for 1<a,; <3, it suffices to give an example of a planar
graph G of order a,+1 such that 9, = {a,, a,}. For a; = 1, the star K(1, a,) is
the appropriate graph. For a; = 2, the complete tripartite graph K(1,1,a,—1)
is planar and has degree set {2, a,}. For a; = 3, the “wheel” formed by joining
a vertex to each vertex of a cycle of lenght a, has the desired properties.

Next, we verify the equality p,(4, a,) =a, +2, where a, >4. If 1,(4, a;) = ay-+1,
then there exists a planar graph G of order a,+1 such that @y = {4, a,}. Let v be
a vertex of degree @, in G. Since v is adjacent to all other vertices of G, it follows
that G—uv is outerplanar. However, cvery verlex of G—v has degree at least 3,
contradicting the fact that G—v is outerplanar., Therefore, u,(4, a;)2d,+2. To
show that x,(4, a;) = a,+2, we need only observe that the graph formed by joining
two nonadjacent vertices to every vertex of a cycle of length a, has order ¢, +2,
is planar, and has degree set {4, a,}.

Now we consider (ii). We construct a planar graph G of order 2a,+2 having
degre? s?t' {5, a;} by beginning with disjoint cycles C: wy, 15, ..., Uy, 4, and
C'uty, Uy e,y Uy, iy Such that for i = 1,2, ..., 4y, w;u; and uyu) ., are edges of G
(where the subscripts are expressed modulo ay). The construction of G is completed

icm

©
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by adding a vertex v adjacent to each vertex of C and adding a vertex v adjacent
to each vertex of C'. Thus, p,(a,, a,)<2a,+2, for a; = 5.

‘We remark that it is not difficult to verify that equality holds in Theorem 4 (ii)
for a, = 6. There are, of course, numerous sets S of positive integers for which
py(S) is not known. There appears to be no simple formula, however.

5. Degree sets for outerplanar graphs. In this final section, we discuss degree
sets as they relate to outerplanar graphs. We begin with the following result.

THoOREM 5. Let S = {a,, a,, ..., a,}, n=1, be a set of positive integers with
a,<a,< ... <a,. Then there exists an outerplanar graph G with @ = S if and
only if ay =1 or a; = 2.

Proof. As noted earlier, if G is an outerplanar graph, then G contains a vertex
of degree at most two. Hence, if the positive integer @, is the minimum degree
among the vertices of G, then a; = 1 or a; = 2.

Conversely, suppose S = {ay, a3, ..., a,}, n=1, is a set of positive integers
such that @, <a,< .. <a, and a; = 1 or a; = 2. We show there exists an outer-
planar graph G such that ¢ = S. If a; = 1, then, by Theorem 2, there exists
a tree T (which is outerplanar) such that Pp = S. :

Next, suppose that a; = 2. For i = 2,3, ..., n, we construct an outerplanar
graph G,, as follows. If 4; is even, we begin with the graph K(1, «;). The graph G,
is then constructed by joining the a; vertices of degree 1 in K(1, ;) in pairs, resulting
in an addition of 4a, edges. If g; is odd, then G,, consists of two disjoint copies
of G,y (just described) together with an edge joining the vertices of degree a;—1.

Tt we let

G=UG,,
a; €S
A1
then G is outerplanar and % = S.

On the basis of Theorem 5, we may make the following definition. Let S
= {ay,dy, ..., a,}, nz1, be a set of positive integers such that ¢, <a,< ... <a,,
and a, = 1 or a, = 2. Then po(S) = po(ay, &, ..., a,) denotes the minimum order
of an outerplanar graph G for which @5 = S. For n = 1, the situation is particu-
larly easy, since po(1) = 2 and py(2) = 3. For n = 2, the results are given below.

THEOREM 6. (i) For ay>1, po(l, a3) = ay+1. (i) For a,>2,

if ay is even,

) dar+1
2,0a;) = j
Ho(2, a2) if ap is odd.

12(12——2

Proof. For (i), we need only observe that the graph K(1, a;) is outerplanar,
has order a,+1, and has degree set {1, a,}.

For (ii), we note that if «, is even, the graph G,, described in the preceding
proof shows that uo(2, a;) = ¢y +1. Now, if G is a graph with 9 = {2, a,},
where @, is odd, then G contains at least two vertices of degree aj. Let u and v be
vertices of G having degree a,. There are at most two vertices in G which are mutu-
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ally adjacent with » and v, since G is outerplanar. Because u and v may be adjacent,
G contains at least 2a,—2 vertices. However, there exists an outerplanar graph G
of order 2a,—2 with 95 = {2, a,} (see Fig. 2); therefore, po(2, az) = 2a,—2.

i

W

{ 1
\ " A\ /

Fig. 2

We note in closing that po(S) has been completely determined for |S] = 3,

and the result will be presented elsewhere.
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Models of arithmetic and the 1-3-1 lattice
by

J. B. Paris * (Manchester)

Abstract. In this paper we show that if 7' is any complete theory in the language of number
theory extending Peano’s Axioms then there is a model M of T'such that the 1-3-1 lattice can be
embedded in the lattice of elementary substructures of M.

Introduction. Let T be a complete theory in the language of number theory
extending Peano’s Axioms. For M a model of T, let § (M) be the lattice of clementary
substructures of M. In this paper we show that there is a model M of T such that
the 1-3-1 lattice can be embedded in $(M).

This result continues investigations started in [1]. Related work also appears
in [2] and we adopt the notation of that paper. Thus for A a model of T, ay, ..., @,
e M, Mla,, ..., a,] is the smallest elementary substructure of M containing ay, ..., @,-
Since M is a model of Peano’s Axioms, Ma,, ..., @,] consists exactly of those el-
ements of M definable in M from ay, ..., a,.

THEOREM. There is a model M of T such that the 1-3-1 lattice can be embedded
in $(M).

Proof. Fix M to be an o,-saturated model of T and identify &, the natural
numbers, with an initial segment of M. We shall show that M satisfies the properties
of the theorem.

Before proceeding further it will be useful to have the following crude estimate.

LevmMa 1. Let r,qe M, se N and s=2. Let x;,y;, 1<i<q be sequences of
elements of M definable in M and let :

=

a
Sx; =Yy, =r (sums taken in M) .

Then
q 1.7-
S x.p;— (the sum of the s largest x,7;) € —=— -
i=1 4(s—1)
* This paper was written when the author was working at Manchester University and the
University of California, Berkeley. .
4 — Fundamenta Mathematicae XCV
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